Saving the Giraffe from Trophy Hunting and Meat Production

In August 2019, countries agreed to monitor trade in giraffes and their body parts to help conserve the species, now deemed vulnerable to extinction. From 1985 to 2015, the wild giraffe population shrank by about 40% to approximately 68,000 adults. The declines were especially sharp in eastern and Central Africa where giraffes’ savanna and forest habitat has been turned into farms and the animals are poached for meat; most trophy hunting of giraffes happens in southern Africa, where populations have been increasing… The only figures on trade in giraffe parts show that about 40,000—including hides, carved bones, and hunting trophies such as mounted heads—were brought into the United States from 2006 to 2015.

Excerpt from Giraffe Trade to Be Tracked, Science, Aug. 30, 2019

Bio-Energy and Food Security

In the effort to keep the planet from reaching dangerous temperatures, a hybrid approach called BECCS (bioenergy with carbon capture and storage) has a seductive appeal. Crops suck carbon dioxide (CO2) from the atmosphere, power plants burn the biomass to generate electricity, and the emissions are captured in a smokestack and pumped underground for long-term storage. Energy is generated even as CO2 is removed: an irresistible win-win. But, the United Nations’s climate panel sounded a warning about creating vast bioenergy plantations, which could jeopardize food production, water supplies, and land rights for poor farmers.

In an earlier special report in October 2018, IPCC called for holding the rise in global average temperatures to no more than 1.5°C above preindustrial conditions to avoid the worst consequences of climate change. It emphasized that cutting emissions won’t be enough to reach that goal. Replacing coal with renewable energy, and significantly cutting oil and natural gas, would still leave gigatons of excess carbon in the atmosphere. BECCS could remove it, computer models suggested, if several million square kilometers—an area the size of India—were devoted to energy crops.

But the 2019 IPCC report examines the consequences of deploying BECCS on that vast scale and concludes it could “greatly increase” the demand for agricultural land. The pressure on conventional crops could compromise food security, as happened in 2007 when rising U.S. corn ethanol production contributed to a spike in food prices. (In Mexico, the price of tortillas, a staple for the poor, rose 69% between 2005 and 2011.) The bioenergy plantations could also take a toll on biodiversity—as is happening in Southeast Asia, where plantations producing palm oil for biodiesel as well as food are displacing diverse tropical forest. And they could suck up scarce water, especially in drylands, where irrigation of crops might deplete local supplies, the IPCC report says.

Industrial bioenergy crops can lead to the same kinds of problems as intensive food production, such as the contamination of water from excess fertilizer. Scaling up bioenergy in developing countries can also exacerbate social problems like the loss of land by small farmers.

Excerpts from Erik Stokstad, Bioenergy plantations could fight climate change—but threaten food crops, U.N. panel warns, Science, Aug. 8, 2019

How to Fool your Enemy: Artificial Intelligence in Conflict

The contest between China and America, the world’s two superpowers, has many dimensions… One of the most alarming and least understood is the race towards artificial-intelligence-enabled warfare. Both countries are investing large sums in militarised artificial intelligence  (AI), from autonomous robots to software that gives generals rapid tactical advice in the heat of battle….As Jack Shanahan, a general who is the Pentagon’s point man for AI, put it last month, “What I don’t want to see is a future where our potential adversaries have a fully ai-enabled force and we do not.”

AI-enabled weapons may offer superhuman speed and precision.  In order to gain a military advantage, the temptation for armies will be to allow them not only to recommend decisions but also to give orders. That could have worrying consequences. Able to think faster than humans, an AI-enabled command system might cue up missile strikes on aircraft carriers and airbases at a pace that leaves no time for diplomacy and in ways that are not fully understood by its operators. On top of that, ai systems can be hacked, and tricked with manipulated data.

AI in war might aid surprise attacks or confound them, and the death toll could range from none to millions.  Unlike missile silos, software cannot be spied on from satellites. And whereas warheads can be inspected by enemies without reducing their potency, showing the outside world an algorithm could compromise its effectiveness. The incentive may be for both sides to mislead the other. “Adversaries’ ignorance of AI-developed configurations will become a strategic advantage,” suggests Henry Kissinger, who led America’s cold-war arms-control efforts with the Soviet Union…Amid a confrontation between the world’s two big powers, the temptation will be to cut corners for temporary advantage. 

