What’s in that Suitcase? Endangered Turtles

Live animals, python skins and slimming pills made from crocodile blood are just a few of the items seized at world borders recently. In the space of a month, 29 big cats, 531 turtles, 336 reptiles, 1.4 million plant-derived products and 75,320kg of timber were found in luggage. 300 arrests were made. Many of the items are part of the world’s fourth biggest illegal market – the illegal wildlife trade. Despite decades of lawmakers’ crackdowns, it is still worth an estimated €17 billion annually.

The smuggled items were found as part of Operation Thunder 2021, which spanned 118 countries and the work of customs, police and wildlife enforcement agencies. The operation, coordinated by the World Customs Organisation (WCO) and INTERPOL, involved searching cars, boats and lorries with sniffer dogs and X-ray scanners. Law enforcement found that online platforms are being used to arrange trafficking, and illegal money transfers are used to enable money laundering.

Excerpt from Nichola Daunton, These are all the endangered species criminals tried to smuggle in just one month, Euronews, Dec. 1, 2021

See also Press Release of UNODC World Wildlife Crime

Why Crabs and Mussels Love Plastic Pollution

The “Great Pacific Garbage Patch,” is considered the world’s largest accumulation of ocean plastic. It’s so massive, in fact, that researchers found it has been colonized by species — hundreds of miles away from their natural home. The research, published in the journal Nature, found that species usually confined to coastal areas — including crabs, mussels and barnacles — have latched onto, and unexpectedly survived on, massive patches of ocean plastic.  As suitable habitat made of plastics now exists in the open ocean, coastal organisms can both survive at sea for years and reproduce, leading to self-sustaining coastal communities on the high seas!

But the mingling of the neuston and coastal species is “likely recent,” researchers said, and was caused largely because of the accumulation of “long-lived plastic rafts” that have been growing since the middle of the 20th century. Just by itself, the Great Pacific Garbage Patch, located between California and Hawai’i, is estimated to have at least 79,000 tons of plastic within a 1.6 million-square-kilometer area. There are at least four other similar patches throughout the world’s oceans. Researchers expect that plastic waste is going to “exponentially increase,” and by 2050, there will be 25,000 million metric tons of plastic waste.  

For lead author Linsey Haram, the research shows that physical harm to larger marine species should not be the only concern when it comes to pollution and plastic waste. “The issues of plastic go beyond just ingestion and entanglement,” Haram said in a statement. “It’s creating opportunities for coastal species’ biogeography to greatly expand beyond what we previously thought was possible.” 

But that expansion could come at a cost. “Coastal species are directly competing with these oceanic rafters,” Haram said. “They’re competing for space. They’re competing for resources. And those interactions are very poorly understood.” There is also a possibility that expansions of these plastic communities could cause problems with invasive species. A lot of plastic found in the Great Pacific Garbage Patch, for example, is debris from the 2011 Tohoku tsunami in Japan, which carried organisms from Japan to North America. Over time, researchers believe, these communities could act as reservoirs that will provide opportunities for coastal species to invade new ecosystems. 

There are still many questions researchers say need to be answered about these new plastic-living communities — like how common they are and if they can exist outside the Great Pacific Garbage Patch — but the discovery could change ocean ecosystems on a global scale, especially as climate change exacerbates the situation. 

Excerpts from LI COHEN, There’s so much plastic floating on the ocean surface, it’s spawning new marine communities, CBS News, Dec. 2, 2021
BY LI COHEN

Battle for Storing Medical Nuclear Waste: Australia

Napandee, a 211 hectare property near the town of Kimba, has been acquired by the Australian  government and will be used to store low and medium-level nuclear waste. “This is still the right decision at the right site,” Resources Minister Keith Pitt said.  “It’s certainly got all of the right geological requirements, we have majority support from the local community and we should never forget that this has taken 40 years and I understand some 16 ministers,” he said.  “Fundamentally, for the local community of Kimba it’s been over six years of consultation.” The consultation culminated in a ballot which showed just over 60 per cent of Kimba residents supported the project.

However, the Barngarla traditional owners opposed the project and said they were not included in the consultation. “There have been significant and repeated grave problems with the government’s conduct regarding the site selection process,” a spokesperson for the Barngarla Determination Aboriginal Corporation said in a statement. “We remain confident that, once assessed by the Court, the declaration to locate the facility at Napandee on our Country will likely be overturned.”

According to the Australian minister, every Australian would need to use nuclear medicine at some point in their life. “If we are going to use this technology, it produces low-level radioactive waste and we have to deal with it and store it. This is the best option on the table.” “This is a facility that will last more than 100 years and it’s important for the country.” The Australian Radioactive Waste Agency, created to establish the Napandee facility, will start work on detailed designs.

Excerpts from Declan Gooch and Emma Pedler, Napandee chosen as nuclear waste storage site after ‘six years of consultation’, ABC, Nov. 29, 2021

Solar and Chemicals Are Not Enough: Nuclear Reactors in Space

Chinese scientists are currently building a powerful nuclear reactor for their moon and Mars expeditions. Beijing claims its reactor will be 100 times more powerful than the device US space agency NASA wants to set up on the moon’s surface by 2030. ..One Chinese expert claims that to satisfy the objectives of human space exploration, chemical fuel and solar panels will no longer suffice; the hunger for more energy sources is likely to grow dramatically if there are human settlements on the moon or Mars in the future.

In November 2021, NASA has issued a request for proposals for the development of a 10-kilowatt nuclear fission device capable of supporting a long-term human presence on the moon within a decade…The plan is to deploy a fission surface power system by 2026, with a flying system, lander, and reactor in place. The facility will be completely built and integrated on Earth, then thoroughly tested for safety and functionality…In addition, Russia has also indicated its intention to launch a massive spaceship powered by TEM, a megawatt-sized nuclear reactor, before 2030. The spaceship would be able to function in Earth’s lower orbit for more than a decade while conducting more missions to the moon or beyond owing to the nuclear energy.

Democritos, a parallel project led by the European Space Agency, will test a 200kW nuclear space reactor on the ground by 2023. Additionally, NATO secretary-general Jens Stoltenberg says that the alliance will not put weapons in space, but it will be required to safeguard its assets, which include 2,000 satellites in orbit. Space is becoming an “operational domain” for NATO as well…

Excerpts from  Ashish Dangwal, 100 Times More Powerful Than US Tech, China Claims Its Nuclear Reactor For Space Missions Will Outdo NASA Device, Eurasiantimes.com, Nov. 26, 2021

The Limits of Green Energy: Wind Blades of Wood and Plastic

What does the deforestation of balsa wood in Ecuador’s Amazon region have to do with wind power generation in Europe? There is a perverse link between the two: a drive for renewable energy has boosted global demand for a prized species of wood that grows in the world’s largest rainforest. As Europe and China increase the construction of blades for wind turbines, balsa trees are being felled to accelerate an energy transition driven by the need to decarbonize the global economy.

In the indigenous territories of the Ecuadorian Amazon, people began to notice an uptick in international demand for balsa wood from 2018 onwards. Balsa is very flexible but tough at the same time, and offers a light yet durable option for long-term wind power production. The typical blades of a wind turbine are currently around 80 meters long, and the new generation of blades can extend up to 100 meters. That means about 150 cubic meters of wood are required to build a single unit, according to calculations by the United States National Renewable Energy Laboratory.

Ecuador is the world’s main exporter of balsa wood, holding 75% of the global market. Major players include Plantabal S.A. in Guayaquil, which has around 10,000 hectares dedicated to the cultivation of balsa wood destined for export. With the boom in demand starting in 2018, this company and many others struggled to cope with the quantity of international orders. This increase has led directly to the deforestation of the Amazon. Irregular and illegal logging has proliferated by those who have reacted to the scarcity of wood grown for timber by chopping down the virgin balsa that grows on the islands and riverbanks of the Amazon

The impact on the indigenous people who live in the area has been as devastating as mining, oil and rubber were in their day…The Amazon’s defenders are calling for the wind turbine industry to implement strict measures to determine the origin of the wood used in turbine blades, and to prevent market pressure leading to deforestation. Ultimately, they say, balsa wood should be replaced by other materials…

In 2019, Ecuador’s balsa exports were worth almost €195 million, 30% more than the previous record from 2015. In the first 11 months of 2020, this jumped to €696 million.

Wind turbine blades are mainly made from polymethacrylamide (PMI) foam, balsa wood and polyethylene terephthalate (PET) foam…But The Spanish-German company Siemens-Gamesa..has  introduced blade designs using PET only, other competitors soon followed. Wood Mackenzie, a consultancy firm, forecasts that this “will increase from 20% in 2018 to more than 55% in 2023, while demand for balsa will remain stable…”

Today’s blades also present a problem for recycling. The first generation of wind turbines are reaching the end of their lives, and thousands will need to be dismantled… “But the blades represent a challenge due to their composite materials, as their recycling requires very specific processes…

Excerpts from How the wind power boom is driving deforestation in the Amazon, ElPais, Nov. 26, 2021

How to Lift Nuclear Submarines from Arctic Seabed

Projects aimed to improve nuclear safety are some of the few successful arenas for cooperation still going strong between the European Union and Russia…especially wiht regard to the two old Soviet submarines K-159 and K-27, both rusting on the Arctic seabed with highly radioactive spent nuclear fuel elements in their reactors…

“The sunken submarines K-27 and K-159 are the potential source of contamination of the Arctic, the riskiest ones,” Ambassador Jari Vilén of Filand explains. “Assessments made by the European Union together with Rosatom show that in 20-30 years’ time the metals will start corroding and there is a genuine risk of leakage. Therefore, lifting them in the coming decade is extremely important.”

“I’m very happy we are making progress and that a decision to make a technical review has been decided by the European Bank for Reconstruction and Development (EBRD) through the Northern Dimension Environmental Partnership. Hopefully, when these technical reviews are done, we will come to a phase where we can make decisions on a lifting operation,” Vilén says with enthusiasm.

Lifting a nuclear submarine from the seabed is nothing new. It is difficult, but doable. In 2002, the Dutch salvage company Mammoet managed to raise the ill-fated “Kursk” submarine from the Barents Sea. A special barge was built with wires attached underneath. The wreak of “Kursk” was safely brought in and placed in a dry-dock where the decommissioning took place.

K-159 is a November-class that sank in late August 2003 while being towed in bad weather from the closed naval base of Gremikha on the eastern shores of the Kola Peninsula towards the Nerpa shipyard north of Murmansk. The two onboard reactors contain about 800 kilograms of spent nuclear fuel, with an estimated 5,3 GBq of radionuclides. A modeling study by the Norwegian Institute of Marine Research said that a pulse discharge of the entire Cesium-137 inventory from the two reactors could increase concentrations in cod in the eastern part of the Barents Sea up to 100 times current levels for a two-year period after the discharge. While a Cs-137 increase of 100 times in cod sounds dramatic, the levels would still be below international guidelines. But that increase could still make it difficult to market the affected fish.

K-27, the other submarine in urgency to lift, was on purpose dumped in the Kara Sea in 1982….

Lifting the dumped reactors from the Kara Sea, a price tag of nearly €300 million has been mentioned. The sum includes K-27 and K-159, but also the other dumped reactors from K-11, K-19 and K-140, as well as spent nuclear fuel from an older reactor serving icebreaker “Lenin”. “The value of the fishing stocks in the area is ruffly €1.4 billion annually,” he says.

Excerpts from Thomas Nilsen, EU willing to co-fund lifting of sunken nuclear subs from Arctic seabed, The Barents Observer, Nov. 22, 2021

Exchanging Nature for Crushing Debt

In 2020 tourism in Belized dried up, growth contracted sharply and public debt jumped from just under 100% GDO in 2019 to over 125%. That forced Belize,  into a debt restructuring…As part of the deal, concluded on November 5th, 2021 Belize bought back its only international bond, a $553m, at 55 cents on the dollar. It funded that with $364m of fresh money, arranged by The Nature Conservancy, an NGO, which is insured by the International Development Finance Corp, an American agency. The transaction is backed by the proceeds of a “blue bond” arranged by Credit Suisse, a bank. The payback is due over 19 years. It is called a blue bond because Belize has pledged to invest a large chunk of the savings into looking after the ocean. That includes funding a $23m endowment to support future marine-conservation projects and promising to protect 30% of its waters by 2026…

Debt-for-nature swaps are nothing new. Lenders have been offering highly indebted countries concessions in return for environmental commitments for decades. But these transactions have historically involved debt owed to rich countries, not commercial bondholders. As Lee Buchheit, a lawyer who specialises in sovereign-debt restructurings, points out, they were “negligible in size”. In total, the value of debt-for-climate and nature-swap agreements between 1985 and 2015 came to just $2.6bn, according to the United Nations Development Programme. Of the 39 debtor nations that benefited from the swaps, only 12 negotiated debts of over $30m. “It was really an exercise in public relations,” Mr Buchheit says….

Other poor countries are trying to move in the same direction. At the COP26 climate summit in Glasgow Ecuador’s president Guillermo Lasso proposed enlarging the country’s Galapagos nature reserve through a debt-for-nature swap…Yet no amount of creative dealmaking can distract from the grim truth: many emerging markets still suffer from crushing debts.

Excerpts from Debt-for Nature Swaps: Reef relief, Economist, Nov. 13, 2021

No Matter What they Say-Nobody Likes Nuclear Waste

The first stage of the process has been under way since November 2020 for the town of Suttsu and the village of Kamoenai assessing two municipalities in Hokkaido for their suitability to host a final disposal facility for high-level radioactive waste from nuclear power plants.  Under the government’s plan, the first-stage surveys take two years and will be followed by the second phase… which will include geophysical exploration, geological reconnaissance surveys and drilling surveys. Already stories about divisions and conflict over the surveys are emerging from the local communities.

The mayoral election of Suttsu in October 2021, for example, turned into a bitter and divisive political battle over the issue between the incumbent who decided to apply for the first-phase survey and a challenger who ran on opposition to the project. Some of the neighboring municipalities have enacted an ordinance to ban the entry of radioactive materials. Both the Hokkaido prefectural government and most of the local administrations around the two municipalities have declined to accept state subsidies related to the surveys. These actions have been driven by the fear that accepting the surveys will set in motion an unstoppable process leading to a permanent repository for nuclear waste.

The NUMO (Nuclear Waste Management Organization of Japan) and the METI (Ministry of Economy, Trade and Industry)  have jointly held more than 100 meetings to explain the plan to local communities across the nation. Even though they have continued calling for localities to volunteer, no local governments except for the two in Hokkaido have responded.

Excerpts from Entire nation should share in disposal of spent nuke fuel, Asahi Shimbun, Nov. 22, 2021

Nobody Can Escape the Nuclear Rat Race

When America and the Soviet Union raced each other to build ever-larger nuclear arsenals during the cold war, China ambled disdainfully. It did not detonate its first nuclear weapon until 1964, kept only a few hundred warheads compared with the tens of thousands piled up by the superpowers, and to this day maintains it will never be the first to use nukes in a war. Now China is sprinting to catch up.

In its 2021 annual assessment, the Pentagon says China’s stockpile of nuclear warheads, which last year it reckoned to be in the “low-200s”, could triple to about 700 by 2027 and will probably quintuple to about 1,000 or more by 2030… Even so, it would still be smaller than America’s or Russia’s. Those countries each have about 4,000 warheads. The Pentagon believes China is building fast-breeder reactors to make the necessary plutonium; may already have created a full “triad”, ie, the ability to launch nuclear weapons from the land, sea and air; and is expanding its early-warning systems, with help from Russia.

All told, China is shifting to a “launch on warning” doctrine. Rather than rely on a minimal nuclear deterrent to retaliate after an initial nuclear attack, China would henceforth fire at the first sign of an incoming nuclear strike, even before the enemy warheads have landed. This posture is akin to that of America and Russia… Why is China building up its nukes at a time when America and Russia have extended the New START treaty, which limits their arsenals…? One reason is China’s worry that its arsenal is too small to survive an American first strike…

Excerpt from Military Strategy: An Unpacific Contest, Economist, Nov. 6, 2021

The Mining Curse

Two poor, fragile, post-Soviet democracies, two spectacular holes in the ground. Mongolia’s Oyu Tolgoi, or “Turquoise Hill”, is a vast mine in the southern Gobi desert, just 80km from the Chinese border. Kumtor in the Tian Shan mountains of Kyrgyzstan, operating since 1997, is if anything even more remote. Located beside a series of glaciers at 13,000 feet above sea level, it is the world’s second-highest gold mine.

It is hard to exaggerate the importance of these two mines to their respective economies. Once completed, Oyu Tolgoi will be the world’s fourth-biggest copper mine. When the contract with Rio Tinto, an Anglo-Australian mining giant, was first signed in 2009, Oyu Tolgoi was predicted to add five percentage points to Mongolia’s annual economic growth, which, for a while, it did. The mine has created 15,000 jobs directly and another 45,000 indirectly, for a Mongolian population of 3.3m. As for Kumtor, its owner, Centerra, a Canadian exploration company, is the country’s largest private investor. In a good year the mine generates a tenth of Kyrgyzstan’s GDP and is the biggest contributor to the state budget.

Both mines loom large in national life. Both foreign operators won sweet, initial deals when naïve young states opened their doors to foreign investment. Controversy surrounding the mines was thus inevitable. Oyu Tolgoi has long been controversial. Politicians often accuse Rio Tinto of fleecing the country…In Kyrgyzstan the goverment accuses Centerra of corruption, enriching politicians instead of the national budget. 

Accusations of being cheated are common in poor, resource-rich countries. With Oyu Tolgoi, the stand-off is more easily resolved….A recent independent review makes it hard for Rio to deny it bears some blame for delays and cost overruns in developing the mine…. In Kyrgyzstan the situation is bleaker. There, bribery and corruption are not incidental to business but central to it….Foreign investors too often blame “resource nationalism” for their woes in host countries. That is self-serving. After all, the resources usually belong to the state. It is reasonable for citizens to ask how best to benefit from them…. 

Excerpts from Banyan: Mine for the Taking, Economist, Nov. 6, 2021

A Humane Bombing Campaign? the Baghuz Strike

In the last days of the battle against the Islamic State in Syria, when members of the once-fierce caliphate were cornered in a dirt field next to a town called Baghuz, a U.S. military drone circled high overhead, hunting for military targets. But it saw only a large crowd of women and children huddled against a river bank. Without warning, an American F-15E attack jet streaked across the drone’s high-definition field of vision and dropped a 500-pound bomb on the crowd, swallowing it in a shuddering blast. As the smoke cleared, a few people stumbled away in search of cover. Then a jet tracking them dropped one 2,000-pound bomb, then another, killing most of the survivors.

It was March 18, 2019. At the U.S. military’s busy Combined Air Operations Center at Al Udeid Air Base in Qatar, uniformed personnel watching the live drone footage looked on in stunned disbelief, according to one officer who was there. “Who dropped that?” a confused analyst typed on a secure chat system being used by those monitoring the drone, two people who reviewed the chat log recalled. Another responded, “We just dropped on 50 women and children.”

The Baghuz strike was one of the largest civilian casualty incidents of the war against the Islamic State, but it has never been publicly acknowledged by the U.S. military. The details, reported by the New York Times on November 13, 2021, show that the death toll was almost immediately apparent to military officials. A legal officer flagged the strike as a possible war crime that required an investigation. But at nearly every step, the military made moves that concealed the catastrophic strike. The death toll was downplayed. Reports were delayed, sanitized and classified. United States-led coalition forces bulldozed the blast site. And top leaders were not notified.

The Defense Department’s independent inspector general began an inquiry, but the report containing its findings was stalled and stripped of any mention of the strike. “Leadership just seemed so set on burying this. No one wanted anything to do with it,” said Gene Tate,  a former Navy officer who had worked for years as a civilian analyst with the Defense Intelligence Agency and the National Counterterrorism Center before moving to the inspector general’s office….

