Category Archives: biodiversity

What You Can Do with $1 Million: Saving the New Zealand Parrot

Scientists in New Zealand have genetically sequenced every adult kakapo.  The kakapo, a cuddly bird that lives in New Zealand, is not designed for survival. Weighing up to 4kg, it is the world’s fattest and least flighty parrot. It mates only when the rimu tree is in fruit, which happens every few years.  It evolved in the absence of land-based predators, so instead of soaring above the trees it waddles haplessly across the dry forest floor below. When it stumbles across something that might kill it, it has the lamentable habit of standing still….Such oddities turned the kakapo into fast food for human settlers—and for the cats, rats and possums they brought with them. It seemed extinct by the 1970s, until scientists stumbled on two undiscovered populations in the country’s south. These survivors were eventually moved to small predator-free islands, where the Department of Conservation has spent decades trying to get them to breed…Its patience may finally be rewarded. The rimu was in fruit this year, and more than 80 chicks hatched after a bumper crop, making this the best breeding season on record. Many have survived into adolescence, increasing the number of adult kakapos by a third, to 200 birds.

But another threat to the kakapo is a lack of genetic diversity, because of low numbers and inbreeding. This is one reason why fewer than half of kakapo eggs hatch. By sequencing the genome of every living bird, scientists can identify closely related individuals and prevent more inbreeding by putting them on different islands. Well-matched birds cannot be forced to mate, but artificial insemination is also proving effective. Every bird is fitted with a transmitter to track its slightest movement. If a female mates with an “unsuitable” male, the process can be “overridden” with another bird’s semen. Time is of the essence, so drones are being used to whizz kakapo sperm to the right place.

All these efforts cost almost nz$2m ($1.3m) this breeding season. Yet the kakapo’s future still looks precarious. Earlier this year a fungal disease tore through the population. And tiny as the number of kakapos is, space is running out on the two islands where most of them live. New predator-free havens must soon be found. 

Excerpts from How eugenics is saving a pudgy parrot, Economist, Aug. 31, 2019

How to Manage Water Like Money and Fail: Australia

Australia’s Darling River…provided fresh water to farmers seeking to tame Australia’s rugged interior.  No longer. The Darling River hasn’t flowed for eight months, with long stretches completely dried up. A million fish died there in January 2019.  Kangaroos, lizards and birds became sick or died after drinking from toxic pools of stagnant water.  Australia’s water-trading market is drawing blame. The problems with the system, created more than a decade ago, have arisen as similar programs are being considered in the U.S.

Water crises are unfolding across the world as surging populations, industrial-scale farming and hotter temperatures deplete supplies.  Australia thought it had the answer: a cap-and-trade system that would create incentives to use water efficiently and effectively in the world’s driest inhabited continent. But the architects of water trading didn’t anticipate that treating water as a commodity would encourage theft and hoarding.   A report produced for a state resources regulator found the current situation on the Darling was caused by too much water being extracted from the river by a handful of big farmers. Just four license holders control 75% of the water extracted from the Barwon-Darling river system.

The national government, concerned that its water-trading experiment hasn’t turned out as intended, in August 2019 requested an inquiry by the country’s antitrust regulator into water trading.  Anticorruption authorities are investigating instances of possible fraud, water theft and deal making for water licenses. In one case, known as Watergate, a former agriculture minister allegedly oversaw the purchase of a water license at a record price from a Cayman Islands company co-founded by the current energy minister. The former agriculture minister said he was following departmental advice and had no role in determining the price or the vendor. The energy minister said he is no longer involved with the company and received no financial benefit from the deal.

Since 2007, Australia has allowed not only farmers but also investors who want to profit from trading to buy and sell water shares. The water market is now valued at some $20 billion.    But making water valuable had unintended consequences in some places. “Once you create something of real value, you should expect people to attempt to steal it and search for ways to cheat,” says Mike Young, a University of Adelaide professor. “It’s not rocket science. Manage water like money, and you are there.”  Big water users have stolen billions of liters of water from rivers and lakes, according to local media investigations and Australian officials, often by pumping it secretly and at night from remote locations that aren’t metered. A new water regulator set up in New South Wales investigated more than 300 tips of alleged water thefts in its first six months of operation.  In 2018, authorities charged a group of cotton farmers with stealing water, including one that pleaded guilty to pumping enough illegally to fill dozens of Olympic-size swimming pools.  Another problem is that water trading gives farmers an incentive to capture more rain and floodwater, and then hoard it, typically by building storage tanks or lining dirt ditches with concrete. That enables them to collect rain before it seeps into the earth or rivers.

