Tag Archives: Novichok nerve agent

How Artificial Intelligence Can Help Produce Better Chemical Weapons

An international security conference convened by the Swiss Federal Institute for NBC (nuclear, biological and chemical) Protection —Spiez Laboratory explored how artificial intelligence (AI) technologies for drug discovery could be misused for de novo design of biochemical weapons.  According to the researchers, discussion of societal impacts of AI has principally focused on aspects such as safety, privacy, discrimination and potential criminal misuse, but not on national and international security. When we think of drug discovery, we normally do not consider technology misuse potential. We are not trained to consider it, and it is not even required for machine learning research.

According to the scientists, this should serve as a wake-up call for our colleagues in the ‘AI in drug discovery’ community. Although some expertise in chemistry or toxicology is still required to generate toxic substances or biological agents that can cause significant harm, when these fields intersect with machine learning models, where all you need is the ability to code and to understand the output of the models themselves, they dramatically lower technical thresholds. Open-source machine learning software is the primary route for learning and creating new models like ours, and toxicity datasets that provide a baseline model for predictions for a range of targets related to human health are readily available.

The genie is out of the medicine bottle when it comes to repurposing our machine learning. We must now ask: what are the implications? Our own commercial tools, as well as open-source software tools and many datasets that populate public databases, are available with no oversight. If the threat of harm, or actual harm, occurs with ties back to machine learning, what impact will this have on how this technology is perceived? Will hype in the press on AI-designed drugs suddenly flip to concern about AI-designed toxins, public shaming and decreased investment in these technologies? As a field, we should open a conversation on this topic. The reputational risk is substantial: it only takes one bad apple, such as an adversarial state or other actor looking for a technological edge, to cause actual harm by taking what we have vaguely described to the next logical step. How do we prevent this? Can we lock away all the tools and throw away the key? Do we monitor software downloads or restrict sales to certain groups?

Excerpts from Fabio Urbina et al, Dual use of artificial-intelligence-powered drug discovery, Nature Machine Intelligence (2022)

Our Biggest Weakness: Weak Biodefenses + Malicious Viruses

The coronavirus that has killed over 180,000 people worldwide was not created with malice. Analysis of its genome suggests that, like many new pathogens, it originated by natural selection rather than human design. But …“Covid-19 has demonstrated the vulnerability of the US and global economy to biological threats, which exponentially increases the potential impact of an attack,” says Richard Pilch of the Middlebury Institute of International Studies. In theory, bioweapons are banned. Most countries in the world are party to the Biological Weapons Convention (BWC) of 1975, which outlaws making or stockpiling biological agents for anything other than peaceful purposes. But some countries probably make them secretly, or keep the option close at hand. America accuses North Korea of maintaining an offensive biological-weapons programme, and alleges that China, Iran and Russia dabble in dual-use biolgical research (for peaceful and military usage) research. Toxins like ricin have also been bought and sold on shady recesses of the internet known as the dark web.

Germ warfare briefly rose to prominence in September 2001, when letters laced with anthrax spores were mailed to American news organisations and senators, killing five people. That was a wake-up call. Public health became part of national security. BioWatch, a network of aerosol sensors, was installed in more than 30 cities across America. But in recent years threats from chemical weapons, like the sarin dropped by Syria’s air force and the Novichok smeared on door handles by Russian assassins, took priority.

Though the Trump administration published a national biodefence strategy in 2018, it shut down the National Security Council’s relevant directorate and proposed cuts to the laboratories that would test for biological threats. Funding for civilian biosecurity fell 27% between fiscal years 2015 and 2019, down to $1.61bn—less than was spent on buying Black Hawk helicopters.

Yet many pathogens used as weapons tend to differ from respiratory viruses in important ways. Those like anthrax, caused by bacteria which form rugged and sprayable spores, but do not spread from human to human, have the advantage of minimising the risk of rebound to the attacker. With the notable exception of smallpox—a highly contagious and lethal virus that was eradicated in 1979 but preserved by the Soviet Union for use against America (but not Europe), and now exists only in two laboratories, in America and Russia—most biological weapons would therefore have more localised effects than the new coronavirus.