The details of the strikes were pieced together by The New York Times over months from confidential documents and descriptions of classified reports, as well as interviews with personnel directly involved, and officials with top secret security clearances who discussed the incident on the condition that they not be named. The Times investigation found that the bombing had been called in by a classified American special operations unit, Task Force 9, which was in charge of ground operations in Syria. The task force operated in such secrecy that at times it did not inform even its own military partners of its actions. In the case of the Baghuz bombing, the American Air Force command in Qatar had no idea the strike was coming, an officer who served at the command center said.

The only assessment done immediately after the strike was performed by the same ground unit that ordered the strike. It determined that the bombing was lawful because it killed only a small number of civilians while targeting Islamic State fighters in an attempt to protect coalition forces, the command said. Therefore no formal war crime notification, criminal investigation or disciplinary action was warranted, it said, adding that the other deaths were accidental.

But the Air Force lawyer, Lt. Col. Dean W. Korsak, believed he had witnessed possible war crimes and repeatedly pressed his leadership and Air Force criminal investigators to act. When they did not, he alerted the Defense Department’s independent inspector general. Two years after the strike, seeing no evidence that the watchdog agency was taking action, Colonel Korsak emailed the Senate Armed Services Committee, telling its staff that he had top secret material to discuss and adding, “I’m putting myself at great risk of military retaliation for sending this.”..

The United States portrayed the air war against the Islamic State as the most precise and humane bombing campaign in its history. The military said every report of civilian casualties was investigated and the findings reported publicly, creating what the military called a model of accountability. The details suggest that while the military put strict rules in place to protect civilians, the Special Operations task force 9 repeatedly used other rules to skirt them. The military teams counting casualties rarely had the time, resources or incentive to do accurate work. And troops rarely faced repercussions when they caused civilian deaths.

On the ground, Task Force 9 coordinated offensives and airstrikes. The unit included soldiers from the 5th Special Forces Group and the Army’s elite commando team Delta Force, several officials said. Over time, some officials overseeing the air campaign began to believe that the task force was systematically circumventing the safeguards created to limit civilian deaths. The process was supposed to run through several checks and balances. Drones with high-definition cameras studied potential targets, sometimes for days or weeks. Analysts pored over intelligence data to differentiate combatants from civilians. And military lawyers were embedded with strike teams to ensure that targeting complied with the law of armed conflict.  But there was a quick and easy way to skip much of that oversight: claiming imminent danger….By late 2018, about 80 percent of all airstrikes Task Force 9 was calling in claimed self-defense, according to an Air Force officer who reviewed the strikes. The rules allowed U.S. troops and local allies to invoke it when facing not just direct enemy fire, but anyone displaying “hostile intent,”… Under that definition, something as mundane as a car driving miles from friendly forces could in some cases be targeted…..

The aftermath of that approach was plain to see. A number of Syrian towns, including the regional capital, Raqqa, were reduced to little more than rubble. Human rights organizations reported that the coalition caused thousands of civilian deaths during the war. Hundreds of military assessment reports examined by The Times show the task force was implicated in nearly one in five coalition civilian casualty incidents in the region…Publicly, the coalition insisted the numbers were much lower. Privately, it became overwhelmed by the volume of civilian casualty claims reported by locals, humanitarian groups and the news media, and a backlog of civilian casualty assessment reports sat unexamined for months, two people who compiled the reports said…..

Excerpts from How the U.S. Hid an Airstrike That Killed Dozens of Civilians in Syria, NY Times, Nov. 13, 2021

The Right to Know from Space

Rebuilding an entire planet’s energy system is a big job…The most basic problem is knowing what, exactly, you are trying to rebuild. Academic-research groups, think-tanks, charities and other concerned organizations try to keep track of the world’s wind turbines, solar-power plants, fossil-fueled power stations, cement factories and so on. To this end, they rely heavily on data from national governments and big companies, but these are often incomplete. The most comprehensive database covering American solar-power installations, for instance, is thought to miss around a fifth of the photovoltaic panels actually installed on the ground.

In a paper published in Nature, a team of researchers demonstrate another way to keep tabs on the green-energy revolution. Dr Kruitwagen and his colleagues have put together an inventory of almost 69,000 big solar-power stations (defined as those with a rated capacity of 10kw of electricity or more) all over the world—more than four times as many as were previously listed in public databases. This new inventory includes their locations, the date they entered service and a rough estimate of their generating capacity…

Pictures came from two sets of satellites, Sentinel-2 and SPOT, run by the European Space Agency and Airbus respectively. These peer down on the world, recording visible light and also the infrared and ultraviolet parts of the spectrum. The images amounted to around 550 terabytes of data, spanning the period between 2016 and 2018. That is enough to fill more than a hundred desktop hard drives. Sifting through this many pictures by eye would have been impractical. That is where the second technological trend comes in. Dr Kruitwagen and his colleagues trained a machine-learning system to spot the solar panels for them.

More generally, Dr Kruitwagen hopes that his eye-in-the-sky approach—which, despite the planetary scale of the project, cost only around $15,000 in cloud-computing time—could presage more accurate estimates of other bits of climate-related infrastructure, such as fossil-fuel power stations, cement plants and terminals for ships carrying liquefied natural gas. The eventual result could be the assembly of a publicly available, computer-generated inventory of every significant bit of energy infrastructure on Earth. Quite apart from such a model’s commercial and academic value, he says, an informed public would be one better able to hold politicians’ feet to the fire. 

Excerpt from Solar-cell census: An accurate tally of the world’s solar-power stations, Economist, Oct. 30, 2021

Animal Rights March On

A dispute over the fate of hippos in Colombia has given rise to a federal court ruling in Ohio, United States that, for the first time in American law, recognizes animals as people. This should come as welcome news to the 100-plus hippos of Colombia’s Magdalena river. They are the offspring of four hippos smuggled into the country by Pablo Escobar, a drug lord. 

The surfeit of hippos has coated lakes with algae and could displace otters, manatees and endangered turtles. Hippos have begun wandering into villages, too—a potential peril for human persons. In 2020, Colombia’s government considered a cull, prompting a Colombian lawyer to take up the cause. The hippos, his lawsuit says, enjoy protection under Colombian law and must not be killed….

Judge Karen Litkovitz, the federal judge in Ohio (USA), does not get to decide the hippos’ fate. But on October 15, 2021 she agreed with the Animal Legal Defense Fund that the hippos are “interested persons” under a law permitting foreign litigants to gather evidence in America that may buttress their claims. Experts in non-surgical sterilization will be deposed for their insights on PZP, a contraceptive that could spare the hippos while dampening their growth.

America is not the first country to regard animals as legal persons. An Indian court cited the constitution in banning a bullfighting festival in 2014. A judge in Argentina ruled that Sandra, an orangutan, was a non-human person eligible for better environs than her concrete enclosure in a Buenos Aires zoo; she now luxuriates in a sanctuary in Florida. In 2020 a court in Islamabad, faced with cases involving stray dogs, an elephant and a bear, recognized the “right of each animal…to live in an environment that meets the latter’s behavioral, social and physiological needs”.

Judge Litkovitz’s decision is not couched in such sweeping terms. It remains to be seen whether other American courts take her cue in cases such as that of Happy, an elephant at the Bronx Zoo who has shown signs of self-awareness and misery. In 2022 New York’s highest court will consider whether the writ of habeas corpus—protection from unjust imprisonment—applies to Happy.

Excerpt from Animal rights: Pablo Escobar’s hippos lead a charge for animal rights, Economist, Oct. 30, 2021

A Shameless Love Affair with Nuclear Energy

Nuclear power once seemed like the world’s best hope for a carbon-neutral future. After decades of cost-overruns, public protests and disasters elsewhere, China has emerged as the world’s last great believer, with plans to generate an eye-popping amount of nuclear energy, quickly and at relatively low cost. 

The world’s biggest emitter, China’s planning at least 150 new nuclear reactors in the next 15 years, more than the rest of the world has built in the past 35. The effort could cost as much as $440 billion; as early as the middle of this decade, the country will surpass the U.S. as the world’s largest generator of nuclear power… It could also support China’s goal to export its technology to the developing world and beyond, buoyed by an energy crunch that’s highlighted the fragility of other kinds of power sources. Slower winds and low rainfall have led to lower-than-expected supply from Europe’s dams and wind farms, worsening the crisis, and expensive coal and natural gas have led to power curbs at factories in China and India. Yet nuclear power plants have remained stalwart…

And yet, even if China can develop the world’s most cost-effective, safe, flexible nuclear reactors, the U.S., India and Europe are unlikely to welcome their biggest global adversary into their power supplies. CGN has been on a U.S. government blacklist since 2019 for allegedly stealing military technology. In July, the U.K. began looking for ways to exclude CGN from its Sizewell reactor development. Iain Duncan Smith, Tory Member of Parliament, put it bluntly: “Nuclear is critical to our electric power, and we just can’t trust the Chinese.”

China’s ultimate plan is to replace nearly all of its 2,990 coal-fired generators with clean energy by 2060. To make that a reality, wind and solar will become dominant in the nation’s energy mix. Nuclear power, which is more expensive but also more reliable, will be a close third…Other countries would have to stretch to afford even a fraction of China’s investments. But about 70% of the cost of Chinese reactors are covered by loans from state-backed banks, at far lower rates than other nations can secure…

The most eager customer of China is Pakistan which, like China, shares a sometimes violently contested border with India. China’s built five nuclear reactors there since 1993, including one that came online this year and another expected to be completed in 2022. Other countries have been more hesitant. Romania last year canceled a deal for two reactors with CGN and opted to work with the U.S. instead.

Still, versions of China’s first homegrown reactor design, known as Hualong One, continue to operate safely in Karachi and Fujian province. And in September, China announced a successful test of a new, modular reactor that could be enticing overseas. China Huaneng Group Co. said it had achieved sustained nuclear reactions in a domestically designed, 200-megawatt reactor that heats helium, not water. By making the cooling process independent of external power sources, it should prevent the potential for the kind of massive meltdown that required the evacuation of more than 150,000 people in Fukushima.  China’s modular reactors, if successful, wouldn’t require new power plant construction. In theory, they could replace coal-fired generators in existing thermal power plants…

Excerpts from Dan Murtaugh and Krystal Chia, China’s Climate Goals Hinge on a $440 Billion Nuclear Buildout, Bloomberg, Nov. 2, 2021

Mining to Death for Uranium: the Navajo

The Navajo people have petitioned the Inter-American Commission on Human Rights arguing that the U.S. government failed to protect the human rights of Indigenous communities when the Nuclear Regulatory Commission (NRC) licensed uranium mining on their territories.

The Eastern Navajo Diné Against Uranium Mining (ENDAUM)  petition states that when the NRC licensed Hydro Resources, Inc. (HRI) (now known as NuFuels) to operate uranium mining in the two Diné (Navajo) communities of Crownpoint and Churchrock it violated human rights guaranteed in the American Declaration of the Rights and Duties of Man, including the rights to life, health, benefits of culture, fair trial, and property.
According to the Navajo, the NRC licensed uranium mining  it knew would contaminate the groundwater that is an important resource of drinking water and cultural identity to communities that suffer increased risk of death and disease from historic uranium mining and milling the United States government not only tolerated but promoted.

The Inter-American Commission on Human Rights declared ENDAUM’s petition “admissible” in March 2021 and provided until October 21, 2021 for additional observations to be submitted. These additional observations were submitted in October, 2021. 

New Mexico Environmental Law Center, Press Release, Oct. 20, 2021

Case with annexes

A Breach Too Far: 413 PPM

The abundance of heat-trapping greenhouse gases in the atmosphere once again reached a new record in 2021, with the annual rate of increase above the 2011-2020 average. That trend has continued in 2021, according to the World Meteorological Organization (WMO) Greenhouse Gas Bulletin.

Concentration of carbon dioxide (CO2), the most important greenhouse gas, reached 413.2 parts per million in 2020 and is 149% of the pre-industrial level. Methane (CH4) is 262% and nitrous oxide (N2O)  is 123% of the levels in 1750 when human activities started disrupting Earth’s natural equilibrium.

Roughly half of the CO2 emitted by human activities today remains in the atmosphere. The other half is taken up by oceans and land ecosystems. The Bulletin flagged concern that the ability of land ecosystems and oceans to act as “sinks” may become less effective in future, thus reducing their ability to absorb carbon dioxide and act as a buffer against larger temperature increase…Such changes are already happening, for example, transition of the part of Amazonia from a carbon sink to a carbon source

The Bulletin shows that from 1990 to 2020, radiative forcing – the warming effect on our climate – by long-lived greenhouse gases increased by 47%, with CO2 accounting for about 80% of this increase…The amount of CO2 in the atmosphere breached the milestone of 400 parts per million in 2015. And just five years later, it exceeded 413 ppm. 

“Carbon dioxide remains in the atmosphere for centuries and in the ocean for even longer. The last time the Earth experienced a comparable concentration of CO2 was 3-5 million years ago, when the temperature was 2-3°C warmer and sea level was 10-20 meters higher than now. But there weren’t 7.8 billion people then,” said Prof. Taalas.

Excerpt from Greenhouse Gas Bulletin: Another Year Another Record, WMO, Oct. 25, 2021

How to Buy the Global Yes-Men

China will finance the construction of an outpost for a special forces unit of Tajikistan’s police near the Tajik-Afghan border. The post will be located in Tajikistan’s eastern Gorno-Badakhshan Autonomous Province in the Pamir mountains, which border China’s Xinjiang province as well as the northeastern Afghan province of Badakhshan. No Chinese troops will be stationed at the facility.

The plan to build the post comes amid tension between the Dushanbe government and Afghanistan’s new Taliban rulers. Tajik President Emomali Rakhmon has refused to recognise the Taliban government, calling for a broader representation of Afghanistan’s ethnic groups – of which Tajiks are the second-biggest. Kabul, in turn, has warned Dushanbe against meddling in its domestic affairs. According to Russian media, the Taliban have struck an alliance with an ethnic Tajik militant group based in northern Afghanistan which seeks to overthrow Tajikistan’s current government.

China is a major investor in Tajikistan and Beijing has also acted as a donor on several occasions, handing over, for example, a new parliament building free of charge.

Excerpts from China to build outpost for Tajikistan special forces near Afghan border, Reuters, Oct. 28, 2021

Repairing Damaged Coral Reefs

Rather than blocking waves, as a sea wall does, a reef slows them, dissipating their energy before they reach land. One estimate, from the University of California, Santa Cruz and the Pacific Coastal and Marine Science Centre, suggests natural reefs prevent $1.8bn a year of flood damage in America alone.

While natural reefs take centuries to grow, hybrid versions can be conjured up in months. The idea began with Wolf Hilbertz, an architect with an interest in marine biology. In the 1970s Hilbertz developed a technique that uses submerged electrodes to run electrical currents through seawater. This precipitates calcium carbonate and magnesium hydroxide out of the seawater, forming limestone similar to that of natural reefs. The artificial reef can become the substrate upon which a natural coral ecosystem develops…Later work with Thomas Goreau, a marine biologist, produced both a catchy name—“Biorock”—and the idea of using the stuff as the basis of coral reefs, and, in particular, for repairing damaged reefs.

In 1996 the Global Coral Reef Alliance, a charity, began using Biorock for reef repairs by growing a six-metre structure in the Maldives. Other repairs have followed in Indonesia, Jamaica and Mexico. The Pemuteran Coral Reef Restoration Project, in Bali, is more than 300 metres long and includes dozens of “nurseries” in which Biorock acts as nuclei for the natural extension of the reef….DARPA a research agency run by America’s Department of Defense, also sees hybrid reefs as a means of coastal defence—in this case protecting the country’s seaside military installations. Lori Adornato, head of DARPA’s “Reefense” project, says the goal is a hybrid reef-type system which will be maintenance-free and self-repairing. Reefense therefore involves not only creating reefs and measuring their effectiveness, but also attracting and fostering appropriate organisms to sustain the reefs’ health, ensuring they can survive even when natural reefs are suffering.

Excerpts from Ocean Reefs: Hybrid Vigor, Economist, Sept. 11, 2021

How to Relocate a Whole Nation

Small island states will not, most likely, be swallowed by the sea… In research published in 2010, Paul Kench measured the size of 27 atolls over a period of decades and found that while 14% had shrunk and a couple had disappeared, 43% stayed the same size and another 43% became bigger. Many of the ring-shaped coral reefs have been able to adapt to sea-level rise, changing shape as sediment is eroded and pushed around. Tuvalu’s land surface, for instance, increased by 3% between 1971 and 2014 despite a rise in the local sea level of 4mm a year, twice the global average for that period…

But there are other, more immediate effects of climate change that threaten the lives and livelihoods of the citizens of these countries. They are less arresting, harder to explain and, as in the changing shape and size of islands, sometimes counterintuitive. But the upshot is the same: the countries may soon become uninhabitable.

One is “king tides”, high tides that briefly but entirely inundate the narrow strips of low-lying land that comprise most atoll, are becoming more frequent. The saltwater can kill crops such as banana and papaya and seeps into groundwater, making it unfit to drink

There are also ways to keep islands habitable: Kiribati plans to dredge its lagoons and use the sand to raise the surrounding islands higher above the sea. Tuvalu has embarked on a land-reclamation project. But the spectre of climate change makes it harder to drum up investment for such schemes. “I am trying to change the minds of the many people who say, ‘We cannot invest in your country, you’re finished’,” says Kiribati’s Mr Tito.

The depressing long-term solution may be to move. The Marshall Islands hopes to renegotiate its post-colonial “Compact of Free Association” with America, which expires in 2023, to ensure a permanent right of residence in the United States for all Marshallese. Tuvalu has no such option. Maina Talia, a climate activist, thinks that the government should take Fiji up on its offer of a home where Tuvaluans could practice the same culture rather than “be dumped somewhere in Sydney’‘.

Earlier this year, the government of Tuvalu, which until recently insisted that there would be no Plan B, established a new un initiative. Its aim is to work with “like-minded countries” to figure out how and where such countries could be relocated, how they could continue to function ex-situ, and whether they could still lay claim to vast exclusive economic zones if their land disappeared under water.

Relocating a country would raise other big questions, too, for both the international system and the way in which people think about statehood. “How to prepare to move a nation in dignity, that has never been done before,” says Kamal Amakrane, a migration expert whose ideas helped spark the UN initiative. 

Excerpt from Moving story: Pacific countries face more complex problems than sinking, Economist, August 7, 2021

Surveillance by the Masses for the Masses

New sensors, from dashboard cameras to satellites that can see across the electromagnetic spectrum, are examining the planet and its people as never before. The information they collect is becoming cheaper. Satellite images cost several thousand dollars 20 years ago, today they are often provided free and are of incomparably higher quality….

Human Rights Watch has analysed satellite imagery to document ethnic cleansing in Myanmar. Nanosatellites tag the automatic identification system of vessels that are fishing illegally. Amateur sleuths have helped Europol, the European Union’s policing agency, investigate child sexual exploitation by identifying geographical clues in the background of photographs. Even hedge funds routinely track the movements of company executives in private jets, monitored by a web of amateurs around the world, to predict mergers and acquisitions. OSINT (open-source intelligence) thus bolsters civil society, strengthens law enforcement and makes markets more efficient. It can also humble some of the world’s most powerful countries.

In the face of vehement denials from the Kremlin, Bellingcat, an investigative group, meticulously demonstrated Russia’s role in the downing of Malaysian Airlines Flight mh17 over Ukraine in 2014, using little more than a handful of photographs, satellite images and elementary geometry. It went on to identify the Russian agents who attempted to assassinate Sergei Skripal, a former Russian spy, in England in 2018. Amateur analysts and journalists used OSINT to piece together the full extent of Uyghur internment camps in Xinjiang. In recent weeks researchers poring over satellite imagery have spotted China constructing hundreds of nuclear-missile silos in the desert.

