Tag Archives: tritium

1 Million Tons Radioactive Water Release at Sea: Fukushima, Japan

On October 19, 2020, China urged the Japanese government to “cautiously” consider whether to release treated radioactive water in the sea from the Fukushima No. 1 nuclear power plant. China’s remarks came days after it was reported by Japanese media that an official decision on the discharge of the water from the nuclear plant may be made by the end of October 2020. The water has been treated using an advanced liquid processing system, or ALPS, to remove most contaminants other than the relatively less toxic tritium and is stored in tanks on the facility’s premises.

But space is expected to run out by the summer of 2022, with contaminated water increasing by about 170 tons per day. As of September 2020, the stored water totaled 1.23 million tons and continues to grow.

China urges Japan to cautiously consider nuclear plant water release, Japan Times, Oct. 19, 2020

Radioactive Water Dumping and Human Rights

In the aftermath of the Fukushima Daiichi nuclear disaster, [UN Special Rapporteurs  have] consistently raised concerns about the approaches taken by the government of Japan. UN Special Rapporteurs have been concerned that raising of “acceptable limits” of radiation exposure to urge resettlement violated the government’s human rights obligations to children.

UN Special Rapporteurs have been concerned of the possible exploitation of migrants and the poor for radioactive decontamination work. Their most recent concern is how the government used the COVID-19 crisis to dramatically accelerate its timeline for deciding whether to dump radioactive wastewater accumulating at Fukushima Daiichi in the ocean

The communities of Fukushima, so devastated by the tragic events of March 11, 2011, have expressed their concerns and opposition to the discharge of the contaminated water into their environment. It is their human right to an environment that allows for living a life in dignity, to enjoy their culture, and to not be exposed deliberately to additional radioactive contamination. Those rights should be fully respected and not be disregarded by the government in Tokyo. The discharge of nuclear waste to the ocean could damage Japan’s international relations. Neighboring countries are already concerned about the release of large volumes of radioactive tritium and other contaminants in the wastewater.

Japan has a duty under international law to prevent transboundary environmental harm. More specifically, under the London Convention, Japan has an obligation to take precaution with the respect to the dumping of waste in the ocean.

Indigenous peoples have an internationally recognized right to free, prior and informed consent. This includes the disposal of waste in their waters and actions that may contaminate their food. No matter how small the Japanese government believes this contamination will be of their water and food, there is an unquestionable obligation to consult with potentially affected indigenous peoples that it has not met…The disaster of 2011 cannot be undone. However, Japan still has an opportunity to minimize the damage…There are grave risks to the livelihoods of fishermen in Japan and also to its international reputation. Again, I urge the Japanese government to think twice about its legacy: as a true champion of human rights and the environment, or not.

Excerpts from, Baskut Tuncak [UN Rapporteur], Fukushima nuclear waste decision also a human rights issue, Kyodo News, July 8, 2020

Where to Go? 1 Million Tons Radioactive Water at Fukushima

In August 2019, Tepco projected that storage of radioactive water at the Fukushima nuclear plant would reach full capacity by around summer 2022 even after the expansion — the first time it has issued such a precise estimate.  According to Tepco, the Fukushima No. 1 plant had 960 massive tanks containing 1.15 million tons of treated water as of July 18, 2019. Water that has touched the highly radioactive melted fuel debris has been cleaned up through water treatment machines and is stored in the tanks, but the high-tech treatment machines are able to remove most radionuclides except tritium. The plant currently sees an increase of contaminated water by 170 tons a day, Tepco says.

Releasing tritium-tainted water into the sea in a controlled manner is common practice at nuclear power plants around the world, and it was generally considered the most viable option as it could be done quickly and would cost the least.  The head of the Nuclear Regulation Authority, Toyoshi Fuketa, has long said that releasing the treated water into the sea is the most reasonable option, but people in Fukushima, especially fishermen, fear it will damage the region’s reputation.