Even so, the slow and stuttering response to the pandemic has exposed great weaknesses in how governments would cope…demonstrating that every part of public-health infrastructure is either broken or stretched to the max. The centrepiece of America’s biosurveillance programme, a network of laboratories designed for rapid testing, failed, says Mr Koblentz, while the national stockpile of face masks had not been substantially replenished in over a decade. Would-be attackers will take note.

In 2016 American intelligence agencies singled out genome editing as a national-security threat for the first time. Two years later a major study by the National Academies of Sciences, Engineering, and Medicine warned that synthetic biology, a potent set of methods for tinkering with or creating organisms, could, in time, be used to re-create viruses like smallpox or make existing pathogens more dangerous, such as resistant to antibiotics. In 2011 Dutch and Japanese scientists said that they had created a version of bird flu that could be transmitted between mammals by the respiratory route—an announcement that prompted the Netherlands to treat the relevant academic papers as sensitive goods subject to export controls.

In January 2020 Canadian scientists funded by an American biotech company used synthetic DNA from Germany to synthesise a microbe closely related to smallpox, indicating the ease with which it could be done. “If a potential bad actor pursues a weapons capability using sars-cov-2, the virus is now attainable in laboratories all around the world, and blueprints for assembling it from scratch have been published in the scientific literature.”

 The trouble is that biodefence has evolved slowly, says Dan Kaszeta, a former biological weapons adviser to the White House. Compact devices that can detect chemical threats and warn soldiers to don a gas mask have long been available. “That doesn’t exist for anthrax or any of the other aerosol pathogens,” says Mr Kaszeta. “Telling the difference between an anthrax spore and a bit of tree pollen is not something you can do in a couple of seconds.”

Excertps from Biodefence: Spore Wars, Economist, Apr. 25, at 19

Assassinations and Top Secret Chemicals: the case of Novichok Nerve Agent

In 2018, one of the Novichok nerve agents was used in an attempt to assassinate a former Russian spy on U.K. soil—spurring the United States and allies to lift the veil of secrecy and mount a drive to outlaw the obscure class of nerve agents, concocted in a Soviet weapons lab during the height of the Cold War. Now, their effort to amend the Chemical Weapons Convention (CWC) is about to pay off.

On 9 October, the Executive Council of the Organisation for the Prohibition of Chemical Weapons (OPCW), the body that administers the treaty, reviewed a revised proposal from Russia that would bring Novichoks under the treaty’s verification regime, along with a class of potential weapons known as carbamates. If the Russian proposal and a similar one from the United States, Canada, and the Netherlands are approved at a treaty review meeting in December 2019.

The newfound glasnost on Novichoks, also known as fourth-generation nerve agents, should spur research on their mechanism of action and on countermeasures and treatments.   Chemical weapons experts had been whispering about Novichoks for decades.   Treaty nations have long resisted adding Novichoks to the CWC’s so-called Schedule 1 list of chemical weapons, which compels signatories to declare and destroy any stockpiles. “People were worried about a Pandora’s box,” fearing such a listing would force them to regulate ingredients of the weapons, Koblentz says. That could hamper the chemical industry and might clue in enemies on how to cook them up. (Who has the agents now is anyone’s guess.) Indeed, the U.S. government for years classified the Novichok agents as top secret. “There was a desire among Western countries to keep the information as limited as possible to avoid proliferation issues,” Koblentz says.

The 2018 assassination attempt against former Russian spy Sergei Skripal in Salisbury, U.K., thrust the Novichok agents into the spotlight. The botched attack gravely sickened Skripal, his daughter Yulia, two police officers who investigated the crime scene, and a couple—Charlie Rowley and Dawn Sturgess—who a few months later happened on a perfume bottle containing the agent. After long hospitalizations, the Skripals, the officers, and Rowley recovered; Sturgess died. The United Kingdom charged two Russian men, reportedly military intelligence officers, as the alleged assailants, and obtained a European warrant for their arrest; they remain at large in Russia.

Excerpts from Richard Stone, Obscure Cold War nerve agents set to be banned, Science, Oct. 25, 2019