Such an emancipation of information promises to have profound effects. The decentralised and egalitarian nature of OSINT erodes the power of traditional arbiters of truth and falsehood, in particular governments and their spies and soldiers. The likelihood that the truth will be uncovered raises the cost of wrongdoing for governments. Although osint might not prevent Russia from invading Ukraine or China from building its gulag, it exposes the flimsiness of their lies

Liberal democracies will also be kept more honest. Citizens will no longer have to take their governments on trust. News outlets will have new ways of holding them to account. Today’s open sources and methods would have shone a brighter light on the Bush administration’s accusation in 2003 that Iraq was developing chemical, biological and nuclear weapons. That would have subjected America’s invasion of the country to greater scrutiny. It might even have prevented it.,,

The greatest worry is that the explosion of data behind open-source investigations also threatens individual privacy. The data generated by phones and sold by brokers let Bellingcat identify the Russian spies who last year poisoned Alexei Navalny, an opposition leader. Similar data were exploited to pick out a senior Catholic priest in America, who resigned last month after his location was linked to his use of Grindr, a gay dating app.

Excerpts from The people’s panopticon: The promise of open-source intelligence, Economist, Aug. 7, 2021

The Northern Frontier: Who’s Taking Advantage of Climate Change?

Owing to climate change…the share of boreal land that can support farming could increase from 8% to 41% in Sweden. It could increase from 51% to 83% in Finland. Efforts to farm these areas will alarm people who value boreal forests for their own sake. And cutting down such forests and ploughing up the soils that lie beneath them will release carbon. But the climatic effects are not as simple as they might seem. Northern forests absorb more heat from the sun than open farmland does, because snow-covered farmland reflects light back into space…

The fact that felling boreal forests may not worsen climate change, though, says nothing about the degree to which it could affect biodiversity, ecosystem services or the lives of forest dwellers, particularly indigenous ones.

Some governments are already keen to capitalize on climate change. Russia’s has long talked of higher temperatures as a boon. President Vladimir Putin once boasted that they would enable Russians to spend less money on fur coats and grow more grain. In 2020 a “national action plan” on climate change outlined ways in which the country could “use the advantages” of it, including expanding farming. Since 2015 Russia has become the world’s largest producer of wheat, chiefly because of higher temperatures.

Russia’s government has started leasing thousands of square kilometers of land in the country’s far east to Chinese, South Korean and Japanese investors. Much of the land, which was once unproductive, is now used to grow soybeans. Most are imported by China, helping the country reduce its reliance on imports from America. Sergey Levin, Russia’s deputy minister of agriculture, has predicted that soya exports from its far-eastern farmlands may reach $600m by 2024. That would be nearly five times what they were in 2017. The government of Newfoundland and Labrador, a province on the north-eastern tip of Canada, is also trying to promote the expansion of agriculture into lands covered by forests…

All told, the northern expansion of farmland will only go some way towards mitigating the damage climate change may do to agriculture. The societies that will benefit from it are mostly already wealthy. Poor places, which rely much more heavily on income from exporting agricultural produce, will suffer.

Excerpts from Farming’s New Frontiers: Agriculture, Economist, August 28, 2021

When the Cat’s Away the Mice Pollute

Police don’t share schedules of planned raids. Yet America’s Environmental Protection Agency (EPA) does not seem convinced of the value of surprise in deterring bad behavior. Every year it publishes a list of dates, spaced at six-day intervals, on which it will require state and local agencies to provide data on concentrations of harmful fine particulate matter (pm2.5), such as soot or cement dust…

A new paper by Eric Zou of the University of Oregon makes use of satellite images to spy on polluters at times when they think no one is watching. NASA, America’s space agency, publishes data on the concentration of aerosol particles—ranging from natural dust to man-made toxins—all around the world, as seen from space. For every day in 2001-13, Mr Zou compiled these readings in the vicinity of each of America’s 1,200 air-monitoring sites.

Although some stations provided data continuously, 30-50% of them sent reports only once every six days. For these sites, Mr Zou studied how aerosol levels varied based on whether data would be reported. Sure enough, the air was consistently cleaner in these areas on monitoring days than it was the rest of the time, by a margin of 1.6%. Reporting schedules were almost certainly the cause….The size of this “pollution gap” differed by region. It was biggest in parts of Appalachia and the Midwest with lots of mining, and in the northern Mountain West, where paper and lumber mills are common.

The magnitude of the gap also depended on the cost of being caught. Every year, the EPA produces a list of counties whose average air quality falls below minimum standards. The punishments for inclusion are costly: factories become subject to burdensome clean-technology requirements, and local governments can be fined. When firms risked facing sanctions, they seemed to game the system more aggressively. In counties that exceeded the pm2.5 limit in a given month, the pollution gap in the following month swelled to 7%. In all other cases, it was just 1.2%….

Excerpts from Poorly devised regulation lets firms pollute with abandon: We Were Expecting you, Economist, Sept. 4, 2021

Eradicating Old Cities and their Populations

The fighters of Islamic State…raided the tombs of Assyrian kings in Nineveh, blew up Roman colonnades in Palmyra and sold priceless relics to smugglers. But their vandalism was on a modest scale compared with some of the megaprojects that are habitually undertaken by many Middle Eastern government… Iraq’s government began to build the Makhoul dam. Once complete, it is likely to flood Ashur—and another 200 historical sites.

Similar archaeological tragedies have occurred across the region, mainly thanks to the appetite of governments for gigantism in the name of modernization…The re-landscaping displaces people as well as erasing their heritage, sometimes as a kind of social engineering….

Egypt’s dictator, Abdel Fattah al-Sisi, has bulldozed swathes of Cairo, the old capital, to make way for motorways, flyovers and shiny skyscrapers that line the road to the new administrative capital he is building. To ease congestion he has scythed a thoroughfare named Paradise through the City of the Dead, a 1,000-year-old necropolis that is a un-designated world heritage site. Hundreds of tombs were destroyed. He has turfed out tens of thousands of people from their homes in Boulaq, along the Nile, calling it slum clearance. This was where Cairo’s old port prospered in Ottoman times. Instead of rehabilitating it, Mr Sisi is letting property magnates carpet the area with high-rise apartment buildings. Mr Sisi has allowed investors from the United Arab Emirates to build a mini-Dubai on Cairo’s largest green space, a nature reserve on al-Warraq island. Its 90,000 residents will be shunted off, mainly to estates on the city’s edge. Protesters have been condemned as Islamist terrorists and sent to prison, many for 15 years…

Some rulers have security in mind when they bulldoze history. Mr Sisi can send in the tanks faster on wider roads. Removing Egypt’s poor from city centres may curb the risk of revolution. “They know that poor areas revolted in 2011,” says Abdelrahman Hegazy, a Cairene city planner. “They’re afraid of population density.” During Syria’s current civil war, President Bashar al-Assad and his Russian patrons ruined parts of the old cities of Homs and Aleppo, treasure troves of antiquity that were also rebel strongholds, with relentless barrel-bombing….

Excerpts from Bulldozing history: Arab states are wrecking old treasures, Economist, Sept. 4, 2021

How to Exclude China from the Global Technology Base: the Role of IMEC

The Interuniversity Microelectronics Centre (IMEC) located in Leuven, Belgium, does not design chips (like America’s Intel), manufacture them (like TSMC of Taiwan) or make any of the complicated gear (like ASML, a Dutch firm). Instead, it creates knowledge used by everyone in the $550bn chip business. Given chips’ centrality to the modern economy and increasingly to modern geopolitics, too, that makes it one of the most essential industrial research-and-development (R&D) center on the planet. Luc Van den hove, IMEC’s boss, calls it the “Switzerland of semiconductors”.

IMEC was founded in 1984 by a group of electronics engineers from the Catholic University of Leuven who wanted to focus on microprocessor research. In the early days it was bankrolled by the local Flemish government. Today IMEC maintains its neutrality thanks to a financial model in which no single firm or state controls a big share of its budget. The largest chunk comes from the Belgian government, which chips in some 16%. The top corporate contributors provide no more than 4% each. Keeping revenue sources diverse (partners span the length and breadth of the chip industry) and finite (its standard research contracts last three to five years) gives IMEC the incentive to focus on ideas that help advance chipmaking as a whole rather than any firm in particular.

A case in point is the development of extreme ultraviolet lithography (EUV)…It took 20 years of R&D to turn the idea into manufacturing reality. IMEC acted as a conduit in that process… Advanced toolmakers want a way to circulate their intellectual property (IP) without the large companies gaining sway over it. The large companies, meanwhile, do not want to place all their bets on any one experimental idea that is expensive (as chipmaking processes are) and could become obsolete.

IMEC’s neutrality allows both sides to get around this problem. It collects all the necessary gear in one place, allowing producers to develop their technology in tandem with others. And everyone gets rights to the IP the institute generates. Mr Van den hove says that progress in the chip industry has been driven by the free exchange of knowledge, with IMEC acting as a “funnel” for ideas from all over the world…IMEC’s revenues, which come from the research contracts and from prototyping and design services, doubled between 2010 and 2020, to €678m ($773m).

The deepening rift between America, home to some of the industry’s biggest firms, and China, which imported $378bn-worth of chips last year, threatens IMEC’s spirit of global comity. China’s chip industry is increasingly shielded by an overbearing Communist Party striving for self-sufficiency, and ever more ostracized by outsiders as a result of American and European export controls. All this limits the extent to which IMEC can work with Chinese semiconductor companies…IMEC would not comment on individual partnerships but says it has “a few engagements with Chinese companies, however not on the most sensitive technologies, and always fully compliant with current European and US export regulations and directives”.

Excerpts from Neutral but not idle: IMEC offers neutral ground amid chip rivalries, Economist, Sept. 25, 2021

Tracking and Removing Polluting Space Junk

At orbital speeds a tennis-ball-sized piece of space junk packs enough energy to obliterate a satellite…Even tiny bits of debris can do damage. In May 2021 the Canadian Space Agency said an untracked piece of junk had punched a hole 5mm across in Canadarm2, a robotic limb attached to the International Space Station (ISS).

As orbiting objects multiply, the danger grows. Roughly a dozen sizeable pieces of space debris break up every year as a result of collisions, exploding rocket fuel, or the rupturing of pressurized tanks or old batteries. Solar radiation chips off bits of paint and metal…Today there 4,500 active satellites orbiting Earth and this does not include defunct satellites…There could be 100,000 active satellites in orbit by the end of the decade…

Radars operated by the US Department of Defense have improved ‘space situational awareness’…One big advance has been “Space Fence”. This is a system built in the Marshall Islands for America’s air force. It is billed as the world’s most advanced radar…In April 2021, LeoLabs, a firm in Silicon Valley, switched on its fourth debris-tracking radar station. ..LeoLabs sells data to satellite operators, space agencies, America’s armed forces and insurers keen to calculate better actuarial tables for spacecraft….

Besides using radar, debris can also be tracked optically. In collaboration with Curtin University, in Perth, Lockheed Martin runs FireOpal, a system of 20 cheap cameras aimed at the sky from various parts of Australia. For several hours at dawn and dusk, when these cameras are in the dark but sunlight still illuminates debris orbiting above, the cameras take pictures every ten seconds. The closer an object, the more it appears to move relative to the stars, allowing triangulation of its position…fire

Lasers are another option….For finding stuff in high orbits, though, neither lasers nor radars are much help. But telescopes work. ExoAnalytic Solutions, a Californian firm, tracks junk up to 170,000km away—nearly halfway to the Moon—using instruments “just laying on the shelves” at astronomy shops...Northstar Earth & Space, a new firm in Montreal, is to raise money to build, at $25m a pop, three 100kg satellites that will use telescopic cameras to track junk from orbit..

Naturally, this orbital-tracking technology has military value as well. Knowing objects’ orbits can reveal much about an adversary’s capabilities—including, perhaps, orbital combat. Movements that represent any deviation from normal patterns are most telling…To illustrate why, he points to an object that had been considered to be just a piece of debris from a Russian military launch. In May 2014 the “debris” sprang to life. Its movements since then have fuelled fears that it could be an anti-satellite weapon. Whether other such “sleepers” are hidden in plain sight among the clouds of rubbish orbiting Earth remains to be seen. 

Excerpts from Orbital housekeeping: Tracking space debris is a growing business, Economist, Sept. 18, 2021

How to Suck Carbon and Convert it to Rocks

The Orca carbon-capture plant, just outside Reykjavik in Iceland, has switched on its fans and began sucking carbon dioxide from the air since September 2021. The sound was subtle—a bit like a gurgling stream. But the plant’s creators hope it will mark a big shift in humanity’s interaction with the climate. Orca is, for now, the largest installation in the infant “direct air capture” industry, which aims to remove CO2 from the atmosphere. When sealed underground such CO2 counts as “negative emissions”—an essential but underdeveloped method for tackling global warming.

Thus, the full operation extracts CO2 from air and turns it to rock. Trials have shown that Icelandic basalts can sequester CO2 in solid rock within two years. Power comes from a nearby geothermal power station….One catch is volume. Orca will capture 4,000 tonnes of carbon dioxide a year, out of around 35bn tonnes produced by burning fossil fuels. Another is cost. It costs Orca somewhere between $600-800 to sequester one tonne of carbon dioxide, and the firm sells offset packages online for around $1,200 per tonne. The company thinks it can cut costs ten-fold through economies of scale. But there appears to be no shortage of customers willing to pay the current, elevated price. Even as Orca’s fans revved up, roughly two-thirds of its lifetime offering of carbon removals had already been sold. Clients include corporations seeking to offset a portion of their emissions, such as Microsoft, Swiss Re as well as over 8,000 private individuals.

Climeworks is not alone in having spotted the opportunity. Using different chemistry, Carbon Engineering, a Canadian company, is gearing up to switch on its own carbon-scrubbing facilities. It will take more than these pioneer engineers and financiers to build a gigatonne-sized industry. But the fans are turning. 

Excerpts from Removing carbon dioxide from the air: The world’s biggest carbon-removal plant switches on, Economist, Sept. 18, 2021

The Transparency of Oceans and Nuclear Submarines

There are warnings that different technologies will render the ocean “transparent”, so even the stealthiest submarines could be spotted by an enemy force… China has already developed submarine-spotting lasers. CSIRO is working with a Chinese marine science institute that has separately developed satellite technology that can find submarines at depths of up to 500 meters.   But others say submarines are just a base platform for a range of new and evolving technologies. The Australian Strategic Policy Institute’s outgoing head, Peter Jennings, said the nuclear-propelled submarines that Australia will get as part of the Aukus alliance have more space and energy for being “motherships” than conventional submarines.

“They’re significantly bigger and the reactors give you the energy not just for the propulsion but for everything else inside the boat,” he said. “You then have a huge amount of space for weapons, for vertical launch tubes for cruise missiles and for autonomous systems that can be stored on board. Not only is it a fighting unit but you might have half a dozen remote systems fanned out at quite a distance. They’ll be operating a long distance away from potential targets, potentially hundreds of kilometers. According to the taskforce set up under Aukus, the new submarines will have “superior characteristics of stealth, speed, manoeuvrability, survivability, and almost limitless endurance”, with better weapons, the ability to deploy drones and “a lower risk of detection”.

Excerpts from Tory Shepherd, Will all submarines, even nuclear ones, be obsolete and ‘visible’ by 2040?, Oct. 4, 2021

Keep Killing Environmental Defenders

A report released by Global Witness in September 2021 reveals that 227 land and environmental activists were murdered in 2020 for defending their land and the planet. That constitutes the highest number ever recorded for a second consecutive year…The figures show the human cost of the destruction wrought by exploitative industries and corporations. At least 30% of recorded attacks were reportedly linked to resource exploitation – across logging, hydroelectric dams and other infrastructure, mining, and large-scale agribusiness. Logging was the industry linked to the most murders with 23 cases – with attacks in Brazil, Nicaragua, Peru and the Philippines…

Colombia was once again the country with the highest recorded attacks, with 65 defenders killed in 2020. A third of these attacks targeted indigenous and afro-descendant people, and almost half were against small-scale farmers. In 2020 the disproportionate number of attacks against indigenous communities continued – with over a third of all fatal attacks targeting indigenous people. Attacks against indigenous defenders were reported in Mexico, Central and South America, the Philippines, Saudi Arabia and Indonesia. Nicaragua saw 12 killings – rising from 5 in 2019, making it the most dangerous country per capita for land and environmental defenders in 2020.

Excerpt from  LAND AND ENVIRONMENTAL DEFENDERS, Global Witness Press Release, Sept. 13, 2021

A New Page in History of Nuclear Energy?

A new page in the history of nuclear energy could be written this September 2021, in the middle of the Gobi Desert, in the north of China. At the end of August 2021, Beijing announced that it had completed the construction of its first thorium-fueled molten-salt nuclear reactor, with plans to begin the first tests of this alternative technology to current nuclear reactors within the next two weeks…

The Chinese reactor could be the first molten-salt reactor operating in the world since 1969, when the US abandoned its Oak Ridge National Laboratory facility in Tennessee. “Almost all current reactors use uranium as fuel and water, instead of molten salt and thorium,” which will be used in China’s new plant. These two “new” ingredients were not chosen by accident by Beijing: molten-salt reactors are among the most promising technologies for power plants

With molten-salt technology, “it is the salt itself that becomes the fuel”….The crystals are mixed with nuclear material – either uranium or thorium – heated to over 500°C to become liquid, and are then be able to transport the heat and energy produced. Theoretically, this process would make the installations safer. “Some accident risks are supposedly eliminated because liquid burning avoids situations where the nuclear reaction can get out of control and damage the reactor structures.”

There’s another advantage for China: this type of reactor does not need to be built near watercourses, since the molten salts themselves “serve as a coolant, unlike conventional uranium power plants that need huge amounts of water to cool their reactors”.  As a result, the reactors can be installed in isolated and arid regions… like the Gobi Desert.

Thorium belongs to a famous family of rare-earth metals that are much more abundant in China than elsewhere; this is the icing on the cake for Chinese authorities, who could increase its energy independence from major uranium exporting countries, such as Canada and Australia, two countries whose diplomatic relations with China have collapsed in recent years.

According to supporters of thorium, it would also a “greener” solution. Unlike the uranium currently used in nuclear power plants, burning thorium does not create plutonium, a highly toxic chemical element…

Among the three main candidates for nuclear reaction – uranium 235, uranium 238 and thorium – the first is “the only isotope naturally fissile”, Sylvain David explained. The other two must be bombarded with neutrons for the material to become fissile (able to undergo nuclear fission) and be used by a reactor: a possible but more complex process. Once that is done on thorium, it produces uranium 233, the fissile material needed for nuclear power generation….”This is an isotope that does not exist in nature and that can be used to build an atomic bomb,” pointed out Francesco D’Auria.

Excerpts from Why China is developing a game-changing thorium-fueled nuclear reactor, France24, Sept. 12, 2021

Mobile Nuclear Energy for the Arctic: Dream to Reality

Four small modular reactors (SMRs) will power the huge Baimskaya copper and gold mining development in the Russian Arctic, according to an agreement signed by Rosatom subsidiary Atomflot…Baimskaya is one of the world’s largest mineral deposits and is very rich in copper and gold. However, development of the remote site in Russia’s eastern Chukotka region demands a complex multi-partner plan involving the Russian government, the regional government and developers…

Nuclear power already plays a role in Baimskaya’s development as early facilities there are powered by the Akademik Lomonosov floating nuclear power plant at Pevek. KAZ Minerals said the plant will supply up to 20 MWe of nuclear power to the mine during its construction phase….Based on the agreement, two additional floating power plants will provided, each with two RITM-200M reactors. The first two should be in operation at Cape Nagloynyn by the beginning of 2027, the third in 2028 and the final one at the start of 2031….

