Tag Archives: chemical lasers

How Artificial Intelligence Can Help Produce Better Chemical Weapons

An international security conference convened by the Swiss Federal Institute for NBC (nuclear, biological and chemical) Protection —Spiez Laboratory explored how artificial intelligence (AI) technologies for drug discovery could be misused for de novo design of biochemical weapons.  According to the researchers, discussion of societal impacts of AI has principally focused on aspects such as safety, privacy, discrimination and potential criminal misuse, but not on national and international security. When we think of drug discovery, we normally do not consider technology misuse potential. We are not trained to consider it, and it is not even required for machine learning research.

According to the scientists, this should serve as a wake-up call for our colleagues in the ‘AI in drug discovery’ community. Although some expertise in chemistry or toxicology is still required to generate toxic substances or biological agents that can cause significant harm, when these fields intersect with machine learning models, where all you need is the ability to code and to understand the output of the models themselves, they dramatically lower technical thresholds. Open-source machine learning software is the primary route for learning and creating new models like ours, and toxicity datasets that provide a baseline model for predictions for a range of targets related to human health are readily available.

The genie is out of the medicine bottle when it comes to repurposing our machine learning. We must now ask: what are the implications? Our own commercial tools, as well as open-source software tools and many datasets that populate public databases, are available with no oversight. If the threat of harm, or actual harm, occurs with ties back to machine learning, what impact will this have on how this technology is perceived? Will hype in the press on AI-designed drugs suddenly flip to concern about AI-designed toxins, public shaming and decreased investment in these technologies? As a field, we should open a conversation on this topic. The reputational risk is substantial: it only takes one bad apple, such as an adversarial state or other actor looking for a technological edge, to cause actual harm by taking what we have vaguely described to the next logical step. How do we prevent this? Can we lock away all the tools and throw away the key? Do we monitor software downloads or restrict sales to certain groups?

Excerpts from Fabio Urbina et al, Dual use of artificial-intelligence-powered drug discovery, Nature Machine Intelligence (2022)

Treating People Like Roaches-no longer legal

Since its adoption in 1993, the Chemical Weapons Convention has banned the development, possession, and use of weaponized toxic chemicals.  However, whether this prohibition also applied to law enforcement use of certain agents that act on the central nervous system (CNS) remained the subject of debate. In December 2021,  Chemical Weapons Convention adopted a landmark Decision to effectively outlaw the aerosolized use of CNS-acting chemical agents for law enforcement purposes.  

Although 85 countries supported the Decision, including Australia, Switzerland, and the United States, the vote was opposed by 10 countries, which may not feel constrained by its prohibitions. Notable among the opponents was Russia, whose security forces used aerosolized fentanyl derivatives to end the 2002 Moscow theater siege, causing the deaths of more than 120 hostages from poisoning and asphyxiation. Subsequent dual-use research into CNS-acting chemicals has been reported by Russian scientists as well as scientists from China and Iran, who also opposed this Decision.

Furthermore, the Decision is limited in scope. It explicitly prohibits only aerosolized CNS weapons, excluding other delivery mechanisms such as law enforcement dart guns…
 
Excerpt from MICHAEL CROWLEY AND MALCOLM DANDO, Central nervous system weapons dealt a blow, Science, Jan. 14, 2022

How to Stop the Chemical Wars of the Future

Stark illustrations of the dangers from chemical weapons can be seen in attacks using toxic industrial chemicals and sarin against civilians and combatants in Syria and toxic industrial chemicals in Iraq, as well as more targeted assassination operations in Malaysia and the United Kingdom, employing VX and novichok nerve agents, respectively. . With the parties to the Chemical Weapons Convention (CWC) convening a Review Conference to address such issues beginning 21 November 2018, we highlight important scientific aspects .