The subsequent water shortages, combined with trading by dedicated water funds and corporate farmers, have driven up prices. Water in Australia’s main agricultural region, the Murray-Darling river basin, now trades at about $420 per megaliter, or one million liters, compared with as low as $7 in previous years.  David Littleproud, Australia’s water-resources minister, says 14% of water licenses are now owned by investors. “Is that really the intent of what we want this market to be?” he asks. “Water is a precious commodity.”

Excerpts from Rachel Pannett , The U.S. Wants to Adopt a Cap-and-Trade Plan for Water That Isn’t Working, WSJ, Sept. 4, 2019

How to Change the World: Take Seeds to Space and Irradiate them with Cosmic Rays

With 19% of the world’s population but only 7% of its arable land, China is in a bind: how to feed its growing and increasingly affluent population while protecting its natural resources. The country’s agricultural scientists have made growing use of nuclear and isotopic techniques in crop production over the last decades. In cooperation with the IAEA and the Food and Agriculture Organization of the United Nations (FAO), they are now helping experts from Asia and beyond in the development of new crop varieties, using irradiation.

While in many countries, nuclear research in agriculture is carried out by nuclear agencies that work independently from the country’s agriculture research establishment, in China the use of nuclear techniques in agriculture is integrated into the work of the Chinese Academy of Agricultural Sciences (CAAS) and provincial academies of agricultural sciences. This ensures that the findings are put to use immediately.

And indeed, the second most widely used wheat mutant variety in China, Luyuan 502, was developed by CAAS’s Institute of Crop Sciences and the Institute of Shandong Academy of Agricultural Sciences, using space-induced mutation breeding. It has a yield that is 11% higher than the traditional variety and is also more tolerant to drought and main diseases.  It has been planted on over 3.6 million hectares – almost as large as Switzerland. It is one of 11 wheat varieties developed for improved salt and drought tolerance, grain quality and yield.

Through close cooperation with the IAEA and FAO, China has released over 1,000 mutant crop varieties in the past 60 years, and varieties developed in China account for a fourth of mutants listed currently in the IAEA/FAO’s database of mutant varieties produced worldwide.

The Institute uses heavy ion beam accelerators, cosmic rays and gamma rays along with chemicals to induce mutations in a wide variety of crops, including wheat, rice, maize, soybean and vegetables….Indonesia’s nuclear agency, BATAN, and CAAS are looking for ways to collaborate on plant mutation breeding

Space-induced mutation breeding
 
Irradiation causes mutation, which generates random genetic variations, resulting in mutant plants with new and useful traits. Mutation breeding does not involve gene transformation, but rather uses a plant’s own genetic components and mimics the natural process of spontaneous mutation, the motor of evolution. By using radiation, scientists can significantly shorten the time it takes to breed new and improved plant varieties.

Space-induced mutation breeding, also called space mutagenesis, involves taking the seeds to space, where cosmic rays are stronger, and these rays are used to induce mutation.  Satellites, space shuttles and high-altitude balloons are used to carry out the experiments. One advantage of this method is that the risk of damaging the plants are lower than when using gamma irradiation on earth.

Excerpts from How Nuclear Techniques Help Feed China, IAEA, Apr. 4, 2019

The Biopiracy Backlash

Indonesia‘s rich biodiversity and complex geology have lured scientists from abroad for centuries. But a law adopted on 16 July 2019 by Indonesia’s parliament may convince some to go elsewhere. The legislation includes strict requirements on foreign scientists doing research in Indonesia, including the need to recruit local collaborators and a near-ban on exporting specimens, along with stiff sanctions, including jail time, for violators.

Muhammad Dimyati, director-general of research development at Indonesia’s Ministry of Research, Technology, and Higher Education (commonly known as RISTEK) in Jakarta, says the law is needed to protect Indonesia’s natural resources and develop the country’s research enterprise. But some Indonesian scientists fear the consequences. “Our international collaborations will be stifled,” says Berry Juliandi, a biologist at Bogor Agricultural University and secretary of the Indonesian Young Academy of Science. Indeed, marine biologist Philippe Borsa of the French Research Institute for Development in Montpellier says the law—and an increasingly unfriendly climate for foreign researchers—is a reason for him not to return to Indonesia, where he has studied the phylogeography of stingrays.