Excerpts from SMRs to power Arctic development, World Nuclear News, Sept. 3, 2021

The $22 Trillion Global Carbon Market

Two of the world’s biggest oil companies, Royal Dutch Shell  and BP already have significant carbon-emissions trading arms, thanks to a relatively well-developed carbon market in Europe. Big carbon emitters such as steel producers receive emission allowances, and can buy more to stay under European emissions guidelines. Companies that fall below those limits can sell their excess carbon-emissions allowances.

Carbon traders get in the middle of those transactions, seeking to profit from even small moves in the price of carbon and sometimes betting on the direction of prices. The value of the world’s carbon markets—including Europe and smaller markets in places such as California and New Zealand—grew 23% last year to €238 billion, equivalent to $281 billion.

That is small compared with the world’s multitrillion-dollar oil markets and to other heavily traded energy markets, such as natural gas or electricity. But growth potential exists, the industry says. Wood Mackenzie, an energy consulting firm, estimates a global carbon market could be worth $22 trillion by 2050… An experienced carbon trader’s base salary can be roughly $150,000 to $200,000, although a lot of compensation occurs via bonuses, traders said…. BP’s overall annual trading profits were between $3.5 billion and $4 billion during the past two years, according to a person familiar with the matter.

Excerpts from Sarah McFarlane, Energy Traders See Big Money in Carbon-Emissions Markets, WSJ, Sept. 9, 2021

The 17 000 Nuclear Objects Dumped in the Kara Sea


“Having the exact coordinates for the dumped container with the nuclear reactors from K-19 submarine is undoubtedly good news,” says nuclear safety expert Andrey Zolotkov. Zolotkov hopes for risk assessments to be carried out soon with the aim to see how the nuclear reactors could be lifted out of the maritime environment and brought to a yard for safe decommissioning…More than 50 years have passed since the dumping.

In the so-called “White Book” on dumped nuclear objects, originally published by President Boris Yeltsin’s environmental advisor Alexei Jablokov, the dumping of the submarine’s two reactors is listed for the Abrosimova Bay on the east coast of the Kara Sea, but exact location hasn’t been confirmed.

It was in August 2021 that the the crew on “Akademik M. Keldysh” with the help of sonars and submersibles found the container. Both marine researchers, oceanology experts from Russia’s Academy of Science and representatives of the Ministry of Emergency Situations are working together in the expedition team.

K-19 is one of the most infamous nuclear-powered submarines sailing for the Soviet navy’s Northern Fleet. In July 1961 the reactor lost coolant after a leak in a pipe regulating the pressure to the primary cooling circuit. The reactor water started boiling causing overheating and fire. Crew members managed to extinguish the fire but had big problems fixing the leak in an effort to save the submarine from exploding. Many of them were exposed to high doses of radioactivity before being evacuated to a nearby diesel submarine sailing in the same area of the North Atlantic. Eight of the crew members who had worked on the leak died of radiation poisoning within a matter of days.

The submarine was towed to the Skhval shipyard (No. 10) in Polyarny. Later, the reactor compartment was cut out and a new installed. The two damaged reactors, still with spent nuclear fuel, were taken north to the Kara Sea and dumped. Keeping the heavily contaminated reactors at the shipyard was at the time not considered an option.

In the spring of 2021, Russia’s Foreign Ministry invited international experts from the other Arctic nations to a conference on how to recover sunken radioactive and hazardous objects dumped by the Soviet Union on the seafloor east of Novaya Zemlya. Moscow chairs the Arctic Council for the 2021-2023 period. 

The two reactors from the K-19 submarine are not the only objects posing a risk to marine environment. In fact, no other places in the world’s oceans have more radioactive and nuclear waste than the Kara Sea. Reactors from K-11 and K-140, plus the entire submarine K-27 and spent uranium fuel from one of the old reactors of the “Lenin” icebreaker are also dumped in the same sea. While mentality in Soviet times was «out of sight, out of mind», the Kara Sea seemed logical. Ice-covered most of the year, and no commercial activities. That is changing now with rapidly retreating sea ice, drilling for oil-, and gas, and increased shipping…Additional to the reactors, about 17,000 objects were dumped in the Kara Sea in the period from the late 1960s to the early 1990s.

Excerpts from Thomas Nilsen, Expedition finds reactors 56 years after dumping, The Barents Observer, Sept. 2, 2021

Measuring Methane Emissions

The American gas industry faces growing pressure from investors and customers to prove that its fuel has a lower-carbon provenance to sell it around the world. That has led the top U.S. gas producer, EQ , and the top exporter, Cheniere Energy to team up and track the emissions from wells that feed major shipping terminals. The companies are trying to collect reliable data on releases of methane—a potent greenhouse gas increasingly attracting scrutiny for its contributions to climate change—and demonstrate they can reduce these emissions over time.

“What we’re trying to really do is build the trust up to the end user that our measurements are correct,” said David Khani, EQT’s chief financial officer. “Let’s put our money where our mouth is.” Natural gas has boomed world-wide over the past few decades as countries moved to supplant dirtier fossil fuels such as coal and oil. It has long been touted as a bridge to a lower-carbon future. But while gas burns cleaner than coal, gas operations leak methane, which has a more potent effect on atmospheric warming than carbon dioxide, though it makes up a smaller percentage of total greenhouse gas emissions.

Investors, policy makers and buyers of liquefied natural gas, known as LNG, are rethinking the fuel’s role in their energy mix …Those concerns, pronounced in Europe and increasingly in Asia, are a problem for LNG shippers, as some of their customers signal plans to ease gas consumption over time…Nearly every industry now faces some pressure to reduce its carbon footprint, as investors focus more on ESG—or environmental, social and governance—issues and push companies for trustworthy emissions data. But the pressure has become particularly acute for oil-and-gas companies, whose main products contribute directly to climate change.

The companies and researchers plan to test drones, specialized cameras that can see methane gas, and other technologies across about 100 wells in the Marcellus Shale in the northeast U.S., the Haynesville Shale of East Texas and Louisiana, and the Permian Basin of West Texas and New Mexico. EQT has said it would spend $20 million over the next few years to replace leaky pneumatic devices, which help move fluids from wells to production facilities and water tanks, with electric-drive valves, executives said. They expect that will cut about 80% of the company’s methane emissions. The company also began exclusively using electric-powered hydraulic fracturing equipment last year.

Excerpts from Collin Eaton Frackers, Shippers Eye Natural-Gas Leaks as Climate Change Concerns Mount, WSJ, Aug. 13, 2021

Amazon Deforestation: Putting a Number on Climate Damage

In April 2021, the Brazilian Federal Public Prosecutor’s Office filed a public civil action against a rural landowner, seeking the landowner’s accountability for alleged illegal deforestation connected to breeding cattle in the Amazon….Aside from demanding compensation for environmental damages, collective damages, as well as compensation due to the profits illegally obtained in the logging process, the prosecutor required that the defendant pay compensation for climate damages resulting from the deforestation, something until now unwitnessed in cases of this sort in Brazil. N

By employing a carbon calculator software developed by IPAM, the Amazonian Research Institute, the Prosecutor’s Office calculated how much carbon was expected to have been released into the atmosphere per hectare of deforestation in that particular area. With that information, knowing the extension of the deforestation and using the carbon pricing practiced by the Amazon Fund, the Prosecutor’s Office came to the conclusion that the defendant was liable for a BRL 44.7 million compensation for climate damages.

Excerpts from Climate litigation in Brazil: new strategy from prosecutors on climate litigation against private entities, Mayer/Brown, June 21, 2021

Africa’s Single Electricity Market: Pools and Mini-Grids

Given this the magnitude of the energy access problem in Africa, a continent-wide risk-guarantee scheme should be established, ideally by a combination of African and other multilateral lending institutions. Such an integrated approach, through which overall savings can outweigh risk premia  could be articulated under the aegis of the African Single Electricity Market, launched in early February 2021 with the main goal of harmonizing regulatory and technical aspects of electricity generation, transmission, and distribution across the continent…

Most electricity projects in Africa are undertaken by foreign developers, notably European, Chinese, and United States companies, owing to their experience and, especially, their ability to secure financing. As a result, African governments have introduced different types of so-called local-content requirements, namely obligations concerning local employment, procurement of local goods and services, and the transfer of technologies and know-how, to which foreign investors have to abide. In countries such as Kenya and Nigeria, these requirements are defined through quantitative targets, whereas in other countries, such as Uganda and Zambia, they take the form of qualitative goals….

Power pooling, through cross-border trade in electric power, helps reduce electricity bills and enhances the reliability of electricity supply. Regional power pools, based increasingly on renewable energy supplies, are now possible across most of the African continent. Nonetheless, additional efforts are needed to reap the full benefits of power pooling….

South Africa is the main electricity producer for the Southern African power pool, facilitated by the Southern African Development Community (SADC). Given the challenges that the country is increasingly facing to meet its domestic demand for electricity, and the sharp decreases in cost of solar, wind, and energy storage, the case for relying on solar and wind energy–powered electricity generation becomes stronger in the region. Yet, at present, for both renewable energy and electric-power transmission, many of the investment discussions in the SADC region focus on large dams, which have been the technology of choice for decades. Concentrating solar power, a technology that generates electricity from the heat obtained by concentrating solar energy (in contrast to converting solar energy directly into electricity, as photovoltaic systems do), is already being deployed in South Africa…. Concentrating solar power technology can help shift the balance away from hydropower and toward solar energy, but only to the extent that stronger financial incentives are in place, compared to those introduced thus far…

To date, the members of the Maghreb Electricity Committee (COMELEC), Northern Africa’s power pool, have only engaged in cross-border trade with the Iberian Peninsula, across the Mediterranean Sea (Spain currently exports electricity to Morocco). As concentrating solar power in Morocco develops, the country plans to export electricity to Spain and possibly Portugal. Tunisia and Egypt are planning similar export arrangements (with Italy and Greece, respectively). Against this background, COMELEC has pledged to launch, in 2025, a common electricity market for its five members…

Both the Eastern Africa Power Pool (EAPP) and the West African Power Pool (WAPP) originate from preexisting cross-border arrangements aimed at promoting cooperation on energy issues. In both regions, cooperation thus far has been limited to bilateral agreements, such as the lines linking Kenya with Ethiopia and Ghana with Burkina Faso….The Central African Power Pool (CAPP) remains underdeveloped. Poverty and other developmental challenges in the region limit the size of the electricity market, thus inflating prices.

In moderately populated areas, where both grid extension and deployment of a relatively large number of stand-alone electricity-generation systems would be prohibitively expensive, off-grid mini-grids are the most economical electrification option in most cases. The so-called third-generation minigrids, which combine photovoltaic solar systems and batteries with or without a back-up diesel-powered electricity generator, require less than 2 weeks of scheduled maintenance per year. Such a high level of reliability makes it possible to incentivize off-grid mini-grid deployment through performance-based subsidies.  For example, with World Bank backing, Nigeria’s rural electrification agency pays off-grid mini-grid developers US$ 350 per connection, provided that the customer has had a steady supply of power for at least 3 months. Similarly, the reliability of third-generation mini-grids allows developers to offer customers a contract that includes, in addition to the electricity connection, the option to purchase income-generating appliances, such as machines for welding, milling, and rice hulling, thus increasing deployment rates…

Overcoming the barriers to interconnected mini-grid development requires national governments to clarify licensing procedures and tariff regulations and ultimately establish unambiguous tariff levels for the various interconnection options, a set of tasks that can be facilitated by the International Renewable Energy Agency….

Excerpts from Daniel Puig et al., An Action Agenda for Africa’s Electricity Sector, Science, Aug. 6, 2021

Conquering Virgin Digital Lands a Cable at a Time

Facebook  said it would back two new underwater cable projects—one in Africa and another in Asia in collaboration with Alphabet — that aim to give the Silicon Valley giants greater control of the global internet infrastructure that their businesses rely on.

The 2Africa project, a partnership between Facebook and several international telecom operators, said that it would add four new branches: the Seychelles, Comoro Islands, Angola and Nigeria. The project’s overall plan calls for 35 landings in 26 countries, with the goal of building an underwater ring of fiber-optic cables around Africa. It aims to begin operating in 2023… Separately, Facebook that it would participate in a 7,500-mile-long underwater cable system in Asia, called Apricot, that would connect Japan, Taiwan, Guam, the Philippines, Indonesia and Singapore. Google said that it would also join the initiative, which is scheduled to go live in 2024.

Driving the investments are costs and control. More than 400 commercially operated underwater cables, also known as submarine cables, carry almost all international voice and data traffic, making them critical for the economies and national security of most countries…Telecom companies own and operate many of these cables, charging fees to businesses that use them to ferry data. Facebook and Google used so much bandwidth that they decided about a decade ago that it would make sense to cut out the middleman and own some infrastructure directly.

Excerpts from Stu Woo, Facebook Backs Underwater Cable Projects to Boost Internet Connectivity, WSJ, Aug. 17, 2021

Imagining Failure: Nuclear Waste on the Beach, California

But for all the good vibes and stellar sunsets of  San Onofre state beach in California, beneath the surface hides a potential threat: 3.6m lb of nuclear waste from a group of nuclear reactors shut down nearly a decade ago. Decades of political gridlock have left it indefinitely stranded, susceptible to threats including corrosion, earthquakes and sea level rise. The San Onofre reactors are among dozens across the United States phasing out, but experts say they best represent the uncertain future of nuclear energy.

“It’s a combination of failures, really,” said Gregory Jaczko, who chaired the US Nuclear Regulatory Commission (NRC), the top federal enforcer, between 2009 and 2012, of the situation at San Onofre. That waste is the byproduct of the San Onofre Nuclear Generating Station (Songs), three nuclear reactors primarily owned by the utility Southern California Edison (SCE) that has shut down….

Since there is not central repository for the final disposition of nuclear wasted in the United States,  the California Coastal Commission approved in 2015 the construction of an installation at San Onofre to store it until 2035. In August 2020, workers concluded the multi-year burial process, loading the last of 73 canisters of waste into a concrete enclosure. San Onofre is not the only place where waste is left stranded. As more nuclear sites shut down, communities across the country are stuck with the waste left behind. Spent fuel is stored at 76 reactor sites in 34 states….

At San Onofre, the waste is buried about 100ft from the shoreline, along the I-5 highway, one of the nation’s busiest thoroughfares, and not far from a pair of faults that experts say could generate a 7.4 magnitude earthquake. Another potential problem is corrosion. In its 2015 approval, the Coastal Commission noted the site could have a serious impact on the environment in case of coastal flooding and erosion hazards beyond its design capacity, 

Concerns have also been raised about government oversight of the site. Just after San Onofre closed, SCE began seeking exemptions from the NRC’s operating rules for nuclear plants. The utility asked and received permission to loosen rules on-site, including those dealing with record-keeping, radiological emergency plans for reactors, emergency planning zones and on-site staffing.

San Onofre isn’t the only closed reactor to receive exemptions to its operating licence. The NRC’s regulations historically focused on operating reactors and assumed that, when a reactor shut down, the waste would be removed quickly.

It’s true that the risk of accidents decreases when a plant isn’t operating, said Dave Lochbaum of the Union of Concerned Scientists. But adapting regulations through exemptions greatly reduces public transparency, he argued. “Exemptions are wink-wink, nudge-nudge deals with the NRC,” he said. “In general, it’s not really a great practice,” former NRC chair Jaczko said about the exemptions. “If the NRC is regulating by exemption, it means that there’s something wrong with the rules … either the NRC believes the rules are not effective, and they’re not really useful, or the NRC is not holding the line where the NRC should be holding line,” he said…

It’s worth considering how things fail, though, argued Rod Ewing, nuclear security professor at Stanford University’s center for international security and cooperation, and author of a 2021 report about spent nuclear waste that focuses on San Onofre. “The problem with our safety analysis approach is we spend a lot of time proving things are safe. We don’t spend much time imagining how systems will fail,” he said. “And I think the latter is what’s most important.”

Excerpts from Kate Mishkin, ‘A combination of failures:’ why 3.6m pounds of nuclear waste is buried on a popular California beach, Guardian, Aug. 

To Know the Truth Even if it Harms You

Distributed Denial of Secrets, or DDoSecrets, an NGO, had been a thorn in the side of secretive governments, corrupt corporations, and powerful law firms since its founding in late 2018. In June 2020, in a release known as BlueLeaks, the group published 269 gigabytes of law enforcement data, which exposed police malfeasance and surveillance overreach across the United States.

DDoSecrets also published incriminating records from overseas tax shelters, from the social media site Gab, and from a Christian crowdfunding site often used by the far right. The group has affected autocrats as well, exposing the Russian government’s plans in Ukraine and mapping out the Myanmar junta’s business dealings. These revelations have spawned numerous news stories in the public interest, making DDoSecrets a valuable source for journalists, but also rendering it a target: In July 2020, German authorities seized one of the organization’s servers. August of 2020 brought ominous news of a Department of Homeland Security bulletin labeling DDoSecrets a “criminal hacker group.” ..

Avowedly nonpartisan, DDoSecrets nonetheless exhibits an ethos that seems to fuse anarchist politics, a hacker’s curiosity about forbidden knowledge, and a general sympathy for the oppressed. Its barbed Latin slogan, Veritatem cognoscere ruat caelum et pereat mundus, roughly translates to, “To know the truth, even if the heavens fall and the world perishes.” Call it a bolder, more transformative version of “information wants to be free.”

Emma Best…launched DDoSecrets in December 2018 with someone known only by the pseudonym “The Architect.” Together, they set out to distinguish their group from WikiLeaks, which they felt had morphed into a vehicle for Julian Assange’s ego…”Truth has an impact, regardless of the respectability politics some people choose to engage in when it comes to the alleged sources,” Best wrote after Swiss law enforcement, at the request of U.S. authorities, arrested Tillie Kottmann, a hacker who alerted journalists to security vulnerabilities in a vast commercial network of surveillance cameras. “The world can no longer be rid of hacktivists or leaktivists. Not as long as people are willing.”

Excerpts from Jacob Silverman, The New WikiLeaks, The New Republic, Aug. 18, 2021

Who Owns your Cells? the case of Henrietta Lacks

In 1951, a young mother of five named Henrietta Lacks visited The Johns Hopkins Hospital complaining of vaginal bleeding….As medical records show, Mrs. Lacks began undergoing radium treatments for her cervical cancer…. A sample of her cancer cells retrieved during a biopsy were sent, without her knowledge or consent, to Dr. George Gey’s nearby tissue lab. For years, Dr. Gey, a prominent cancer and virus researcher, had been collecting cells from all patients who came to The Johns Hopkins Hospital with cervical cancer, but each sample quickly died in Dr. Gey’s lab. What he would soon discover was that Mrs. Lacks’ cells were unlike any of the others he had ever seen: where other cells would die, Mrs. Lacks’ cells doubled every 20 to 24 hours.

Today, these incredible cells— nicknamed “HeLa” cells, from the first two letters of her first and last names — are used to study the effects of toxins, drugs, hormones and viruses on the growth of cancer cells without experimenting on humans. They have been used to test the effects of radiation and poisons, to study the human genome, to learn more about how viruses work, and played a crucial role in the development of the polio vaccine.

In July 2021, the family of Henrietta Lacks has hired a prominent civil rights attorney, who says he plans to seek compensation for them from big pharmaceutical companies across the country that made fortunes off medical research with her famous cancer cells…The legal team is investigating lawsuits against as many as 100 defendants, mostly pharmaceutical companies, but they haven’t ruled out a case against the Johns Hopkins Hospital.’

Excerpts from Family of Henrietta Lacks hires civil rights attorney to seek funds over famous cells, Washington Post, July 31, 2021, and https://www.hopkinsmedicine.org/henriettalacks/

Decoding Brain Signals with a Credit Card

A man unable to speak after a stroke has produced sentences through a system that reads electrical signals from speech production areas of his brain, researchers reported in July 2021…The participant had a stroke more than a decade ago that left him with anarthria—an inability to control the muscles involved in speech. Because his limbs are also paralyzed, he communicates by selecting letters on a screen using small movements of his head, producing roughly five words per minute.