The Chemical Weapons Convention (CWC) is a multilateral treaty in effect since 1997 that proscribes the development, production, stockpiling, transfer, and use of chemical weapons “under any circumstances” and requires their destruction within a specified time period. The CWC allows the use of toxic chemicals for a range of industrial, agricultural, research, medical, pharmaceutical, or other peaceful purposes, including law enforcement, as long as the “types and quantities” of chemicals employed are “consistent with such purposes.” …The Organisation for the Prohibition of Chemical Weapons (OPCW), which is the implementing body of the CWC, comprises the 193 State Parties and a Technical Secretariat that provides technical assistance to States, routinely inspects relevant State and commercial industrial facilities, and monitors activities to ensure compliance. It was awarded the Nobel Peace Prize in 2013 for overseeing and facilitating the verified destruction of most of the declared chemical weapons stocks produced in the last century—to date totaling more than 96% (69,750 metric tons) of the declared stockpiles of chemical agents.

Although the CWC includes three schedules of toxic chemicals for the application of verification measures, the scope of the CWC is not constrained to these schedules but by its General Purpose Criterion (GPC), which prohibits misuse of toxic chemicals based on intent rather than on this limited list of chemicals.  [This GPC makes it possible to widen the authority of the OPCW. More, specifically issues to consider include]:

1) Riot control agents (RCAs). The CWC defines RCAs—such as tear gas and pepper spray—as “any chemical not listed” in one of its three schedules that can produce “rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure.”…However, a recurring concern documented by the medical community and human rights monitors has been the widespread misuse of RCAs by police and security forces in excessive quantities, including in hospitals, prisons, homes, and automobiles, where targeted individuals cannot disperse. In such situations, serious injury or death can result from toxic properties of chemicals or from asphyxiation… [It is important to clarify] the nature and scope of “law enforcement” activities and develop guidance as to “types and quantities” of RCAs that can legitimately be used in such circumstances

2) Delivery systems… capable of delivering far greater amounts of RCAs (and potentially other toxic chemicals) over wider areas or more extended distances than current standard law enforcement delivery mechanisms, such as handheld sprays, grenades, and single launched projectiles. Such new systems include large-capacity spraying devices, automatic grenade launchers, multibarrel projectile launchers, large-caliber RCA projectiles, and unmanned ground or aerial vehicles capable of carrying spraying devices or projectile launchers. ..

3) Incapacitating chemical agent (ICA) weapons. Although the CWC permits use of appropriate types and quantities of RCAs for law enforcement, certain countries have conducted research into weapons employing other distinct toxic chemicals, so-called ICAs. Not separately defined under the CWC, ICAs can be considered as a range of toxic chemicals—only one of which [3-quinuclidinyl benzilate (BZ) and two of its immediate precursors] is currently scheduled—including anesthetics and other pharmaceutical chemicals that are purportedly intended to act on the body’s core biochemical and physiological systems, notably the central nervous system (CNS), to cause prolonged but nonpermanent disability. Such CNS-acting chemicals can produce unconsciousness, sedation, hallucination, incoherence, disorientation, or paralysis…An aerosolized mixture of two anesthetics—carfentanil and remifentanil—employed by Russian security forces to end the Moscow theatre siege of October 2002 caused the deaths of 125 of the 900 hostages

Other chemical production facilities (OCPFs) are chemical plants that do not currently produce, but are capable of manufacturing, chemical warfare agents or precursors. At present, a small fraction of declared OCPFs are selected for verification by the OPCW; the Review Conference should consider authorizing a substantial increase in OCPF inspections per year. …Biological and biologically mediated processes for production of discrete organic chemicals  Some products and processes used by the biomanufacturing industry are as relevant to the CWC as those used by other OCPF facilities  The OPCW should  build on the considerable progress made toward developing a network of designated laboratories for the analysis of biomedical and biological samples. Advances in other fields could also facilitate more effective evidence collection, for example, exploring the potential of unmanned aerial vehicles to support reconnaissance, detection, and chain of custody.

Excerpts from  Michael Crowley at al., Preventing Chemical Weapons as Sciences Converge, Science, Nov. 16, 2018

United States Military Strategy: 2015 and beyond

The United States [is developing]  a “third offset strategy”… It is the third time since the second world war that America has sought technological breakthroughs to offset the advantages of potential foes and reassure its friends. The first offset strategy occurred in the early 1950s, when the Soviet Union was fielding far larger conventional forces in Europe than America and its allies could hope to repel. The answer was to extend America’s lead in nuclear weapons to counter the Soviet numerical advantage—a strategy known as the “New Look”.