Excerpts from Mind control: Artificial intelligence and war, Economist,  Sept. 7, 2019

Example of the Use of AI in Warfare: The Real-time Adversarial Intelligence and Decision-making (RAID) program under the auspices of The Defense Advanced Research Projects Agency’s (DARPA) Information Exploitation Office (IXO)  focuses on the challenge of anticipating enemy actions in a military operation. In the US Air Force community, the term, predictive battlespace awareness, refers to capabilities that would help the commander and staff to characterize and predict likely enemy courses of action…Today’s practices of military intelligence and decision-making do include a number of processes specifically aimed at predicting enemy actions. Currently, these processes are largely manual as well as mental, and do not involve any significant use of technical means. Even when computerized wargaming is used (albeit rarely in field conditions), it relies either on human guidance of the simulated enemy units or on simple reactive behaviors of such simulated units; in neither case is there a computerized prediction of intelligent and forward-looking enemy actions….

[The deception reasoning of the adversary is very important in this context.]  Deception reasoning refers to an important aspect of predicting enemy actions: the fact that military operations are historically, crucially dependent on the ability to use various forms of concealment and deception for friendly purposes while detecting and counteracting the enemy’s concealment and deception. Therefore, adversarial reasoning must include deception reasoning.

The RAID Program will develop a real-time adversarial predictive analysis tool that operates as an automated enemy predictor providing a continuously updated picture of probable enemy actions in tactical ground operations. The RAID Program will strive to: prove that adversarial reasoning can be automated; prove that automated adversarial reasoning can include deception….

Excerpts from Real-time Adversarial Intelligence and Decision-making (RAID), US Federal Grants

The Disappearing Birds

North America’s birds are disappearing from the skies at a rate that’s shocking even to ornithologists. Since the 1970s, the continent has lost 3 billion birds, nearly 30% of the total, and even common birds such as sparrows and blackbirds are in decline, U.S. and Canadian researchers reported in the September 2019 Issue of Science Magazine…  Five  years ago, PM Rosenberg a conservation biologist decided to take a broader look at what is happening in North America’s skies.

“I frankly thought it was going to be kind of a wash,” Rosenberg says. He expected rarer species would be disappearing but common species would be on the rise, compensating for the losses, because they tend to be generalists, and more resilient. Indeed, waterfowl and raptors are thriving, thanks to habitat restoration and other conservation efforts. But the declines in many other species, particularly those living along shorelines and in grasslands, far exceeded those gains, Rosenberg and his colleagues report. Grassland birds have declined by 53% since 1970—a loss of 700 million adults in the 31 species studied, including meadowlarks and northern bobwhites. Shorebirds such as sanderlings and plovers are down by about one-third, the team says. Habitat loss may be to blame.

The familiar birds that flock by the thousands in suburbs were not exempt. “There’s an erosion of the numbers of common birds,” Rosenberg says. His team determined that 19 common species have each lost more than 50 million birds since 1970. Twelve groups, including sparrows, warblers, finches, and blackbirds, were particularly hard hit. Even introduced species that have thrived in North America, such as starlings and house sparrows, are losing ground.  “When you lose a common species, the impact will be much more massive on the ecosystem and ecosystem services,” says Gerardo Ceballos, an ecologist and conservation biologist at the National Autonomous University of Mexico in Mexico City. “It’s showing the magnitude of the problem.”

Some of the causes may be subtle. Last week, toxicologists described how low doses of neonicotinoids—a common pesticide—made migrating sparrows lose weight and delay their migration, which hurts their chances of surviving and reproducing. Climate change, habitat loss, shifts in food webs, and even cats may all be adding to the problem, and not just for birds. 

Weather radar data revealed similarly steep declines. Radar detects not just rain, but also insect swarms and flocks of birds, which stand out at night, when birds usually migrate. “We don’t see individual birds, it’s more like a big blob moving through airspace,” explains Cornell migration ecologist Adriaan Dokter. He converted “blobs” from 143 radar stations into biomass. Between 2007 and 2017, that biomass declined 13%, the Science paper reports. The greatest decline was in birds migrating up the eastern United States….

Excerpts from Elizabeth Pennisi, Billions of North American Birds Have Vanished,  Science, Sept. 20, 2019

A Cure Worse than the Disease? Biofuels in Planes

The 2019 report by the Rainforest Foundation Norway RFN is called ‘Destination Deforestation’ and reviewed the role of the aviation industry in contributing to the climate crisis, concluding that there’s a high risk that increased use of palm and soy-based biofuel in planes will lead to increased deforestation.