To enable faster, more natural communication, neurosurgeon Edward Chang of the University of California, San Francisco, tested an approach that uses a computational model known as a deep-learning algorithm to interpret patterns of brain activity in the sensorimotor cortex, a brain region involved in producing speech . The approach has so far been tested in volunteers who have electrodes surgically implanted for non-research reasons such as to monitor epileptic seizures.

In the new study, Chang’s team temporarily removed a portion of the participant’s skull and laid a thin sheet of electrodes smaller than a credit card directly over his sensorimotor cortex. To “train” a computer algorithm to associate brain activity patterns with the onset of speech and with particular words, the team needed reliable information about what the man intended to say and when….So the researchers repeatedly presented one of 50 words on a screen and asked the man to attempt to say it on cue. Once the algorithm was trained with data from the individual word task, the man tried to read sentences built from the same set of 50 words, such as “Bring my glasses, please.” 


With the new approach, the man could produce sentences at a rate of up to 18 words per minute, Chang says…The system isn’t ready for use in everyday life, Chang notes. Future improvements will include expanding its repertoire of words and making it wireless, so the user isn’t tethered to a computer roughly the size of a minifridge.

Excerpts from Kelly Servick, Brain signals ‘speak’ for person with paralysis, Science, July 16, 2021

The Uses and Abuses of Alexa

Excerpts from the Interview with Robert Lewis Shayon author of “The Voice Catchers: How Marketers Listen In to Exploit Your Feelings, Your Privacy, and Your Wallet” published  at the Pennsylvania Gazette July 2021

There is  emerging industry that is deploying immense resources and breakthrough technologies based on the idea that voice is biometric—a part of your body that those in the industry believe can be used to identify and evaluate you instantly and permanently. Most of the focus in voice profiling technology today is on emotion, sentiment, and personality. But experts tell me it is scientifically possible to tell the height of a person, the weight, the race, and even some diseases. There are actually companies now trying to assess, for example, whether you have Alzheimer’s based upon your voice…

The issue is that this new voice intelligence industry—run by companies you know, such as Amazon and Google, and some you don’t, such as NICE and Verint—is sweeping across society, yet there is little public discussion about the implications. The need for this conversation becomes especially urgent when we consider the long-term harms that could result if voice profiling and surveillance technologies are used not only for commercial marketing purposes, but also by political marketers and governments, to say nothing of hackers stealing data.

There are hundreds of millions of smart speakers out there, and far more phones with assistants, listening to you and capturing your voice. Voice technology already permeates virtually every important area of personal interaction—as assistants on your phone and in your car, in smart speakers at home, in hotels, schools, even stores instead of salespeople. 

Amazon and Google have several patents centering around voice profiling that describe a rich future for the practice…But consider the downside: we could be denied loans, have to pay much more for insurance, or be turned away from jobs, all on the basis of physiological characteristics and linguistic patterns that may not reflect what marketers believe they reflect.

The first thing to realize is that voice assistants are not our friends no matter how friendly they sound. I argue, in fact, that voice profiling marks a red line for society that shouldn’t be crossed.

The Dirty Secrets of Clean Energy

Solar panel installations are surging in the U.S. and Europe as Western countries seek to cut their reliance on fossil fuels. But the West faces a conundrum…: Most of them are produced with energy from carbon-dioxide-belching, coal-burning plants in China.

Concerns are mounting in the U.S. and Europe that the solar industry’s reliance on Chinese coal will create a big increase in emissions in the coming years as manufacturers rapidly scale up production of solar panels to meet demand. That would make the solar industry one of the world’s most prolific polluters, analysts say, undermining some of the emissions reductions achieved from widespread adoption. For years, China’s low-cost, coal-fired electricity has given the country’s solar-panel manufacturers a competitive advantage, allowing them to dominate global markets.

Chinese factories supply more than three-quarters of the world’s polysilicon, an essential component in most solar panels, according to industry analyst Johannes Bernreuter…Producing a solar panel in China creates around twice as much carbon dioxide as making it in Europe, said Fengqi You, professor of energy systems engineering at Cornell University.

Some Western governments and corporations are attempting to shift the solar industry away from coal…These policies would also help rebuild the West’s solar industry, which has withered under competition from higher-polluting Chinese producers, Western executives say…China has pushed down the price of panels so sharply that solar power is now less expensive than electricity generated from fossil fuels in many markets around the world. Imports of the solar cells that make up the panels are also flooding into the U.S. and Europe. Those shipments are either coming directly from China or contain key components made in China. “If China didn’t have access to coal, then solar power wouldn’t be cheap now,” said Robbie Andrew, a senior researcher at the Center for International Climate Research in Oslo. “Is it OK that we’ve had this huge bulge of carbon emissions from China because it allowed them to develop all these technologies really cheaply? We might not know that for another 30 to 40 years.”

Excerpts from Matthew Dalton, Behind the Rise of U.S. Solar Power, a Mountain of Chinese Coal, July 31, 2021

From Pegasus to Pariah: Israeli Spying is Not Sexy

When international news organizations revealed that at least ten governments had used Pegasus, a powerful software tool created by Israel’s NSO Group, to hack into the smartphones of thousands of people around the world, including politicians, human-rights activists and journalists, the Israeli government shrugged. None of its ministers has publicly commented….Israeli defence exporters privately expressed ridicule. “Arms companies can’t keep track of every rifle and bullet they sell to legitimate customers,” said one. “Why should we have higher expectations when it comes to software?…Israeli spying is a sexy subject and these reports are the price for doing business.”

Countries that have received Pegasus software include Brazil, Hungary and India, along with Sunni Arab regimes with whom Israel recently established diplomatic relations: Bahrain, Morocco and the United Arab Emirates. Saudi Arabia, a fellow enemy of Iran, is listed, too. “Deals on cyber-surveillance are the kind of sweetener you can throw into a diplomatic package with a foreign leader,” says a former NSO consultant.

Excerpts from Let Pegasus fly: Israel is loth to regulate its spyware exports, Economist, July 31, 2021

Sponsors of War: Captagon at $25 Better than Alcohol

In Saudi Arabial party-goers prefer Captagon pills (to alcohol), nowadays the Gulf’s favorite drug, at $25 a pop. Part of the amphetamine family, it can have a similar effect to Viagra—and conquers sleep. “With one pill,” says a raver, “we can dance all weekend.”

For Syria’s president, Bashar al-Assad, the drug has become a boon—at least in the short run. His country has become the world’s prime pusher of Captagon. As the formal economy collapses under the burden of war, sanctions and the predatory rule of the Assads, the drug has become Syria’s main export and source of hard currency. The Centre for Operational Analysis and Research (COAR), a Cyprus-based consultancy, reckons that last year authorities elsewhere seized Syrian drugs with a street value of no less than $3.4bn. That compares with Syria’s largest legal export, olive oil, which is worth some $122m a year. The drug is financing the central government, says Ian Larson, who wrote a recent report on the subject for COAR…

Chemical plants in the cities of Aleppo and Homs have been converted into pill factories. In the Gulf the mark-up for pills can be 50 times their cost in Syria. Smugglers hide them in shipments of paper rolls, parquet flooring and even pomegranates. Saudi princes use private jets to bring the stuff in

For the Syrians left behind, drugs may destroy what remains of society after a decade of civil war. “Young men who haven’t been killed, exiled or jailed are addicts,” says a social worker in Sweida, a city held by the Assads in the south. 

Excerpt from Pop a pill, save a dictator: Syria has become a narco-state, Economist, July 19, 2021

The Necessity of the Evil: Breeding Monkeys to Experiment with their Brains

In 2014 a German animal-rights group called soko Tierschutz planted a caretaker in the laboratory of Nikos Logothetis, a neuroscientist working at the Max Planck Institute in Tübingen. The infiltrator secretly filmed around 100 hours of lab work over six months, some of which was later broadcast on German television. The footage showed monkeys with metal plugs grafted into their skulls—ports which researchers used to probe and study their brains. One vomits on camera, apparently as a result of damage done to blood vessels in its brain while electrodes were inserted.

The impact was immediate and lasting. Around 800 people massed outside Dr Logothetis’s lab, demanding an end to his work with monkeys. He was called a monster and a murderer. He and his family received death threats. He faced charges (which were dismissed) of breaking German animal-welfare laws. So in 2020 he announced that his laboratory would move to China. He is building a new research facility in Shanghai, working with Mu-ming Poo of the Institute of Neuroscience, one of China’s leading brain researchers, who was on the team responsible for first cloning a genetically modified primate in 2018. 

In East Asia, particularly China and Japan, the volume of research carried out on monkeys is growing. Most of this has been driven by creating and expanding domestic primate-research programmes. Leading institutions such as the Shanghai Institute of Neuroscience focus on breeding monkeys whose genomes have been modified in order to make their physiology more like humans’ and so more useful for studying human diseases.

The social nature of monkeys and their intelligence—which is why they are so useful for research—also help explain why such experiments are so troubling. Research which relies on them is simultaneously more valuable and more ethically fraught than research on other creatures. Neuroscientists in particular consider monkeys irreplaceable. The brain is so poorly understood that looking at its activity in living creatures is the only way to fathom how it works, says Dr Treue. Dissecting dead brains produces only limited information. Brains only really make sense when active. Few humans would volunteer to have electrodes implanted in their brains. The consent of any who did would be suspect….

The list of medical advances which rest on animal experimentation is long, but Dr Bennett points to one in particular that could not have happened without monkeys: prosthetic limbs which “talk” to the brain, known as neural prosthetics. The brains of non-human primates are sufficiently similar to ours to allow for a prosthetic developed on monkeys to be used by humans. They are still rare, but prototypes have restored the power to interact with the physical world to people who have lost the use of their own limbs.

China is becoming the global centre for the kind of neuroscience that uses monkeys. And the stakes are getting higher. Neurological disorders are the world’s second-leading cause of death after heart disease. Conditions such as Parkinson’s disease, Alzheimer’s and dementia are becoming more burdensome as the world gets greyer. Meanwhile technology companies hope that an understanding of the brain can help them build cleverer software. Generals think advances in neuroscience can help them build better weapons.

The pandemic has bolstered China’s position. In February 2020 China’s government banned the export of all wild animals in an effort to tamp down the wildlife trade that is thought to be a vector for the zoonotic spillover of pathogens such as sars-cov-2, the virus that causes covid-19. Exceptions for research are subject to the government’s approval. Until recently the majority of monkeys used in America were imported from farms in China. But export controls have created shortages. China has decided that research primates are a strategic resource. Exports are unlikely to revert to their previous levels…America and Europe may find themselves outsourcing the creation of knowledge that relies on research methods they consider unethical. In future they may have to choose between relying on the fruits of that knowledge, such as treatments for neurological disorders, and rejecting them in principle….

Excerpt from Money Business: Attitudes towards experimenting on monkeys are diverging, Economist, July 24, 2021

How Does it Feel? Watching People Die from the Cold Comfort of a Computer Chair

A former intelligence analyst was sentenced on July 27, 2021 to nearly four years in prison after pleading guilty to giving classified information about the U.S. drone program to a reporter. Daniel Hale, a former airman in the U.S. Air Force assigned to intelligence operations and a onetime employee of the defense contractor Leidos, was given a 45-month sentence as well as three years supervised release by a Virginia federal judge. Mr. Hale was accused of giving numerous documents marked “Secret” and “Top Secret” to a journalist in 2014…

Mr. Hale has said he leaked the material because the public needed to know the full details about the U.S. drone program, which he believed led to unjustified civilian casualties and wasn’t being described forthrightly by political leaders…In a letter filed with the court  in advance of his sentencing, Mr. Hale recalled the first drone strike he witnessed against a handful of men drinking tea in Paktika province, Afghanistan—a group that included one suspected combatant and his companions.

“I could only look on as I sat by and watched through a computer monitor when a sudden, terrifying flurry of Hellfire missiles came crashing down,” Mr. Hale wrote. “Since that time and to this day, I continue to recall several such scenes of graphic violence carried out from the cold comfort of a computer chair. Not a day goes by that I don’t question the justification of my actions.”

Excerpts from Ex-Military Analyst Gets 45-Month Sentence for Leaking Classified Drone Information, WSJ, July 28, 2021

The Trillion Dollar Mess: Taking Down the Oil Infrastructure

Some of the world’s largest oil companies have been ordered to pay part of a $7.2 billion tab to retire hundreds of aging wells in the Gulf of Mexico that they used to own, capping a case that legal experts say is a harbinger of future battles over cleanup costs.

A federal judge ruled last month that Fieldwood Energy a privately held company that currently controls the old wells and had sought bankruptcy protection, could pass on hundreds of millions of dollars in environmental liabilities to prior owners and insurers of the wells as part of its reorganization plan. Exxon Mobil,  BP, Hess , Royal Dutch Shell and insurance companies had objected to the plan. The dispute, litigated for months in federal bankruptcy court in Houston, centered over who should bear the enormous costs of capping and abandoning wells, primarily in the shallow waters of the Gulf of Mexico where an oil spill could wreak havoc. The companies could still appeal the ruling…

Jason Bordoff, founding director of Columbia University’s Center for Global Energy Policy said that the expenses to decommission oil-and-gas infrastructure world-wide will in the trillions of dollars. “Who bears the costs?” he said. “There will be people who want to pass the buck.”

BP and Shell have pledged to reduce their carbon emissions to zero by 2050. To accomplish that, those companies will have to sell off some oil-and-gas wells to get their related emissions off their books, say energy analysts. But such asset sales present huge risks for big oil companies because many of the buyers are smaller, privately held firms, like Fieldwood, which may not have the financial wherewithal to bear cleanup costs, Ms. Usoro said. This was Fieldwood’s second bankruptcy in two years.

These smaller companies buy the wells for pennies on the dollar and assume the cleanup expenses in the hope that they can reduce the assets’ cost structure and squeeze out the remaining barrels of oil profitably. “I’ve always questioned this business model,” said Ms. Usoro. “Are these guys able to take care of the end of life?”

Excerpts Christopher M. Matthews, Oil Companies Are Ordered to Help Cover $7.2 Billion Cleanup Bill in Gulf of Mexico, WSJ, July 6, 2021

From Natural Landmark to an Oil Spill Wasteland

Mohammad Abubakar, Minister of Environment  disclosed in July 2021 that Nigeria recorded 4,919 oil spills between 2015 to March 2021 and lost 4.5 trillion barrels of oil to theft in four years.

Mr Abubakar disclosed this at a Town Hall meeting in Abuja, organised by the Ministry of Information and Culture, on protecting oil and gas infrastructure. “The operational maintenance is 106, while sabotage is 3,628 and yet to be determined 70, giving the total number of oil spills on the environment to 235,206 barrels of oil. This is very colossal to the environment.

“Several statistics have emphasised Nigeria as the most notorious country in the world for oil spills, loosing roughly 400,000 barrels per day. “The second country is followed by Mexico that has reported only 5,000 to 10,000 barrel only per day, thus a difference of about 3, 900 per cent.

“Attack on oil facilities has become the innovation that replaced agitations in the Niger Delta region against perceived poor governance and neglect of the area.

Excerpts from Nigeria Records 4,919 Oil Spills in 6 Years, 4.5trn Barrels Stolen in 4 Years, AllAfrica.com, July 6, 2021

Yummy Plastics

“From Waste to Food: A Generator of Future Food” by Ting Lu and Stephen Techtmann, won the Merck 1 million prize.  It concerns an efficient, economical and versatile technology that converts wastes such as end-of-life plastics into edible foods. These foods contain all the required nutrition, are non-toxic, provide health benefits, and additionally allow for personalization needs. This technology promises to transform waste streams into nutritious food supplements, thus solving the two problems of increasing food scarcity and plastic waste simultaneously.

The core of the proposed technology is to harness synthetic microbial consortia – a combination of natural and rationally engineered microorganisms – in order to efficiently convert waste into food. The project will comprise four research goals: conversion from polyethylene terephthalate (PET) to protein powder (goal 1), augmentation of biosafety for food and for the environment (goal 2), introduction of nutritional and health-promoting contents (goal 3), and expansion of the technology to include additional plastics or other types of waste (goal 4). The proposed work will establish a transformative basis for food generation.

  • Excerpts from Future Insight Prize, Merck Press Release, July 13, 2021

Who’s Not Giving a Damn about Nuclear Fallout

On May 1st 1962, French officials in Algeria told Algerians to leave their homes in the southern city of Tamanrasset. It was just a precaution. France was about to detonate an atom bomb, known as Beryl, in the desert some 150km away. The blast would be contained underground. Two French ministers were there to witness the test. But things did not go as planned. The underground shaft at the blast site was not properly sealed. The mountain (Taourirt Tan Afella) above the site cracked and black smoke spread everywhere. The ministers (and everyone else nearby) ran as radioactive particles leaked into the air. Nevertheless, in the months and years after, locals would go to the area to recover scrap metal from the blast for use in their homes.

France carried out 17 nuclear tests in Algeria between 1960 and 1966. Many took place after Algeria’s independence from France in 1962, under an agreement between the two countries. There are no good data on the effects of the explosions on public health and the environment, but locals note that some people living near the test sites have suffered cancers and birth defects typically caused by radiation. The sites, say activists, are still contaminated.

Taourirt is a group dedicated to identifying the location of nuclear waste left by France. All that exists in the public domain is an inventory of the contaminated materials buried somewhere in the desert. (The known test sites are poorly secured by the Algerian government.) Others are pressing France to clean up the sites and compensate victims. There has been some progress in this direction, but not enough, say activists.

In 2010 the French parliament passed the Morin law, which is meant to compensate those with health problems resulting from exposure to the nuclear tests. (France carried out nearly 200 tests in French Polynesia, too.) But the law only pertains to certain illnesses and requires claimants to show they were living near the tests when they took place. This is difficult enough for Algerians who worked for the French armed forces: few had formal contracts. It is almost impossible for anyone else. Only a small fraction of the claims filed have come from Algeria.

Excerpts from Algeria and France: Lingering Fallout, Economist, June 26, 2021

How to Detect Humans Under-the-Ground: Surveillance Best

Tunnel-digging in times of conflict has a long history. These days, secret tunnels are used to move weapons and people between Gaza and Egypt, and by Kurdish militia operating on the frontier between Syria and Turkey. But the same principle applies. What happens underground is hard for the enemy to observe. Digging for victory is therefore often a good idea…

That, though, may be about to change. Real-time Subsurface Event Assessment and Detection (RESEAD), a project being undertaken at Sandia National Laboratories in New Mexico, uses novel sensors to make accurate maps of what is happening underground. This will, no doubt, have many civilian applications. But Sandia is principally a weapons lab…The sensors themselves are a mixture of accelerometers, which pick up vibrations, current detectors, which measure the electrical-resistance of rocks and soil, and subsurface radar…

Exactly how RESEAD sensors would be put in place in a zone of active conflict remains to be seen. But the system could certainly be useful for other sorts of security. In particular, America has a problem with tunnels under its border with Mexico being used to smuggle drugs and migrants into the country. RESEAD would be able to detect existing tunnels and nip new ones in the bud. 

Excerpts from Tunnel Vision: How to detect the enemy when they are underground, Economist, June 24, 2021

How to Spy on Your Own Country for $1.25 per day

San Francisco-based Premise Data Corp. pays users, many of them in the developing world, to complete basic tasks for small payments. Typical assignments involve snapping photos, filling out surveys or doing other basic data collection or observational reporting such as counting ATMs or reporting on the price of consumer goods like food.