The new law also establishes the National Research Agency, a giant new institution that may subsume most government research centers, including the Indonesian Institute of Sciences (LIPI) in Jakarta. Details still need to be fleshed out, but some scientists worry the new agency will concentrate too much power in a few hands. The law’s most contentious provisions, however, are those that apply to foreign researchers.

From now on, their research has to be “beneficial for Indonesia.” They need to get ethical clearance from an Indonesian review board for every study, submit primary data and published papers to the government, involve Indonesian scientists as equal partners, and share any benefits, such as the proceeds from new drugs, resulting from the study. Researchers can’t take samples or even digital information out of the country, except for tests that cannot be done in Indonesian labs, and to do so, they need a so-called material transfer agreement (MTA) using a template provided by the government.

In most cases, violators will lose their research permit, but some offenses carry steeper penalties. Scientists who fail to obtain a proper permit will be blacklisted for 5 years; repeat offenders risk a $290,000 fine. Failure to comply with the MTA requirements is punishable by 2 years in prison or a $145,000 fine. ..Indonesia has become increasingly concerned about biopiracy.  In 2018,, for instance, a dispute erupted over a genetic study of Sulawesi’s “sea nomads”—an indigenous fishing group that appears to have evolved bigger spleens to store oxygenated blood during long dives. Indonesian researchers called it an example of Western “helicopter science.”. 

Megalara garuda

A 2017 document introducing the new law, signed by RISTEK Minister Mohamad Nasir, singled out another alleged example: the discovery of Megalara garuda, a giant venomous wasp, on Sulawesi, published in 2012 by entomologist Lynn Kimsey of the University of California (UC), Davis, along with a German researcher who found the same insect in a Berlin collection. LIPI entomologist Rosichon Ubaidillah tells Science that he and a junior colleague collected the wasps and that he suggested the name garuda—a mythical bird and national symbol of Indonesia—during a visit to UC Davis. But neither of them was a co-author on the paper; Ubaidillah was mentioned in an acknowledgement, his colleague not at all. Kimsey violated a memorandum of understanding between LIPI and UC Davis, he adds. LIPI, enraged, asked Kimsey to return the wasps she took home.

Excerpts from Dyna Rochmyaningsih, Indonesia gets tough on foreign scientists, Science, July 26, 2019

Modernize or Die: Bio-Engineered Food

China is betting that CRISP technology*can transform the country’s food supply.  China also expanded its efforts beyond its borders in 2017, when the state-owned company ChemChina bought Switzerland-based Syngenta—one of the world’s four largest agribusinesses, which has a large R&D team working with CRISPR—for $43 billion. That was the most China has ever spent on acquiring a foreign company, and it created an intimate relationship between government, industry, and academia—a “sort of a ménage à trois” that ultimately could funnel intellectual property from university labs into the company, says plant geneticist Zachary Lippman of Cold Spring Harbor Laboratory in New York.

Chinese leaders “want to strategically invest in genome editing, and [by that] I mean, catch up,” says Zhang Bei, who heads a team of 50 scientists at the Syngenta Beijing Innovation Center…China may one day need CRISPR-modified plants to provide enough food for its massive population….    China needs to resolve how it will regulate CRISPR-engineered crops—a divisive issue in many countries. In a 2018 decision that rocked big agriculture, a European court ruled that such crops are genetically modified organisms (GMOs) that need strict regulation. In contrast, the U.S. Department of Agriculture (USDA) exempts genome-edited plants from regulations covering GMOs as long as they were produced not by transferring DNA from other species, but by inducing mutations that could have occurred naturally or through conventional breeding.  Chinese consumers are wary of GM food. The country strictly limits the import of GM crops, and the only GM food it grows are papayas for domestic consumption. But for CRISPR, many plant researchers around assume China will follow in the United States’s footsteps…

For Corteva, Syngenta, and the other two big ag companies—BASF and Bayer (which acquired Monsanto last year)—the long game is to use CRISPR to develop better versions of their serious moneymakers, the “elite” varieties of a wide range of crops that have big commercial markets. They sell dozens of kinds of elite corn seeds—for example, inbred strains that consistently have high yields or reliable resistance to herbicides. Creating the genetic purity needed for an elite variety typically takes traditional breeding of many generations of plants, and CRISPR is seen as the cleanest way to improve them quickly. The earlier methods of engineering a plant can lead to unwanted genomic changes that must be laboriously culled…