Finland, the world’s largest producers of renewable diesel and the only EU country that gives additional incentives for the use of palm oil products to manufacture biofuel, could spearhead the race towards deforestation, as areas of rainforest in countries like Indonesia or in South America are cleared to plant crops that will later be used to produce the fuel.  RFN says that meeting the aviation industry’s own climate-change targets to reduce emissions could result in 3.2 million hectares of tropical forest lost, an area larger than Belgium.

Researchers at Rainforest Foundation Norway believe the Finnish incentives for (Palm Fatty Acid Distillate) PFAD-based biofuels are likely to contribute to this deforestation, since Finland’s state-owned oil company Neste produces half of the world’s renewable diesel.  “Finland continues to treat the palm oil by-product PFAD as a waste, eligible for additional incentives. In addition, Finland is home to Neste, the world’s largest producer of hydrotreated biodiesel, and uses PFAD as a raw material. Therefore, Finland’s program could contribute to the massive deforestation discussed in our report” he explains.

With Finland left isolated as the only EU country to pay producers to use waste-classified PFAD in biofuel production, Rainforest Foundation Norway cautions that the country risks becoming a dumping ground for unsustainable raw material….“As long as PFAD is classified as ‘waste’, it enjoys huge incentives from the state. Biofuels made out of PFAD are completely exempt from carbon dioxide tax in Finland. Additionally, PFAD’s emissions can be discounted, and it is not subject to the same sustainability criteria as other raw materials.

With ‘flight shame’ gaining more momentum across the world, the aviation industry is desperate to find ways to make flying compatible with climate goals. While replacing fossil fuels with renewables sounds like a great idea, the sustainability of biofuels is highly dependent on the raw materials used to produce them…The most common aviation biofuels, Hydrogenated Esters and Fatty Acids (HEFA) fuels are produced from vegetable oils and animal fats. While the use of waste oils and other recycled materials is possible, the most viable raw materials for HEFA jet fuels are food crops.  “The cheapest and most readily available raw materials for HEFA jet fuel are palm oil and soy oil, which are closely linked to tropical deforestation” Ranum says.  The experts suggest that aiming to reduce emissions by increasing demand for palm and soy oil is a cure worse than the disease.

Elias Huuhtan, Report: Finland’s push to use biofuel could cause ‘massive deforestation, , Oct. 7, 2019

A Huge Headache: the Radioactive Water at Fukushima

What to do with the enormous amount of radioactive  water, which grows by around 150 tons a day at Fukushima, is a thorny question, with controversy surrounding a long-standing proposal to discharge it into the sea, after extensive decontamination.  The water comes from several different sources: Some is used for cooling at the plant, which suffered a meltdown after it was hit by a tsunami triggered by a massive earthquake in March 2011.  Groundwater that seeps into the plant daily, along with rainwater, add to the problem.

A thousand, towering tanks have now replaced many of the cherry trees that once dotted the plant’s ground. Each can hold 1,200 tons, and most of them are already full.  “We will build more on the site until the end of 2020, and we think all the tanks will be full by around the summer of 2022,” said Junichi Matsumoto, an official with the unit of plant operator TEPCO in charge of dismantling the site.

TEPCO has been struggling with the problem for years, taking various measures to limit the amount of groundwater entering the site.  There is also an extensive pumping and filtration system, that each day brings up tons of newly contaminated water and filters out as many of the radioactive elements as possible.

The hangar where the decontamination system runs is designated “Zone Y” — a danger zone requiring special protections.  All those entering must wear elaborate protection: a full body suit, three layers of socks, three layers of gloves, a double cap topped by a helmet, a vest with a pocket carrying a dosimeter, a full-face respirator mask and special shoes.  Most of the outfit has to burned after use.

“The machinery filters contain radionuclides, so you have to be very protected here, just like with the buildings where the reactors are,” explained TEPCO risk communicator Katsutoshi Oyama.  TEPCO has been filtering newly contaminated water for years, but much of it needs to go through the process again because early versions of the filtration process did not fully remove some dangerous radioactive elements, including strontium 90.

The current process is more effective, removing or reducing around 60 radionuclides to levels accepted by the International Atomic Energy Agency (IAEA) for water being discharged.  But there is one that remains, which cannot be removed with the current technology: tritium.

Tritium is naturally present in the environment, and has also been discharged in its artificial form into the environment by the nuclear industry around the world.  There is little evidence that it causes harm to humans except in very high concentrations and the IAEA argues that properly filtered Fukushima water could be diluted with seawater and then safely released into the ocean without causing environmental problems.

But those assurances are of little comfort to many in the region, particularly Fukushima’s fishing industry which, like local farmers, has suffered from the outside perception that food from the region is unsafe.