A second offset strategy was conceived in the mid-1970s. American military planners, reeling from the psychological defeat of the Vietnam war, recognised that the Soviet Union had managed to build an equally terrifying nuclear arsenal. They had to find another way to restore credible deterrence in Europe. Daringly, America responded by investing in a family of untried technologies aimed at destroying enemy forces well behind the front line. Precision-guided missiles, the networked battlefield, reconnaissance satellites, the Global Positioning System (GPS) and radar-beating “stealth” aircraft were among the fruits of that research…The second offset strategy,  the so-called “revolution in military affairs” was hammered home in 1991 during the first Gulf war. Iraqi military bunkers were reduced to rubble and Soviet-style armoured formations became sitting ducks. Watchful Chinese strategists, who were as shocked as their Soviet counterparts had been, were determined to learn from it.

The large lead that America enjoyed then has dwindled. Although the Pentagon has greatly refined and improved the technologies that were used in the first Gulf war, these technologies have also proliferated and become far cheaper. Colossal computational power, rapid data processing, sophisticated sensors and bandwidth—some of the components of the second offset—are all now widely available.

And America has been distracted. During 13 years of counter-insurgency and stabilisation missions in Afghanistan and Iraq, the Pentagon was more focused on churning out mine-resistant armoured cars and surveillance drones than on the kind of game-changing innovation needed to keep well ahead of military competitors. America’s combat aircraft are 28 years old, on average. Only now is the fleet being recapitalised with the expensive and only semi-stealthy F-35 Joint Strike Fighter.  China, in particular, has seized the opportunity to catch up. With a defence budget that tends to grow by more than 10% a year, it has invested in an arsenal of precision short- to medium-range ballistic and cruise missiles, submarines equipped with wake-homing torpedoes and long-range anti-ship missiles, electronic warfare, anti-satellite weapons, modern fighter jets, integrated air defences and sophisticated command, control and communications systems.

The Chinese call their objective “winning a local war in high-tech conditions”. In effect, China aims to make it too dangerous for American aircraft-carriers to operate within the so-called first island chain (thus pushing them out beyond the combat range of their tactical aircraft) and to threaten American bases in Okinawa and South Korea. American strategists call it “anti-access/area denial”, or A2/AD.  The concern for America’s allies in the region is that, as China’s military clout grows, the risks entailed in defending them from bullying or a sudden aggressive act—a grab of disputed islands to claim mineral rights, say, or a threat to Taiwan’s sovereignty—will become greater than an American president could bear. Some countries might then decide to throw in their lot with the regional hegemon.

Although China is moving exceptionally quickly, Russia too is modernising its forces after more than a decade of neglect. Increasingly, it can deploy similar systems. Iran and North Korea are building A2/AD capabilities too, albeit on a smaller scale than China. Even non-state actors such as Hizbullah in Lebanon and Islamic State in Syria and Iraq are acquiring some of the capabilities that until recently were the preserve of military powers.

Hence the need to come up with a third offset strategy.….America needs to develop new military technologies that will impose large costs on its adversaries

The programme needs to overcome at least five critical vulnerabilities.

  • The first is that carriers and other surface vessels can now be tracked and hit by missiles at ranges from the enemy’s shore which could prevent the use of their cruise missiles or their tactical aircraft without in-flight refuelling by lumbering tankers that can be picked off by hostile fighters.
  • The second is that defending close-in regional air bases from a surprise attack in the opening stages of a conflict is increasingly hard.
  • Third, aircraft operating at the limits of their combat range would struggle to identify and target mobile missile launchers.
  • Fourth, modern air defences can shoot down non-stealthy aircraft at long distances.
  • Finally, the satellites America requires for surveillance and intelligence are no longer safe from attack.

It is an alarming list. Yet America has considerable advantages…. Those advantages include unmanned systems, stealthy aircraft, undersea warfare and the complex systems engineering that is required to make everything work together.