About half of the company’s clients are private businesses seeking commercial information, Premise says. That can involve assignments like gathering market information on the footprint of competitors, scouting locations and other basic, public observational tasks. Premise in recent years has also started working with the U.S. military and foreign governments, marketing the capability of its flexible, global, gig-based workforce to do basic reconnaissance and gauge public opinion.

Premise is one of a growing number of companies that straddle the divide between consumer services and government surveillance and rely on the proliferation of mobile phones as a way to turn billions of devices into sensors that gather open-source information useful to government security services around the world.

Premise launched in 2013,, As of 2019, the company’s marketing materials said it has 600,000 contributors operating in 43 countries, including global hot spots such as Iraq, Afghanistan, Syria and Yemen. According to federal spending records, Premise has received at least $5 million since 2017 on military projects—including from contracts with the Air Force and the Army and as a subcontractor to other defense entities. In one pitch on its technology, prepared in 2019 for Combined Joint Special Operations Task Force-Afghanistan, Premise proposed three potential uses that could be carried out in a way that is “responsive to commander’s information requirements”: gauge the effectiveness of U.S. information operations; scout and map out key social structures such as mosques, banks and internet cafes; and covertly monitor cell-tower and Wi-Fi signals in a 100-square-kilometer area. The presentation said tasks needed to be designed to “safeguard true intent”—meaning contributors wouldn’t necessarily be aware they were participating in a government operation…

 Another Premise document says the company can design “proxy activities” such as counting bus stops, electricity lines or ATMs to provide incentives for contributors to move around as background data is gathered. Data from Wi-Fi networks, cell towers and mobile devices can be valuable to the military for situational awareness, target tracking and other intelligence purposes. There is also tracking potential in having a distributed network of phones acting as sensors, and knowing the signal strength of nearby cell towers and Wi-Fi access points can be useful when trying to jam communications during military operations. Nearby wireless-network names can also help identify where a device is, even if the GPS is off, communications experts say.

Mr. Blackman said gathering open-source data of that nature doesn’t constitute intelligence work. “Such data is available to anyone who has a cellphone,” he said. “It is not unique or secret.” Premise submitted a document last July to the British government describing its capabilities, saying it can capture more than 100 types of metadata from its contributors’ phones and provide them to paying customers—including the phone’s location, type, battery level and installed apps. 

Users of the Premise app aren’t told which entity has contracted with the company for the information they are tasked with gathering. The company’s privacy policy discloses that some clients may be governments and that it may collect certain types of data from the phone, according to a spokesman…Currently the app assigns about five tasks a day to its users in Afghanistan, according to interviews with users there, including taking photos of ATMs, money-exchange shops, supermarkets and hospitals. One user in Afghanistan said he and others there are typically paid 20 Afghani per task, or about 25 cents—income for phone and internet services. A few months ago, some of the tasks on the site struck him as potentially concerning. He said the app posted several tasks of identifying and photographing Shiite mosques in a part of western Kabul populated largely by members of the ethnic Hazara Shiite minority. The neighborhood was attacked several times by Islamic State over the past five years…. Because of the nature and location of the tasks in a hot spot for terrorism, the user said he thought those tasks could involve spying and didn’t take them on.

Excerpt from Byron Tau, App Users Unwittingly Collect Intelligence, WSJ,  June 25, 2010

Green Con Artists and their Moneyed Followers

Green investing has grown so fast that there is a flood of money chasing a limited number of viable companies that produce renewable energy, electric cars and the like. Some money managers are stretching the definition of green in how they deploy investors’ funds. Now billions of dollars earmarked for sustainable investment are going to companies with questionable environmental credentials and, in some cases, huge business risks. They include a Chinese incinerator company, an animal-waste processor that recently settled a state lawsuit over its emissions and a self-driving-truck technology company.

One way to stretch the definition is to fund companies that supply products for the green economy, even if they harm the environment to do so. In 2020 an investment company professing a “strong commitment to sustainability” merged with the operator of an open-pit rare-earth mine in California at a $1.5 billion valuation. Although the mine has a history of environmental problems and has to bury low-level radioactive uranium waste, the company says it qualifies as green because rare earths are important for electric cars and because it doesn’t do as much harm as overseas rivals operating under looser regulations…

When it comes to green companies, “there just isn’t enough” to absorb investor demand…In response, MSCI has looked at other ways to rank companies for environmentally minded investors, for example ranking “the greenest within a dirty industry”….

Of all the industries seeking green money, deep-sea mining may be facing the harshest environmental headwinds. Biologists, oceanographers and the famous environmentalist David Attenborough have been calling for a yearslong halt of all deep-sea mining projects. A World Bank report warned of the risk of “irreversible damage to the environment and harm to the public” from seabed mining and urged caution. More than 300 deep-sea scientists released a statement today calling for a ban on all seabed mining until at least 2030. In late March 2021, Google, battery maker Samsung SDI Co., BMW AG and heavy truck maker Volvo Group announced that they wouldn’t buy metals from deep-sea mining.

[However the The Metals Company (TMC) claims that deep seabed mining is green].

Excerpts from Justin Scheck et al, Environmental Investing Frenzy Stretches Meaning of ‘Green’, WSJ, June 24, 2021

Junk: the Engine of Green Growth

“Plastic waste is not just a global crisis that threatens economic recovery, climate, and nature. It is also an investment opportunity that can flip it from a scourge into an engine for economic development,” said Rob Kaplan, who founded Circulate Capital in 2017. Initially the firm sought to back companies in India and Southeast Asia, such as recycling or waste-sorting companies, that help reduce the amount of plastic waste that winds up in the ocean.

In 2019 it raised a $106 million debt and project finance fund, Circulate Capital Ocean Fund, backed by a handful of large multinational corporations that include Coca-Cola, Danone,  Procter & Gamble,  and Unilever…Circulate is one of a small but growing number of firms investing in companies that contribute to what they call the circular economy, a business model that seeks to eliminate waste that organizations produce, continuously reuse products and materials and regenerate natural systems.

An estimated 30 private-market funds, including private-equity, venture and debt strategies focused on the circular economy in the first half of 2020, up from just three in 2016….A number of large multinational corporations are funding these firms’ efforts as part of a broader push to reduce both the overall waste their own companies produce and the amount of virgin materials they use.

Unilever, which has backed funds managed by Circulate and New York-based Closed Loop Partners, aims to cut in half the amount of virgin plastic it uses by 2025 and plans to collect and process more plastic packaging than it sells. Coca-Cola, also a backer of Circulate’s Ocean fund, aims to make all of its global packaging recyclable by 2025 and to use at least 50% of recycled packaging material by 2030, among other goals.

Excerpt from Laura Kreutzer, Growth Firms See Plastic Waste as an Investment Opportunity, WSJ, June 23, 2021
 

Who Benefits from Climate Change? Nuclear Ice-Breakers

Melting ice in the Arctic Ocean is bringing a centuries-old dream closer to reality for Russia: a shipping passage through its northern waters that could put it at the center of a new global trade shipping route…A host of issues remain, such as icebreaker escort tariffs, transit costs and navigational unpredictability in the Arctic Circle. But an opening of the passage (the Northern Sea Route-NSR) would put Russia at the center of a new global shipping route for energy supplies and cargo. Moscow says it has the right to restrict passage and set prices for transit, and the route would also give it an important bargaining chip in its ties with China—one of the biggest beneficiaries of the 3,500-mile long passage…

So far this year, traffic regulated by the Russian government is up 11% from the record 1,014 trips made in 2020….The traffic in 2020 was up more than 25% from 2019 with 33 million tons of cargo, oil and liquefied natural gas, and Moscow expects that number to grow. Russian President Vladimir Putin has said he wants cargo to double to 80 million tons by 2024.The State Atomic Energy Corporation, or Rosatom, which manages a fleet of nuclear icebreakers that can cut through ice up to 10-feet thick, is drafting plans to station personnel along the route, boost port infrastructure along the shipping lane to allow for loading, and provide navigational and medical aid for ships. Rosatom has already stationed one floating nuclear-power plant on the route, to help with onshore construction…

 “There is a certain interest in the NSR from the Chinese Navy for strategic mobility to move troops between Pacific to Atlantic theaters,” said Vasily Kashin, an expert on Russia-China relations at the Moscow-based Higher School of Economics. “And they do have this interest in establishing their presence on the Atlantic.”

Russia has already boosted its military presence in the Arctic and along the Northern Sea Route, but the U.S. says Moscow’s legal jurisdiction doesn’t extend to the waters where the Kremlin is working to develop the passage….Russian authorities are still determining the transparent tariff duties, both for transit and for icebreaker escorts along the passage, that are key to attracting both investment and cargo.  Traffic on the route, however, is already guaranteed by Russia’s increasing production of Arctic oil and gas. The majority of vessels carry LNG from the port of Sabetta, where gas from Russian energy giant Novatek’s Yamal project is loaded for consumers in Europe or Asia. Crude from Rosneft’s planned Vostok oil field project will also be sent along the route when it comes onstream….

Excerpts from Thomas Grove, Melt Boosts Russia Shipping Arctic,  WSJ, June 24, 2021

Save Time and Money but Destroy Soil and Oceans

The images of swaths of garbage floating on the oceans’ surface have become a rallying call to address plastic pollution, but there is more to this challenge than meets the eye. While plastics and microplastics – items smaller than 5 mm – accumulate and impact marine environments, much of the problem is rooted in land contamination. Land-based plastic pollution, which often feeds into the oceans, is estimated to be at least four times higher than what is in the oceans, according to a study published in Global Change Biology. 

“Soil is the main source of microplastics reaching oceans through soil erosion and surface runoff,”  Plastics settle in soil through disposal in landfills, as well as through the use of plastic-sheets in agriculture or application of microplastic contaminated compost. “Direct disposal of plastics to ocean is relatively less pronounced compared to the transfer of microplastics from land. Microplastics, lighter than soil particles, such as sand, silt and clay, are easily lost to waterways,”…

“We contribute to plastic pollution through indiscriminate disposal of plastics in landfills and use of microbeads in cosmetics and microfibers in textiles. There are efforts to produce biodegradable plastics, which may provide some solution to plastic pollution, but bioplastic may not be the silver bullet to manage plastic pollution.” Commonly used biodegradable bioplastics “retain their mechanical integrity under natural conditions, potentially causing physical harm if they are ingested by marine or terrestrial animals.” “The fate of biodegradable bioplastics in natural and engineered environments could be potentially problematic. Methane is a product of biodegradation in anaerobic environments in landfills.” These bioplastics, furthermore, require high temperatures, controlled aeration and humidity to degrade completely.

Due to their small size, microplastics, especially nanoplastics resulting from the degradation of microplastic, can enter organisms’ internal organs, where they could potentially transfer contaminants attached to them. These can include persistent organic pollutants, like polychlorinated biphenyls (PCBs), as well as trace metals like mercury and lead. The plastics and pollutants that accumulate on or in them enter the food chain and can eventually be transferred to humans, causing growing food safety concerns.

The Joint FAO/IAEA Centre’s laboratories are equipped to research the presence of microplastics in food. “Techniques such as energy dispersive X-ray spectroscopy and infrared and Raman spectroscopy can be applied to screen for plastics in foods, enabling risk assessment and management,” said Andrew Cannavan, Head of the Joint Centre’s Food and Environmental Protection Section. 

Excerpt from Joanne Liou Out of Sight but not out of Mind: IAEA and FAO Launch R&D to Identify Sources, Impacts of Microplastic Pollution in Soil, IAEA Press Release, July 2, 2021

The Starving Manatees of Florida

Florida manatees are dying at a record pace, prompting a federal investigation and calls to relist the aquatic mammals as endangered. So far this year, 800 manatees have died in Florida, more than double the average for the same period over the past five years, according to state data. Their estimated population numbered 5,733 in 2019, the most recent year in which wildlife officials conducted a count….

At the heart of the problem is deteriorating water quality that has depleted the seagrasses that manatees eat, researchers say. It highlights a broader threat to other marine species, they say, and to Florida’s economy, which relies heavily on visitors drawn to the state’s coastline. Manatees, which typically measure about 10 feet in length and weigh more than 1,000 pounds, have faced numerous perils in recent years, including collisions with watercraft and exposure to red tide, a harmful algal bloom. Now, researchers say, they are experiencing starvation.

Excerpt from Arian Campo-Flores, Manatees Are Dying in Florida, and the U.S. Wants to Know Why, WSJ, June 23, 2021

How to Remove Carbon from 30 Million Cars Every Single Year

Gabon is the first country in Africa to receive results-based payments for reduced emissions from deforestation and forest degradation. The first payment is part of the breakthrough agreement between Gabon and the multi-donor UN-hosted Central African Forest Initiative’s (CAFI) in 2019 for a total of $150 million over ten years.

At a high-level event organised on Tuesday, Sveinung Rotevatn, Norway’s Minister of Climate and Environment said on behalf of CAFI: “This is the first time an African country has been rewarded for reducing forest-related emissions at the national level.  It is extremely important that Gabon has taken this first step. The country has demonstrated that with strong vision, dedication and drive, emissions reductions can be achieved in the Congo Basin forest.” Gabon is leading the way in maintaining its status of High Forest Cover Low Deforestation (HFLD) country. ..

Gabon has preserved much of its pristine rainforest since the early 2000s in creating 13 national parks, one of which is listed UNESCO World Heritage Site. Its forests absorb a total of 140 million tons of CO2 every year, the equivalent of removing 30 million cars from the road globally.

Gabon has also made significant advances in sustainable management of its timber resources outside the parks, with an ambition to ensure that all forest concessions are FSC-certified. Forest spans over 88% of its territory, and deforestation rates have been consistently low (less than 0.08%) since 1990. Gabon’s forests house pristine wildlife and megafauna including 60% of the remaining forest elephants, sometimes called the “architects” or “gardeners” of the forest for their roles in maintaining healthy ecosystems and recently listed as critically endangered.

Excerpt from Gabon receives first payment for reducing CO2 emissions under historic CAFI agreement, Central African Forest Initiative, June 22, 2021

Do It 100 Trillion Times Faster! Race Quantum Supremacy

The Defense Advanced Research Projects Agency (DARPA) initiative is looking in a full picture of how quantum computing will shape the next 30 years of computing.  In April 2021, the agency embarked on a new initiative to support the development of quantum computers. Called the Quantum Benchmarking program, the effort aims to establish key quantum-computing metrics and then make those metrics testable.

“It’s really about developing quantum computing yardsticks that can accurately measure what’s important to focus on in the race toward large, fault-tolerant quantum computers,” Joe Altepeter, program manager in DARPA’s Defense Sciences Office, said in an agency announcement. Historically, the U.S. has invested heavily in quantum science research, but it has not had a full national strategy to coordinate those efforts. The December 2018 National Quantum Initiative Act kickstarted the federal approach to accelerate quantum research and development for an initial five-year period.

Developing metrics would also help quantify and understand how transformative large quantum computers could be. ..The 2018 legislation also established various research centers and partnerships for quantum computing, such as the Quantum Economic Development Consortium comprising government, private and public entities. Under these partnerships, researchers have explored how quantum computing interacts with other technologies, like artificial intelligence, to impact health care. “One of the applications we’re excited about is enabling drug discovery. We want to investigate if we can help the pharmaceuticals industry,” said Altepeter…

“[Quantum computers] could be transformative and the most important technology we’ve ever seen, or they can be totally useless and these gigantic paperweights that are sitting in labs across the country. That window of potential surprise is the key. That’s the kind of surprise that DARPA cannot allow to exist,” said Altepeter. “It’s our job to make sure that we eliminate those kinds of surprises — hence why we wanted to do this program.”

Excerpts from Sarah Sybert, DARPA Aims for Quantum-Computing Benchmarks in New Program, https://governmentciomedia.com/, June 21, 2021

A team of Chinese scientists has developed the most powerful quantum computer in the world, capable of performing at least one task 100 trillion times faster than the world’s fastest supercomputers…In 2019, Google said it had built the first machine to achieve “quantum supremacy,” the first to outperform the world’s best supercomputers at quantum calculation. In December 2020, a Chinese team, based at the University of Science and Technology of China in Hefei, reported their quantum computer, named Jiuzhang, is 10 billion times faster than Google’s. Assuming both claims hold up, Jiuzhang would be the second quantum computer to achieve quantum supremacy anywhere in the world.

The Reckless Gambles that Changed the World: darpa

Using messenger RNA to make vaccines was an unproven idea. But if it worked, the technique would revolutionize medicine, not least by providing protection against infectious diseases and biological weapons. So in 2013 America’s Defense Advanced Research Projects Agency (DARPA) gambled. It awarded a small, new firm called Moderna $25m to develop the idea. Eight years, and more than 175m doses later, Moderna’s covid-19 vaccine sits alongside weather satellites, GPS, drones, stealth technology, voice interfaces, the personal computer and the internet on the list of innovations for which DARPA can claim at least partial credit.

It is the agency that shaped the modern world, and this success has spurred imitators. In America there are ARPAS for homeland security, intelligence and energy, as well as the original defense one…Germany has recently established two such agencies: one civilian (the Federal Agency for Disruptive Innovation, or SPRIN-d) and another military (the Cybersecurity Innovation Agency). Japan’s interpretation is called Moonshot R&D. 

As governments across the rich world begin, after a four-decade lull, to spend more on research and development, the idea of an agency to invent the future (and, in so doing, generate vast industries) is alluring and, the success of DARPA suggests, no mere fantasy. In many countries there is displeasure with the web of bureaucracy that entangles funding systems, and hope that the DARPA model can provide a way of getting around it. But as some have discovered, and others soon will, copying DARPA requires more than just copying the name. It also needs commitment to the principles which made the original agency so successful—principles that are often uncomfortable for politicians.

On paper, the approach is straightforward. Take enormous, reckless gambles on things so beneficial that only a handful need work to make the whole venture a success. As Arun Majumdar, founding director of ARPA-e, America’s energy agency, puts it: “If every project is succeeding, you’re not trying hard enough.” Current (unclassified) DAROA projects include mimicking insects’ nervous systems in order to reduce the computation required for artificial intelligence and working out how to protect soldiers from the enemy’s use of genome-editing technologies.

The result is a mirror image of normal R&D agencies. Whereas most focus on basic research, DARPA builds things. Whereas most use peer review and carefully selected measurements of progress, DARPA strips bureaucracy to the bones (the conversation in 1965 which led the agency to give out $1m for the first cross-country computer network, a forerunner to the internet, took just 15 minutes). All work is contracted out. DARPA has a boss, a small number of office directors and fewer than 100 program managers, hired on fixed short-term contracts, who act in a manner akin to venture capitalists, albeit with the aim of generating specific outcomes rather than private returns.

Excerpt from Inventing the future: A growing number of governments hope to clone America’s DARPA, Economist, June 5, 2021

Can the Switzerland of Chips Crush the Global Economy?

Taiwan Semiconductor Manufacturing Co (TSMC) has emerged over the past several years as the world’s most important semiconductor company, with enormous influence over the global economy. With a market cap of around $550 billion, it ranks as the world’s 11th most valuable company. Its dominance leaves the world in a vulnerable position, however. As more technologies require chips of mind-boggling complexity, more are coming from this one company, on an island that’s a focal point of tensions between the U.S. and China, which claims Taiwan as its own.

The situation is similar in some ways to the world’s past reliance on Middle Eastern oil, with any instability on the island threatening to echo across industries….Being dependent on Taiwanese chips “poses a threat to the global economy,” research firm Capital Economics recently wrote. Its technology is so advanced, Capital Economics said, that it now makes around 92% of the world’s most sophisticated chips, which have transistors that are less than one-thousandth the width of a human hair. Samsung Electronics Co. makes the rest. 

The U.S., Europe and China are scrambling to cut their reliance on Taiwanese chips. While the U.S. still leads the world in chip design and intellectual property with homegrown giants like Intel Corp. , Nvidia Corp. and Qualcomm, it now accounts for only 12% of the world’s chip manufacturing, down from 37% in 1990, according to Boston Consulting Group. President Biden’s infrastructure plan includes $50 billion to help boost domestic chip production. China has made semiconductor independence a major tenet of its national strategic plan. The European Union aims to produce at least 20% of the world’s next-generation chips in 2030 as part of a $150 billion digital industries scheme.