Karyn Nishimura, At Fukushima plant, a million-ton headache: radioactive water, Japan Times, Oct. 7, 2019

The Traffic Congested Space: Collision Avoidance

On September 3, 2019, it was the first time that European Space Agence (ESA) performed a ‘collision avoidance manoeuvre’ to protect one of its spacecraft from colliding with a satellite in a large constellation,  a SpaceX satellite in the Starlink constellation.  Constellations are fleets of hundreds up to thousands of spacecraft working together in orbit. They are expected to become a defining part of Earth’s space environment in the next few years.  As the number of satellites in space dramatically increases, close approaches between two operated spacecraft will occur more frequently. Compared with such ‘conjunctions’ with space debris – non-functional objects including dead satellites and fragments from past collisions – these require coordination efforts, to avoid conflicting actions. 

Today, the avoidance process between two operational satellites is largely manual and ad hoc – and will no longer be practical as the number of alerts rises with the increase in spaceflight.
 “This example shows that in the absence of traffic rules and communication protocols, collision avoidance depends entirely on the pragmatism of the operators involved,” explains Holger Krag, Head of Space Safety at ESA.   “Today, this negotiation is done through exchanging emails – an archaic process that is no longer viable as increasing numbers of satellites in space mean more space traffic.”

ESA is proposing an automated risk estimation and mitigation initiative as part of its space safety activities. This will provide and demonstrate the types of technology needed to automate the collision avoidance process, allowing machine generated, coordinated and conflict-free manoeuvre decisions to speed up the entire process – something desperately needed to protect vital space infrastructure in the years to come.

Data is constantly being issued by the 18th Space Control Squadron of the US Air Force, who monitor objects orbiting in Earth’s skies, providing information to operators about any potential close approach.  With this data, ESA and others are able to calculate the probability of collision between their spacecraft and all other artificial objects in orbit. 

In August 2019, the US data suggested a potential ‘conjunction’ [collision] at 11:02 UTC on Monday, 2 September, between ESA’s Aeolus satellite and Starlink44 – one of the first 60 satellites recently launched in SpaceX’s mega constellation, planned to be a 12 000 strong fleet by mid-2020.  As days passed, the probability of collision continued to increase, and by Wednesday 28 August the team decided to reach out to Starlink to discuss their options. Within a day, the Starlink team informed ESA that they had no plan to take action at this point.**  ESA’s threshold for conducting an avoidance manoeuvre is a collision probability of more than 1 in 10 000, which was reached for the first time on August 29, 2019 evening.  An avoidance manoeuvre was prepared which would increase Aeolus’ altitude by 350 m, ensuring it would comfortably pass over the other satellite, and the team continued to monitor the situation.

On September 2, 2019, the commands triggered a series of thruster burns at 10:14, 10:17 and 10:18 UTC, half an orbit before the potential collision.  About half an hour after the conjunction was predicted, Aeolus contacted home as expected. This was the first reassurance that the manoeuvre was correctly executed and the satellite was OK.

Since the first satellite launch in 1957, more than 5500 launches have lifted over 9000 satellites into space. Of these, only about 2000 are currently functioning, which explains why 90% of ESA’s avoidance manoeuvres are the result of derelict and uncontrollable ‘space debris’.    In the years to come, constellations of thousands of satellites are set to change the space environment, vastly increasing the number of active, operational spacecraft in orbit.  This new technology brings enormous benefits to people on Earth, including global internet access and precise location services, but constellations also bring with them challenges in creating a safe and sustainable space environment.

This example does show the urgent need for proper space traffic management, with clear communication protocols and more automation,” explains Holger.  “This is how air traffic control has worked for many decades, and now space operators need to get together to define automated manoeuvre coordination.”  As the number of satellites in orbit rapidly increases, today’s ‘manual’ collision avoidance process will become impossible, and automated systems are becoming necessary to protect our space infrastructure.

**On August28th, 2019, SpaceX informed ESA via email that the company did not intend to move the Starlink probe.   At that time, the probability of collision was about 1 in 50,000, according to SpaceX, which is too low to require any preventive action.  The ESA contacted SpaceX daily about its evolving calculations, but the agency did not receive any additional replies after the original email response. SpaceX acknowledges that it failed to communicate due to a bug in its communication system and missed the emails about a higher probability of collision.

Excerpts from ESA Spacecraft Dodges Satellite Constellation, ESA, Sept. 3, 2019 &

A bug in SpaceX’s communication system kept the company in the dark about potential satellite collision, The Verge, Sept. 4, 2019