Syngenta sees CRISPR-modified corn as a big opportunity in China, which grows more hectares of corn than any other crop. Yields per hectare are only 60% of those in the United States because corn ear worms often weaken Chinese crops. A fungus thrives in the weakened plants, producing a toxin that makes the resultant ears unfit for animal feed. As a result, China must import a great deal of corn. (According to USDA, 82% of U.S.-grown corn has been engineered to have a bacterial gene that makes it resistant to ear worms.)…“Syngenta is putting a lot of emphasis to grow in China to become the leading seed company. The China market as a whole, if it modernizes as the U.S. has modernized, can be as big as the U.S. market.”

Jon Cohen, To feed its 1.4 billion, China bets big on genome editing of crops, Science Magazine, Aug. 2, 2019

* Genome editing (also called gene editing) is a group of technologies that give scientists the ability to change an organism’s DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A recent one is known as CRISPR-Cas9.

Where to Go? 1 Million Tons Radioactive Water at Fukushima

In August 2019, Tepco projected that storage of radioactive water at the Fukushima nuclear plant would reach full capacity by around summer 2022 even after the expansion — the first time it has issued such a precise estimate.  According to Tepco, the Fukushima No. 1 plant had 960 massive tanks containing 1.15 million tons of treated water as of July 18, 2019. Water that has touched the highly radioactive melted fuel debris has been cleaned up through water treatment machines and is stored in the tanks, but the high-tech treatment machines are able to remove most radionuclides except tritium. The plant currently sees an increase of contaminated water by 170 tons a day, Tepco says.

Releasing tritium-tainted water into the sea in a controlled manner is common practice at nuclear power plants around the world, and it was generally considered the most viable option as it could be done quickly and would cost the least.  The head of the Nuclear Regulation Authority, Toyoshi Fuketa, has long said that releasing the treated water into the sea is the most reasonable option, but people in Fukushima, especially fishermen, fear it will damage the region’s reputation.

Addressing those concerns, the government panel, launched in November 2016, has been looking for the best option in terms of guarding against reputational damage. Injecting it into the ground, discharging it as steam or hydrogen, or solidification followed by underground burial have all been on the table. Under the current plan, Tepco is set to increase the tank space to store 1.37 million tons of water a total, but estimates show that will only last until summer 2022.  But the more space it creates, the bigger the decommissioning headache becomes.

Excerpts from KAZUAKI NAGAT, Fukushima nuclear plant to run out of tanks to store tritium-laced water in three years, Tepco says, Japan Times, Aug. 9, 2019
BY KAZUAKI NAGATA

Low Risk-High Rewards: Killing Endangered Species

The animals’ meat, hides and, above all, tusks are money-spinners. East Asia is the biggest market for ivory and for many illegally traded products, such as animal parts used in traditional Chinese medicine (TCM)—tiger bones, rhino horns, pangolin scales—or in its cuisine—pangolin meat, for example. In July,  2019 the authorities in Singapore seized 8.8 tonnes, about 300 elephants’-worth, of ivory, along with 11.9 tonnes of pangolin scales, from some 2,000 of the anteaters, the world’s most widely trafficked endangered mammal. The annual profits of the trade in illegal wildlife products are estimated at between $7bn at the low end and $23bn. This makes it the fourth-most profitable criminal trafficking business, with links to others—slavery, narcotics and the arms trade..

Athough China is trying to curb illegal trade, it is also promoting TCM as one of its civilisation’s great contributions to the world. It has indeed made breakthroughs, such as artemisinin, now a widely used defence against malaria. Artemisinin is isolated from the plant Artemisia annua, sweet wormwood, a herb employed in TCM….Conservationists are alarmed that in 2019 the World Health Organisation (WHO) gave TCM respectability by including diagnoses for 400 conditions in its influential International Classification of Disease. 

The WHO approved in June 2019 a new version of its International Classification of Diseases, a highly influential document that categorizes and assigns codes to medical conditions, and is used internationally to decide how doctors diagnose conditions and whether insurance companies will pay to treat them. The latest version, ICD-11, is the first to include a chapter, chapter 26, on TCM.

Excerpts from How to curb the trade in endangered species: On the Horns, Economist, Aug. 10, 2019; The World Health Organization’s decision about traditional Chinese medicine could backfire, Nature, June 5, 2019