Over the next decade or so, America will aim to field unmanned combat aircraft that are stealthy enough to penetrate the best air defences and have the range and endurance to pursue mobile targets. Because they have no human pilots, fewer are needed for training. Since they do not need to rest, they can fly more missions back to back. And small, cheaper American drones might be used to swarm enemy air defences.

Drones are widespread these days, but America has nearly two decades of experience operating them. And the new ones will be nothing like the vulnerable Predators and Reapers that have been used to kill terrorists in Yemen and Waziristan. Evolving from prototypes like the navy’s “flying wing” X-47B and the air force’s RQ-180, they will be designed to survive in the most hostile environments. The more autonomous they are, the less they will have to rely on the control systems that enemies will try to disrupt—though autonomy also raises knotty ethical and legal issues.

Some of the same technologies could be introduced to unmanned underwater vehicles. These could be used to clear mines, hunt enemy submarines in shallow waters, for spying and for resupplying manned submarines, for example, with additional missiles. They can stay dormant for long periods before being activated for reconnaissance or strike missions. Big technical challenges will have to be overcome:.. [T]he vehicles will require high-density energy packs and deep undersea communications.

Contracts will be awarded this summer for a long-range strike bomber, the first new bomber since the exotic and expensive B-2 began service two decades ago. The B-3, of which about 100 are likely to be ordered, will also have a stealthy, flying-wing design…

If surface vessels, particularly aircraft-carriers, are to remain relevant, they will need to be able to defend themselves against sustained attack from precision-guided missiles. The navy’s Aegis anti-ballistic missile-defence system is capable but expensive: each one costs $20m or so. If several of them were fired to destroy an incoming Chinese DF-21D anti-ship ballistic missile, the cost for the defenders might be ten times as much as for the attackers.

If carriers are to stay in the game, the navy will have to reverse that ratio. Hopes are being placed in two technologies: electromagnetic rail guns, which fire projectiles using electricity instead of chemical propellants at 4,500mph to the edge of space, and so-called directed-energy weapons, most likely powerful lasers. The rail guns are being developed to counter ballistic missile warheads; the lasers could protect against hypersonic cruise missiles. In trials, shots from the lasers cost only a few cents. The navy has told defence contractors that it wants to have operational rail guns within ten years.

Defending against salvoes of incoming missiles will remain tricky and depend on other technological improvements, such as compact long-range radars that can track multiple targets. Finding ways to protect communications networks, including space-based ones, against attack is another priority. Satellites can be blinded by lasers or disabled by exploding missiles. One option would be to use more robust technologies to transmit data—such as chains of high-altitude, long-endurance drones operating in relays….

As Elbridge Colby of the Centre for a New American Security argues: “The more successful the offset strategy is in extending US conventional advantages, the more attractive US adversaries will find strategies of nuclear escalation.” The enemy always gets a vote.

Weapons Technology: Who’s Afraid of America, Economist, June 13, 2015, at 57.

Laser Weapons

The notion of using energy as a weapon of war dates back at least as far as the ancient Greeks. In the late 1970s and early 1980s the idea was revived when American strategists began thinking in earnest about the technologies they would need to shoot down nuclear-armed ballistic missiles. Among the more fanciful ideas taken up by Ronald Reagan’s Strategic Defence Initiative (more commonly known as Star Wars) was the X-ray laser, which aimed to harness the energy of an atomic explosion to generate powerful laser beams….

The main appeal of using an energy beam to shoot things is that it travels at the speed of light, which means, in practice, that it will hit whatever it is aimed at. Trying to shoot down an incoming missile or warhead with a physical projectile, by contrast, is much more difficult. The guidance challenges of trying to “hit a bullet with a bullet” are enormous and are only gradually being solved using complex radars and missiles equipped with expensive sensors. A second attraction of lasers and other energy weapons is that in most cases they cannot run out of ammunition, and can keep firing for as long as they are plugged into a power source. The initial costs may be quite high, but each shot may then cost only a few dollars, compared with a price-tag of $3m or more for the latest missiles used to shoot down aircraft or other missiles.