The Taiwanese maker has also faced calls from the U.S. and Germany to expand supply due to factory closures and lost revenues in the auto industry, which was the first to get hit by the current chip shortage.

Semiconductors have become so complex and capital-intensive that once a producer falls behind, it’s hard to catch up. Companies can spend billions of dollars and years trying, only to see the technological horizon recede further. A single semiconductor factory can cost as much as $20 billion. One key manufacturing tool for advanced chip-making that imprints intricate circuit patterns on silicon costs upward of $100 million, requiring multiple planes to deliver

Taiwanese leaders refer to the local chip industry as Taiwan’s “silicon shield,” helping protect it from such conflict. Taiwan’s government has showered subsidies on the local chip industry over the years, analysts say.

Excerpts from Yang Jie et al., The World Relies on One Chip Maker in Taiwan, Leaving Everyone Vulnerable, WSJ, June 19, 2021

Tesla as Catfish: When China Carps-Tech CEOs Fall in Line

Many countries are wrestling with how to regulate digital records. Some economies, including in Europe, emphasize the need for data privacy, while others, such as China and Russia, put greater focus on government control. The U.S. currently doesn’t have a single federal-level law on data protection or security; instead, the Federal Trade Commission is broadly empowered to protect consumers from unfair or deceptive data practices.

Behind China’s moves is a growing sense among leaders that data accumulated by the private sector should in essence be considered a national asset, which can be tapped or restricted according to the state’s needs, according to the people involved in policy-making. Those needs include managing financial risks, tracking virus outbreaks, supporting state economic priorities or conducting surveillance of criminals and political opponents. Officials also worry companies could share data with foreign business partners, undermining national security.


Beijing’s latest economic blueprint for the next five years, released in March 2021, emphasized the need to strengthen government sway over private firms’ data—the first time a five-year plan has done so. A key element of Beijing’s push is a pair of laws, one passed in June 2021, the Data Security Law,  and the other a proposal updated by China’s legislature in Apr0il 2021. Together, they will subject almost all data-related activities to government oversight, including their collection, storage, use and transmission. The legislation builds on the 2017 Cybersecurity Law that started tightening control of data flows.

The law will “clearly implement a more stringent management system for data related to national security, the lifeline of the national economy, people’s livelihood and major public interests,” said a spokesman for the National People’s Congress, the legislature. The proposed Personal Information Protection Law, modeled on the European Union’s data-protection regulation, seeks to limit the types of data that private-sector firms can collect. Unlike the EU rules, the Chinese version lacks restrictions on government entities when it comes to gathering information on people’s call logs, contact lists, location and other data.

In late May 2021, citing concerns over user privacy, the Cyberspace Administration of China singled out 105 apps—including ByteDance’s video-sharing service Douyin and Microsoft Corp.’s Bing search engine and LinkedIn service—for excessively collecting and illegally accessing users’ personal information. The government gave the companies named 15 days to fix the problems or face legal consequences….

Beijing’s pressure on foreign firms to fall in line picked up with the 2017 Cybersecurity Law, which included a provision calling for companies to store their data on Chinese soil. That requirement, at least initially, was largely limited to companies deemed “critical infrastructure providers,” a loosely defined category that has included foreign banks and tech firms….Since 2021, Chinese regulators have formally made the data-localization requirement a prerequisite for foreign financial institutions trying to get a foothold in China. Citigroup Inc. and BlackRock Inc. are among the U.S. firms that have so far agreed to the rule and won licenses to start wholly-owned businesses in China…

Senior officials have publicly likened Tesla to a “catfish” rather than a “shark,” saying the company could uplift the auto sector the way working with Apple and Motorola Mobility LLC helped elevate China’s smartphone and telecommunications industries. To ensure Tesla doesn’t become a security risk, China’s Cyberspace Administration recently issued a draft rule that would forbid electric-car makers from transferring outside China any information collected from users on China’s roads and highways. It also restricted the use of Tesla cars by military personnel and staff of some state-owned companies amid concerns that the vehicles’ cameras could send information about government facilities to the U.S. In late May 2021, Tesla confirmed it had set up a data center in China and would domestically store data from cars it sold in the country. It said it joined other Chinese companies, including Alibaba and Baidu Inc., in the discussion of the draft rules arranged by the CyberSecurity Association of China, which reports to the Cyberspace Administration…

Increasingly, China’s president, Mr. Xi, leaned toward voices advocating greater digital control. He now labels big data as another essential element of China’s economy, on par with land, labor and capital.  “From the point of view of the state, anti-data monopoly must be strengthened,” said Li Lihui, a former president of state-owned Bank of China Ltd. and now a member of China’s legislature. He said he expects China to establish a “centralized and unified public database” to underpin its digital economy.

Excerpts from China’s New Power Play: More Control of Tech Companies’ Troves of Data, WSJ, June 12, 2021

The Giant Nuclear Graveyard in the Arctic

The Nuclear Waste in Saida Bay, Russia, is financed by Germany as part of the Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. Italy has paid for the floating dock that brings the nuclear reactor-compartments from the waters to the site. Reactor compartments from submarines and icebreakers will have to be stored for onshore for many decades before the radioactivity have come down to levels acceptable for cutting the reactors’ metal up and pack it for final geological disposal.

These giant containers contain parts of nuclear reactors in order to avoid leakages to the Arctic environment. Image Thomas Nilsen

The process of scrapping the 120 nuclear-powered submarines that sailed out from bases on the Kola Peninsula during the Cold War started in the early 1990 and has technically and economically been supported by a wide range of countries, including Norway and the European Union. Ballistic missile submarines scrapped at yards in Severodvinsk in the 1990s were paid by the United States Nunn-Lugar Cooperative Threat Reduction (CTR) Program.

Excerpts from Kola Peninsula to get radioactive waste from southern Russia, The Barents Observer, May 2021

Fossil-Free in 2026

Norrland (in Sweden) abounds in hydropower. Power that is cheap and—crucially—green, along with bargain land and proximity to iron ore, is sparking an improbable industrial revolution, based on hydrogen, “green” steel and batteries. SSAB, a steelmaker, is poised to deliver its first consignment of “eco-steel” from a hydrogen-fuelled pilot plant in Lulea, a northern city. 

Traditionally, to make steel, iron ore must be melted at high temperatures and reduced from iron oxide to iron, a process that typically involves burning fossil fuels, releasing huge amounts of carbon dioxide. Replacing them with hydrogen eliminates more than 98% of the carbon dioxide normally released. The hydrogen is made by electrolysing water, using electricity produced by hydro-power. This approach involves almost no carbon-dioxide emissions at all…..

Northern Sweden’s steelmaking leaps are being emulated elsewhere in Europe, in response to similar environmental pressures which will only increase if, as looks very likely, Germany’s Greens enter government after the election in September 2021. Europe produces a still significant 16% of the world’s steel. Big producers in Germany and Poland, where the industry is mostly coal-based and very dirty, are nervy. Even neighbouring Norway is in danger of losing out. It too has the gift of rich renewable-energy resources, but underinvestment means there may soon not be enough of this green electricity to meet the demands of both households and industry.

Excerpts from Green steel: Plentiful renewable energy is opening up a new industrial frontier, Economist, May 15, 2021

Resurrecting Used Materials: the Battle against E-Waste

Electric vehicles (EVs) continue to grow in popularity. According to IHS Markit, a research firm, almost 2.5m battery-electric and plug-in-hybrid cars were sold around the world in 2020—and the company expects that number to grow by 70% in 2021…. And, when all of these machines come to the ends of their useful lives, they will need to be recycled.

This coming avalanche of e-waste will be hard to deal with. When a petrol or diesel car is dismantled and crushed, as much as 95% of it is likely to be used again. Ways to do that are well-developed, straightforward and helped by the fact that, on average, almost 70% of such a vehicle consists of readily recyclable ferrous metals. EVs, by contrast, contain a far greater variety of materials. Separating and sorting these is tricky, especially as many of them are locked up inside complex electrical components.

For those who can manage to do so, though, there is good business to be had here. EVs contain lots of valuable stuff. The magnets in their motors are full of rare-earth metals, and their batteries of lithium and cobalt…Li-Cycle, a Canadian company founded in 2016 that is already the biggest recycler of lithium-ion batteries in North America, is one outfit betting on hydrometallurgy. Li-Cycle is not alone, though, in its hydrometallurgical ambitions. One rival is Redwood Materials of Carson City, Nevada…Northvolt… makes lithium-ion batteries for European carmakers. It is adding a recycling plant to its factory in Sweden, to process the batteries it produces there when they reach the ends of their lives. led. Similar “closed-loop” systems are being developed in other parts of the battery supply chain. For example, American Battery Technology, a firm in Nevada that mines and processes lithium, is adding a recycling plant intended to recover lithium and other metals from expired batteries. It will use the lithium in its own production processes and sell the other materials on.

The biggest battery-recycling operations of all, though, are not Western, but Chinese—not surprising, perhaps, given that China is the world’s largest market for EVs, and the country’s government has been promoting the recycling of lithium-ion batteries for some time. Brunp Reycling , a subsidiary of CATL, the world’s biggest EV-battery-maker, has half-a-dozen hydrometallurgical recycling operations around the country. Brunp says it can recycle 120,000 tonnes of old batteries a year, which it claims represents about half of China’s current annual battery-recycling capacity. …

Tesla itself also has trans-Pacific ambitions. It is setting up a battery-recycling facility at its  EV factory in Shanghai, to complement one it is developing at its battery factory in Nevada. Nor is Tesla the only vehicle-maker involving itself in the industry. In January, Volkswagen opened a pilot battery-recycling plant in Salzgitter. Salzgitter is close to the company’s battery factory in Braunschweig, which is being expanded to produce more than 600,000 EV battery packs a year. The idea is the firm’s battery experts will work with its recyclers to make battery packs easier to dismantle.

Designing recyclability in from the beginning will, in the long run, be crucial to the effective recycling of electric vehicles—and especially their batteries. Shredding lots of different types of e-waste at the same time inevitably results in contamination. Separating components before doing so would yield greater levels of purity.

Excerpts from Old electric cars are a raw material of the future, Economist, May 15, 2021

The Killing Fad: Agile Drones

Drones built in Turkey with affordable digital technology wrecked tanks and other armored vehicles, as well as air-defense systems, of Russian protégés in battles waged in Syria, Libya and Azerbaijan. These drones point to future warfare being shaped as much by cheap but effective fighting vehicles as expensive ones with the most advanced technology. China, too, has become a leading war drone exporter to the Middle East and Africa. Iran-linked groups in Iraq and Yemen used drones to attack Saudi Arabia. At least 10 countries, from Nigeria to the United Arab Emirates, have used drones purchased from China to kill adversaries, defense analysts say.

Flying alone or in a group, these drones can surprise troops and disable poorly concealed or lightly defended armored vehicles, a job often assigned to expensive warplanes. The drones can stay quietly aloft for 24 hours, finding gaps in air-defense systems and helping target strikes by warplanes and artillery, as well as firing their own missiles. Militaries, including the U.S., are upgrading air-defense systems to catch up with the advances, seeking methods to eliminate low-budget drones without firing missiles that cost more than their targets. The U.S. Air Force Research Laboratory is also developing Skyborg and Valkyrie, lower-cost autonomous aircraft that are part of an innovation program

Israel and the U.S. have long used high-end drones in counterterrorism operations to target prominent enemies. But the countries have hesitated to sell their top models, even to allies, for fear of proliferation…Technological advances and global competitors have produced inexpensive alternatives.

The standard-bearer of the latest armed-drone revolution emerged last year on the battlefields around Turkey, the Bayraktar TB2. Compared with the American MQ-9, the TB2 is lightly armed, with four laser-guided missiles. Its radio-controlled apparatus limits its basic range to around 200 miles, roughly a fifth of the ground the MQ-9 can cover. Yet it is utilitarian, and reliable—qualities reminiscent of the Soviet Kalashnikov AK-47 rifle that changed warfare in the 20th century. A set of six Bayraktar TB2 drones, ground units, and other essential operations equipment costs tens of millions of dollars, rather than hundreds of millions for the MQ-9…

Ukraine signed a deal in January 2019 to buy TB2 drones from Turkey, receiving at least six so far, and Kyiv is in talks for joint production. A Ukrainian company is manufacturing engines for the latest Baykar drone, a larger model with a heavier payload than the TB2. The country hopes the drones will discourage a repeat of the Kremlin’s 2014 invasions. …Turkey’s drone sales have riled Moscow. …

The TB2 was born of Turkey’s dissatisfaction with available models from the U.S. and Israel, and the country’s desire for systems under its control to fight the PKK, a Kurdish militant group….Azerbaijan, geographically and culturally close to Turkey, procured a set of TB2 drones last year. The country had lost control of the Nagorno-Karabakh region to Armenia in a war that ended in a 1994 cease-fire. Rising petroleum wealth had bolstered Azerbaijan’s military in the years since. The TB2s, as well as Israeli-made drones, helped Azerbaijan overwhelm Armenian forces. Attacks were recorded for videos and posted online by Azerbaijan’s Defense Ministry….

The Azerbaijan victory caught the attention of Turkey’s suppliers. Some companies and countries, including Canada, halted export of components used in the TB2. [Too little too late?]

Excerpt from James Marson and Brett Forrest, Armed Low-Cost Drones, Made by Turkey, Reshape Battlefields and Geopolitics, WSJ, June 4, 2021

UFOs: Aliens or Just Enemies?

A forthcoming U.S. intelligence report contains no evidence that unexplained objects moving through the skies and witnessed by U.S. Navy pilots are alien spacecraft, but offers no conclusive explanation for the mysterious sightings, according to people familiar with its contents. The report, due to be delivered to Congress on June 25, 2021, appears unlikely to quell a debate over what the Pentagon calls “Unidentified Aerial Phenomena,” which pilots have observed moving at hypersonic speeds and conducting maneuvers that would be impossible using known technology.

Former President Barack Obama acknowledged in May 2021 that the U.S. government has no explanation for the strange objects. “What is true, and I’m actually being serious here, is that there is footage and records of objects in the skies that we don’t know exactly what they are,” Mr. Obama told CBS. “We can’t explain how they move, their trajectory,” he said. The draft report, the people familiar with it said, finds no evidence that the objects are alien spacecraft, but also no firm proof that they are not.

The New York Times, which first reported the study’s contents, said that it concludes that the most of the incidents didn’t originate from any advanced U.S. technology programs that might have been unknown to the pilots who witnessed them. One possibility officials have debated is that the craft are the result of secret research programs by a foreign adversary, such as Russia or China, both of which are believed to have experimented with hypersonic craft, which can travel more than five times the speed of sound.  The Pentagon last summer revived a small, secretive unit, called the Unidentified Aerial Phenomena Task Force, to study the encounters.

Excerpts from Gordon Lubold and Nancy A. Youssef, U.S. UFO Report Doesn’t Explain Mystery Sightings but Finds No Sign of Aliens, WSJ, June 5, 2021

Smart Weapons Who Make Many Mistakes: AI in War

Autonomous weapon systems rely on artificial intelligence (AI), which in turn relies on data collected from those systems’ surroundings. When these data are good—plentiful, reliable and similar to the data on which the system’s algorithm was trained—AI can excel. But in many circumstances data are incomplete, ambiguous or overwhelming. Consider the difference between radiology, in which algorithms outperform human beings in analysing x-ray images, and self-driving cars, which still struggle to make sense of a cacophonous stream of disparate inputs from the outside world. On the battlefield, that problem is multiplied.

“Conflict environments are harsh, dynamic and adversarial,” says UNDIR. Dust, smoke and vibration can obscure or damage the cameras, radars and other sensors that capture data in the first place. Even a speck of dust on a sensor might, in a particular light, mislead an algorithm into classifying a civilian object as a military one, says Arthur Holland Michel, the report’s author. Moreover, enemies constantly attempt to fool those sensors through camouflage, concealment and trickery. Pedestrians have no reason to bamboozle self-driving cars, whereas soldiers work hard to blend into foliage. And a mixture of civilian and military objects—evident on the ground in Gaza in recent weeks—could produce a flood of confusing data.

The biggest problem is that algorithms trained on limited data samples would encounter a much wider range of inputs in a war zone. In the same way that recognition software trained largely on white faces struggles to recognise black ones, an autonomous weapon fed with examples of Russian military uniforms will be less reliable against Chinese ones. 

Despite these limitations, the technology is already trickling onto the battlefield. In its war with Armenia last year, Azerbaijan unleashed Israeli-made loitering munitions theoretically capable of choosing their own targets. Ziyan, a Chinese company, boasts that its Blowfish a3, a gun-toting helicopter drone, “autonomously performs…complex combat missions” including “targeted precision strikes”. The International Committee of the Red Cross (ICRC) says that many of today’s remote-controlled weapons could be turned into autonomous ones with little more than a software upgrade or a change of doctrine….

On May 12th, 2021, the ICRD published a new and nuanced position on the matter, recommending new rules to regulate autonomous weapons, including a prohibition on those that are “unpredictable”, and also a blanket ban on any such weapon that has human beings as its targets. These things will be debated in December 2021 at the five-yearly review conference of the UN Convention on Certain Conventional Weapons, originally established in 1980 to ban landmines and other “inhumane” arms. Government experts will meet thrice over the summer and autumn, under un auspices, to lay the groundwork. 

Yet powerful states remain wary of ceding an advantage to rivals. In March, 2021 a National Security Commission on Artificial Intelligence established by America’s Congress predicted that autonomous weapons would eventually be “capable of levels of performance, speed and discrimination that exceed human capabilities”. A worldwide prohibition on their development and use would be “neither feasible nor currently in the interests of the United States,” it concluded—in part, it argued, because Russia and China would probably cheat. 

Excerpt from Autonomous weapons: The fog of war may confound weapons that think for themselves, Economist, May 29, 2021

Unthinkable: What Happens When Water Floods a Nuclear Plant

As the 9.0 magnitude earthquake hit the Japanese shore, the reactors of the Fukushima Daiichi nuclear power plant shut down automatically to control the nuclear fission. The electrical lines collapsed, but the plant responded as designed, and the earthquake itself did not cause any other problems. The tsunami it triggered, however, did.

“The reactors were robust, seismically speaking,” said Gustavo Caruso, Director of the IAEA’s Office of Safety and Security Coordination. “But they were vulnerable to the high tsunami waves.” When the flooding hit, the ‘tsunami walls’ made to protect the plant from such events were too low to prevent the sea water from entering the plant. The water’s strength destroyed some of the structures, and entered the diesel generator room — which was built lower and at a closer distance to sea level than other plants in Japan — affecting Units 1, 2 and 3. “The diesel generators are essential for maintaining the plant’s electrical supplies in emergency situations,” said Pal Vincze, Head of the Nuclear Power Engineering Section at the IAEA. “They were drowned.”

If the diesel generator is affected, special batteries can be used to generate electricity, but these have a limited capacity, and, in the case of Fukushima Daiichi, some were also flooded. “In Japan, they put up a heroic fight to get the electrical systems up and running again, but it wasn’t enough,” Vincze added.

Without functioning instrumentation and control systems, or electrical power or cooling capabilities, the overheated fuel melted, sank to the bottom of the reactors, and breached the reactor vessels, leading to three meltdowns. In addition, data logs and vital systems operated by safety parameters were also flooded, which meant that there was no way for the operator to monitor what was going on inside the reactors.

As stated in the IAEA report on the Fukushima Daiichi accident, “a major factor that contributed to the accident was the widespread assumption in Japan that its nuclear power plants were so safe that an accident of this magnitude was simply unthinkable. But…When planning, designing and constructing the plant, experts did not properly take into consideration past tsunami experiences… “It must be noted that the combination of an earthquake of this magnitude and a tsunami is extremely rare, but unfortunately this is what happened.”…

Excerpt from Laura Gil Fukushima Daiichi: The Accident, IAEA Bulletin, Mar. 2021

When Others Do our Dirty Work: the Costs of Overdependence

China is tightening its grip on the global supply of processed manganese, rattling a range of companies world-wide that depend on the versatile metal—including the planet’s biggest electric-vehicle makers.

China produces more than 90% of the world’s manganese products, ranging from steel-strengthening additives to battery-grade compounds. Since October 2020, dozens of Chinese manganese processors accounting for most of global capacity have joined a state-backed campaign to establish a “manganese innovation alliance,” led by Ningxia Tianyuan Manganese Industry Group, setting out in planning documents goals and moves that others in the industry say are akin to a production cartel. They include centralizing control over supply of key products, coordinating prices, stockpiling and networks for mutual financial assistance.

The squeeze sent prices soaring in metal markets world-wide, snagging steelmakers and sharpening concern among car makers. China’s metal industries already dominate the global processing of most raw materials for rechargeable batteries, including cobalt and nickel. Three-quarters of the world’s lithium-ion batteries and half of its electric vehicles are made in China.  High-purity forms of manganese have increasingly become crucial for battery-powered automobiles, touted by Volkswagen AG and Tesla Inc. in recent months as a viable replacement for other, more-expensive battery ingredients….

While manganese ore is relatively abundant around the world, it is almost solely refined in China. Battery-grade manganese is traded mostly privately, and pricing can be opaque. Miners say a metric ton of the purified metal could cost up to $4,000—barely a 10th of the cost of cobalt, a widely used battery metal. By replacing cobalt, manganese could help auto makers produce 30% more cars with the same amount of nickel, analysts say.

Rival manganese projects outside China view the cartel-like activities as an opportunity to gain momentum for their own battery-grade developments…Still, analysts say such projects outside China might take years to start and heavy cost investments to develop. Viable bases of manganese ore are often located in remote regions, which require expensive infrastructure to ferry and process extracted ores.

Excerpt from Chuin-Wei Yap, China Hones Control Over Manganese, a Rising Star in Battery Metals, WSH, May 21, 2021

The Most Radioactive Sea on Earth and How to Save it

No other places in the world’s oceans have more radioactive and nuclear waste than the Kara Sea. The reactors from the submarines K-11, K-19, and K-140, plus the entire submarine K-27 and spent uranium fuel from one of the old reactors of the Lenin-icebreaker have to be lifted from the seafloor and secured. While mentality in Soviet times was «out of sight, out of mind», the Kara Sea seemed logical. Ice-covered most of the year, and no commercial activities. That is changing now with rapidly retreating sea ice, drilling for oil-, and gas and increased shipping.

The submarine reactors dumped in shallow bays east of the closed-off military archipelago of Novaya Zemlya… had experienced accidents and posed a radiation threat at the navy yards where people were working.  Dumping the reactors in shallow waters, someplace at only 50 meters, meant they could be lifted one day when technology allowed.

A worst-case scenario would be a failed lifting attempt, causing criticality in the uranium fuel, again triggering an explosion with following radiation contamination of Arctic waters.  

A Russian-Norwegian expedition to the K-27 submarine in Stepovogo bay in 2012 took samples for studying possible radioactive leakages. Now, the Bellona group, an environmental NGOs, calls  an expedition in 2021  to thoroughly study the strength of the hull and look for technical options on how to lift the heavy submarine and reactor compartments. A previous study report made for Rosatom and the European Commission roughly estimated the costs of lifting all six objects, bringing them safely to a yard for decommissioning, and securing the reactors for long-term storage.

The estimated price-tag for all six is €278 million, of which the K-159 in the Barents Sea is the most expensive with a cost of €57.5 million. Unlike the submarines and reactors that are dumped in relatively shallow waters in the Kara Sea, the K-159 is at about 200 meters depth, and thus will be more difficult to lift.

Excerpt from Tackling dumped nuclear waste gets priority in Russia’s Arctic Council leadership in 2021, BarentsObserver, May 23, 2021

Can We Change Path? Saving Forests and Cutting Carbon

No ecosystem is more important in mitigating the effects of climate change than tropical rainforest. And South-East Asia is home to the world’s third-biggest patch of it, behind the Amazon and Congo basins. Even though humans release carbon from these forests through logging, clear-felling for agriculture and other disruptions, some are so vast and fecund that the growth of the plants within them absorbs even more from the atmosphere. The Congo basin, for instance, locks up 600m tonnes of carbon a year more than it releases, according to the World Resources Institute (WRI), an international NGO that is equivalent to about a third of emissions from all American transport.

In contrast, such is the extent of clearing for plantations in South-East Asia’s rainforests, which run from Myanmar to Indonesia, that over the past 20 years they have turned from a growing carbon sink to a significant source of emissions—nearly 500m tonnes a year. Indonesia and Malaysia, home to the biggest expanses of pristine forest, have lost more than a third of it this century. Cambodia, Laos and Myanmar, relative newcomers to deforestation, are making up for lost time.

The Global Forest Watch, which uses satellite data to track tree cover, loss of virgin forest in Indonesia and Malaysia has slowed for the fourth year in row—a contrast with other parts of the world…The Leaf Coalition, backed by America, Britain and Norway, along with such corporate giants as Amazon, Airbnb, and Unilever, aims to create an international marketplace in which carbon credits can be sold for deforestation avoided. An initial $1bn has been pledged to reward countries for protecting forests. South-East Asia could be a big beneficiary,

Admittedly, curbing deforestation has been a cherished but elusive goal of climate campaigners for ages. A big un initiative to that end, called REDD+, was launched a decade ago, with Indonesia notably due for help. It never achieved its potential. Projects for conservation must jump through many hoops before approval. The risk is often that a patch of forest here may be preserved at the expense of another patch there. Projects are hard to monitor. The price set for carbon under the scheme, $5 a tonne, has been too low to overcome these hurdles.

The Leaf Initiative would double the price of carbon, making conservation more attractive. Whereas buyers of carbon credits under REDD+ pocketed profits from a rise in carbon prices, windfalls will now go to the country that sold the credits. Standards of monitoring are much improved. Crucially, the scheme will involve bigger units of land than previous efforts, the so-called jurisdictional approach. That reduces the risk of deforestation simply being displaced from a protected patch to an unprotected one.

Excerpts from Banyan: There is hope for South-East Asia’s beleaguered tropical forests, Economist, May 1, 2021

Nuclear Nightmare Coming Back to Haunt Us: Nuclear Waste Dumped at Sea

A stock control inspection has revealed that about 2,800 barrels of radioactive waste partly originating from the healthcare and defense industries may have been handled carelessly, Swedish Television reported. The barrels are reportedly located on the floor of the Baltic Sea 100 kilometres north of Stockholm in Forsmark, where one of Sweden’s seven nuclear plants is situated. The barrels, dating from the 1970s and 1980s, are said to be of no danger at the moment but may pose a risk in the future if not taken care of and repositioned properly.

The government will now have to make decisions on the financial costs of inspecting and restoring the waste and how it will be handled in the future…

 Pekka Vanttinen, 2,800 radioactive waste barrels found near Baltic Sea, stored carelessly, EURACTIV.com, May 18, 2021

The Wild West Mentality of Companies Running the U.S. Oil and Gas Infrastructure — and Who Pays for It

The ransomware attack on Colonial Pipeline Co. in May 2021 has hit an industry that largely lacks federal cybersecurity oversight, leading to uneven digital defenses against such hacks.

The temporary shutdown of Colonial’s pipeline, the largest conduit for gasoline and diesel to the East Coast, follows warnings by U.S. officials in recent months of the danger of cyberattacks against privately held infrastructure. It also highlights the need for additional protections to help shield the oil-and-gas companies that power much of the country’s economic activity, cyber experts and lawmakers say. “The pipeline sector is a bit of the Wild West,” said John Cusimano, vice president of cybersecurity at aeSolutions, a consulting firm that works with energy companies and other industrial firms on cybersecurity. Mr. Cusimano called for rules similar to the U.S. Coast Guard’s 2020 regulations for the maritime sector that required companies operating ports and terminals to put together cybersecurity assessments and plans for incidents.

 More than two-thirds of executives at companies that transport or store oil and gas said their organizations are ready to respond to a breach, according to a 2020 survey by the law firm Jones Walker LLP. But many don’t take basic precautions such as encrypting data or conducting dry runs of attacks, said Andy Lee, who chairs the firm’s privacy and security team. “The overconfidence issue is a serious phenomenon,” Mr. Lee said.

Electric utilities are governed by rules enforced by the North American Electric Reliability Corp., a nonprofit that reviews companies’ security measures and has the power to impose million-dollar fines if they don’t meet standards. There is no such regulatory body enforcing standards for oil-and-gas companies, said Tobias Whitney, vice president of energy security solutions at Fortress Information Security. “There aren’t any million-dollar-a-day potential fines associated with oil-and-gas infrastructure at this point,” he said. “There’s no annual audit.”

Excerpt from David Uberti and Catherine Stupp, Colonial Pipeline Hack Sparks Questions About Oversight, WSJ, May 11, 2021

Addicted to Weather Modification: Make it Rain Now

Attempts to modify the weather can be dangerous. They require pilots to head into the kind of clouds they would normally avoid. But officials claim that China’s efforts to trigger or boost precipitation by scattering chemicals in the sky, which began in the 1950s, have been hugely successful. Today the country spends at least $200m a year on the programme. In 2018 about 50,000 people were involved in it, most of them part-time or seasonal staff working from small offices in rural areas.

Among the 50 or so countries where cloud-seeding is practiced, China is the most enthusiastic promoter of it….Officials claim it can help to put out wildfires and reduce air pollution. State media report that cloud-seeding brings down about 50bn cubic metres of extra rain or snow across the country each year—equal to about 8% of total water demand. Officials in Beijing claim that in the parched capital, seeding can boost rainfall by 15%…

Recent advances in radar and computer modelling have made rigorous tests more possible. Scientists now generally agree that cloud-seeding can slightly augment snowfall from specific types of cloud that form on the slopes of mountains. Some of China’s weather-modification projects take place in such environments. But elsewhere, despite the lack of convincing proof that it works, farmers still want the government to try. And the government likes getting credit when rain does fall. Cloud-seeding creates employment in poor rural places, in particular for army veterans who believe that the government owes them a job.

Only a few of China’s rainmakers use planes. More commonly, they fire silver iodide into the sky from artillery pieces. But that can be dangerous, too. Locals are often advised to keep an eye out for unexploded shells, which occasionally land on people’s homes….

Excerpts from No silver lining: Cloud-seeding will not solve China’s water shortages, Economist, Mar. 27, 2021

How Air Pollution Infiltrates the Seas

A global effort to curb pollution from the heavy fuel oil burned by most big ships appears to be encouraging water pollution instead. A 2020 regulation aimed at cutting sulfur emissions from ship exhaust is prompting many owners to install scrubbing systems that capture pollutants in water and then dump some or all of the waste into the sea.

Some 4 300 scrubber-equipped ships are already releasing at least 10 gigatons of such wastewater each year, often in ports and sometimes near sensitive coral reefs…. The shipping industry says pollutants in the waste don’t exceed national and international limits, and that there’s no evidence of harm. But some researchers fear scrubber water, which includes toxic metals such as copper and carcinogenic compounds called polycyclic aromatic hydrocarbons, poses a rapidly growing threat, and they want to see such systems outlawed.

The emerging debate is the result of a 2020 regulation put into place by the International Maritime Organization (IMO), an arm of the United Nations that works with 174 member states to develop common rules for international shipping. By banning the use of sulfur-heavy fuel oil, the rule intended to reduce pollutants that contribute to acid rain and smog. IMO estimated the rule would slash sulfur emissions by 77% and prevent tens of thousands of premature deaths from air pollution in ports and coastal communities.

But cleaner fuel can cost up to 50% more than the sulfur-rich kind, and the rule allows ship owners to continue to burn the cheaper fuel if they install scrubbers. In 2015, fewer than 250 ships had scrubbers (often to comply with local regulations); last year, that number grew to more than 4300, according to industry figures.

A scrubber system sends exhaust through a meters-tall metal cylinder, where it is sprayed with seawater or freshwater, depending on the type, at rates comparable to gushing fire hydrants, to capture pollutants. In the most popular systems, called open loop scrubbers, seawater is discharged to the ocean after little or no treatment. Other systems retain sludge for disposal on land and release much smaller (but more concentrated) amounts while at sea….Researchers are particularly worried about discharges in areas that IMO has designated as ecologically sensitive. The Great Barrier Reef, for example, receives about 32 million tons of scrubber effluent per year because it’s near a major shipping route for coal. Ships also release scrubber water around the Galápagos Islands….

Ports see substantial discharges, too. Cruise ships dominate those releases, contributing some 96% of discharges in seven of the 10 most discharge-rich ports. Cruise ships typically need to burn fuel in port to continue to operate their casinos, heated pools, air conditioning, and other amenities. Most ports have shallow water, so pollutants are less diluted and can accumulate more rapidly….

Researchers, who are participating in a €7.5 million European effort to study shipping pollution called EMERGE, would like to study how scrubber water affects fish larvae.

But shippers have become hesitant to share samples and data with scientists. “We’re reluctant to give it to organizations which we know have already an established agenda,” says Mike Kaczmarek, chairman of the Clean Shipping Alliance 2020

The ultimate solution is to require ships to use the cleanest fuel, called marine gas oil. In the meantime, 16 countries as well as some localities have banned the most common scrubbers.

Excerpts from Erik StokstadShipping rule cleans the air but dirties the water, Science, May 13, 2021

The International Council on Clean Transportation (ICCT) study, released on April 9, 2021

The Coin Curse: Bitcoin, Dogecoin and Carbon

Environmentalists…fret about how much energy bitcoin uses. In a paper in Nature Communications, a group of academics…examine bitcoin’s energy use in China. They conclude that, in the absence of legal curbs, bitcoin could by 2024 become a “non-negligible” barrier to China’s efforts to decarbonize its economy.

Bitcoin’s hunger for energy stems from its design. It forgoes centralised record-keeping in favour of a “blockchain”, a transaction database that is distributed among users. The blockchain is maintained by “miners”, who validate transactions by competing to crack mathematical puzzles with solutions that are hard to find but easy to check. Each successfully mined block of transactions generates a reward, currently 6.25 bitcoins ($357,000).

The system varies the difficulty of the puzzles to ensure that one new block is created, on average, every ten minutes. High bitcoin prices make it worthwhile to spend more computing power—and therefore electricity—chasing mining rewards…

Despite the currency’s democratic ambitions, mining is concentrated among a handful of professional operators. About 70% takes place in China. Scientists have concluded that, without regulation, Chinese bitcoin mining could consume around as much energy as Italy or Saudi Arabia by 2024. Annual carbon emissions, at 130m tonnes, would approach those of Nigeria. Such numbers should be taken with a good deal of salt. Bitcoin’s energy use depends crucially on its price, which swings wildly…

But the general picture—that bitcoin is a dirty business—fits with other research. One oft-cited model, which uses publicly available blockchain data, reckons its global energy consumption is already equal to that of Kazakhstan, and that its carbon footprint matches Hong Kong’s.

Excerpts from The dirty truth: Totting up bitcoin’s environmental costs, Economist, Apr. 10, 2021

Dumping Carbon in the Seabed

Oil companies have for decades made money by extracting carbon from the ground. Now they are trying to make money putting it back. Energy giants such as Exxon Mobil and Royal Dutch Shell are pushing carbon capture and storage (CCS)—where carbon is gathered and buried underground—as part of a drive to reduce both their own and their customers’ emissions. Executives say the service could become a new source of income when the industry is grappling with how to adapt to a lower-carbon economy.

Oil companies have long captured carbon from their operations, albeit mostly to produce more oil. Now they want to retool that skill as a service they can sell to heavy-polluting industries like cement and steel, burying their carbon in the ground indefinitely for a fee, rather than releasing it into the atmosphere. Yet critics question the environmental benefits and high cost of such projects.

In 2021, Shell, Total and Equinor launched a joint venture to store carbon in a rock formation thousands of feet beneath the seabed off the coast of Norway. The state-backed Northern Lights project is set to be the first time companies outside the oil industry will be able to pay to have their carbon gathered and stored. Most carbon-storage projects rely on government funding. Norway is covering about 80% of the $1.6 billion cost of the Northern Lights project, with the rest split equally between Shell, Equinor and Total.

Exxon has said it plans to form a new business unit to commercialize carbon capture and storage, forecasting it could become a $2 trillion market by 2040. Chevron has formed partnerships on storage projects, while BP is codeveloping storage projects in the U.K. and Australia. Oil executives’ sales pitch to carbon-intensive companies: We will provide your energy, then take back the carbon to minimize your footprint. Carbon capture and storage iss becoming a business rather than just a solution. 

The U.S. offers companies a tax credit of as much as $50 a metric ton of carbon captured, while the U.K., Norway and Australia have collectively committed billions of dollars of funding for carbon-capture projects. But There are  concerns about whether storage sites could leak carbon. In Europe, public resistance to land-based storage has led to the use of aquifers and depleted gas fields in the North Sea….In the Norway project, carbon will be transported by ship around the bottom of the country before being pumped offshore via a 68-mile pipeline and then injected into an aquifer under the seabed. BP is working on a similar concept for a project it will operate in northeast England, where carbon will be collected from a gas-power plant and various industrial sites, then stored under the North Sea. “We’ll capture the carbon, we’ll take it offshore, we’ll stuff it underground,” BP Chief Executive Bernard Looney recently said of the project. “Taking the carbon back is what I like to describe it as.”

Excerpts from Sarah McFarlane, Oil Giants Turn to Carbon Storage, Apr. 20, 2021

Chasing Super-Polluters

A constellation of satellites will be flown this decade to try to pinpoint significant releases of climate-changing gases, in particular carbon dioxide and methane. The initiative is being led by an American non-profit organisation called Carbon Mapper.
It will use technology developed by the US space agency over the past decade.
The satellites – 20 or so – will be built and flown by San Francisco’s Planet company.
Planet operates today the largest fleet of Earth-observing spacecraft.

There are already quite a few satellites in the sky that monitor greenhouse gases, but the capability is far from perfect. Most of these spacecraft can sense the likes of methane over very large areas but have poor resolution at the local level, at the scale, say, of a leaking pipeline. And those systems that can capture this detail will lack the wide-area coverage and the timely return to a particular location. The Carbon Mapper project wants to fix this either-or-situation by flying multiple high-resolution (30m) sensors that can deliver a daily view, or better.

They will look for super-emitters – the actors responsible for large releases of greenhouse gases. These would include oil and gas infrastructure, or perhaps poorly managed landfills and large dairy factory facilities.

Often these emitters want to know they have a problem but just don’t have the data to take action. “What we’ve learned is that decision support systems that focus just at the level of nation states, or countries, are necessary but not sufficient. We really need to get down to the scale of individual facilities, and even individual pieces of equipment, if we’re going to have an impact across civil society,” explained Riley Duren, Carbon Mapper’s CEO and a research scientist at the University of Arizona…The aim is to put the satellite data in the hands of everyone, and with the necessary tools also to be able to understand and use that information….

Excerpt from Jonathan Amos Carbon Mapper satellite network to find super-emitters, Reuters, April 16, 2021

A Gun to their Head: the Exclusive Vaccine Club

International tensions over access to Covid-19 vaccines have intensified as supply hiccups disrupt mass rollouts of shots. But trade experts warn that restrictions on vaccine exports risk making a bad situation worse. That’s because the world’s major vaccine producers rely on each other for the essential ingredients to manufac