Yet until very recently, despite the billions of dollars invested in them, military lasers have had a less than glowing record. The most famous (and expensive) experiment was America’s Airborne Laser Test Bed. This programme, which cost the Pentagon about $5 billion over more than 15 years, was an effort to cram a huge laser gun into a Boeing 747. It was intended to shoot down ballistic missiles in their “boost phase”, after their launch but before they had picked up enough speed to leave the atmosphere. The logic was that this is a particularly vulnerable time for a missile, since it is moving relatively slowly and because even minor damage to an accelerating rocket could prove fatal given the enormous stresses it is subjected to.

The airborne laser showed some promise in tests, but the programme was ignominiously zapped in 2011 by the Pentagon, which couldn’t quite work out how it would be able to keep a big, slow-moving jumbo jet airborne around the clock, deep within enemy territory, while waiting for a missile to blast off nearby.  Another laser that came close to being practical enough to use was the Tactical High Energy Laser, also known as the Nautilus laser which was designed to shoot down incoming artillery rounds. It was successfully tested in Israel, where it intercepted incoming rockets and shells, but Israel and America decided to pull the plug on it. One reason that it and the airborne laser were shot down was that military planners fell out of love with chemical lasers. These are very large and not especially portable lasers that are powered by a chemical reaction. As well as being bulky, they require large amounts of toxic and perishable chemicals, which can run out, limiting the number of shots that the laser can fire.

For the moment, the idea of shooting down big nuclear-tipped missiles with lasers has been put on hold, and proponents of laser weapons are aiming instead at more flammable targets. Much of the work in this field is now being done by the American navy….

The big trend now is to try to scale up three other sorts of laser that are far more compact than chemical lasers and can fire away merrily as long as they have power and don’t get too hot. The first sort is the fibre laser, in which the beam is generated within an optical fibre. Because this is already used in industry for welding and cutting, prices are falling, power output is increasing and reliability has been steadily improving. Industrial lasers can be turned into weapons pretty easily, simply by strapping them to a weapons mount.  But they are not very powerful. The Tactical Laser System being developed for the American navy by BAE Systems, a British firm, has an output of just 10kW, enough to run a few household kettles. Even so, it might be useful for frightening off (or burning holes in) small boats that look threatening but wouldn’t warrant a hail of machinegun fire. A slightly bigger version puts out about 33kW of power and fits neatly on existing turrets that house the rotary cannons used to shoot down incoming anti-ship missiles. It could blind optical or heat-seeking sensors on enemy missiles, or puncture small boats.  Plans are afoot to scale military fibre lasers up to about 100kW, which would enable them to shoot down small unmanned aircraft. The technology is relatively mature: a study by the Congressional Research Service (CRS), an American government-research body, (pdf) reckons it would cost around $150m to develop a prototype, and that such lasers could be in service by 2017.

The second technology being worked on is the slab laser… It would be less useful for shooting down targets flying directly at the laser because of “thermal blooming”….The Center for Strategic and Budgetary Assessments, a think-tank based in Washington, DC, argues that various sorts of solid-state lasers could be in service on American ships by 2018. It thinks that they could also be used to counter cruise missiles flying directly at a ship, using relay mirrors mounted on nearby unmanned aircraft.

To be really suitable for shooting down ballistic missiles, however, a laser with a power level of more than a megawatt would be needed. That would mean using a third technology, called a free-electron laser….

Although lasers have many advantages, in short, they also suffer from quite severe limitations. The main one is their relatively low power output. So much energy is needed to burn through the armour of a tank, for instance, that it is easier simply to fire a rocket at it. Even people do not make particularly good targets for lasers: human bodies can absorb a lot of energy before heating up substantially. (Eyes make a better target, but international conventions ban lasers designed to blind.)

A further limitation is that laser light can be absorbed or scattered by pollution, fog or smoke. Missiles or other targets can also be protected by coating them with mirrors or wrapping them with insulation. In addition, laser beams travel in a straight line, which means they are less useful than conventional artillery when shooting at something on the other side of a hill. It seems likely that laser weapons will have been deployed on ships by the end of the decade. They will have their uses, but they remain rather less fearsome than their science-fiction reputation might suggest.

Excerpts, Energy weapons: Zap, crackle and pop, Economist Technology Quarterely, Sept. 1, 2012, at 12