Addressing those concerns, the government panel, launched in November 2016, has been looking for the best option in terms of guarding against reputational damage. Injecting it into the ground, discharging it as steam or hydrogen, or solidification followed by underground burial have all been on the table. Under the current plan, Tepco is set to increase the tank space to store 1.37 million tons of water a total, but estimates show that will only last until summer 2022.  But the more space it creates, the bigger the decommissioning headache becomes.

Excerpts from KAZUAKI NAGAT, Fukushima nuclear plant to run out of tanks to store tritium-laced water in three years, Tepco says, Japan Times, Aug. 9, 2019
BY KAZUAKI NAGATA

How to Clean Radioactive Water

Russia’s nuclear energy giant Rosatom’s subsidiary RosRAO has created a prototype water decontamination plant for use at Tokyo Electric Power Co. Holdings’ Fukushima Daiichi nuclear power station — the site of Japan’s largest nuclear disaster in March 2011. The scrubbing facility, unveiled in June 2014, is capable of removing tritium, or radioactive hydrogen, from nuclear-tainted water, something beyond the capabilities of the Fukushima plant’s current cleanup equipment. Distillation and electrolysis isolate and concentrate the isotope, which is then locked away in titanium. Experiments under conditions similar to those on the ground reportedly show the technology cutting wastewater’s radioactive material content to one-6,000th the initial level, making it safe for human consumption or release into the ocean.

Duplicating the facility near the Fukushima site and running it for the five years necessary to process 800,000 cu. meters of contaminated water would cost around $700 million in all. Companies in Japan and the U.S. are at work on their own facilities for tritium disposal, but the Russian plan’s cost and technological capability make it fully competitive, according to the project’s chief.

Rosatom has made other overtures to Japan. Executives from a mining and chemical unit have visited several times this year for talks with Japanese nuclear companies, aiming to cooperate on decommissioning the Fukushima plant and upgrading a reprocessing plant in Aomori Prefecture for spent nuclear fuel. Russia has amassed a wealth of expertise dealing with damaged nuclear reactors in the wake of the Chernobyl disaster, and would like Japan to draw on that knowledge, the subsidiary’s chief executive said.

Revving up nuclear technology exports is essential to re-energizing Russia’s domestic industry and breaking free of dependence on the resource sector, Moscow has decided. The nuclear business, along with the space industry, is one of the few tech-intensive sectors where the country is internationally competitive. President Vladimir Putin has leaned more heavily on leaders in Europe and emerging countries in recent years to agree to deals with Russia’s nuclear companies.

In Japan, the public has grown wary of nuclear energy since the accident, leaving demand for new plants in the country at next to nil. Yet Japan has more than 10 reactors slated for decommissioning, creating a market worth up to 1 trillion yen ($9.42 billion) by some calculations. Russia aims to use cooperation on the Fukushima plant to crack the broader market and grow its influence, a source at a French nuclear energy company said…

But Japanese Prime Minister Shinzo Abe nevertheless visited Russia in May 2016 for top-level talks despite U.S. objections, eager to make progress on territorial disputes over islands north of Hokkaido. Preparation is underway for another summit in the far-eastern city of Vladivostok in September 2016, as well as a visit by Putin to Japan before the year is out.
Excerpts from TAKAYUKI TANAKA, Japan nuclear cleanup next target in Russian economic offensive, Nikkei Asian Review, July 24, 2016

 

Fukushima Mess – Radioactive Water

The [Japanese] government picked three overseas companies to participate in a subsidized project to determine the best available technology for separating radioactive tritium from the toxic water building up at the Fukushima No. 1 nuclear plant.  Tokyo Electric Power Co. is currently test-running a system it says is capable of removing 62 types of radioactive substances from the contaminated water, but not tritium.  Thus tritium-laced water is expected to accumulate at the plant in the absence of any method to remove the isotope.

The three firms chosen from 29 applicants are U.S. firm Kurion Inc., which offers technologies to treat nuclear and hazardous waste; GE Hitachi Nuclear Energy Canada Inc., a joint venture of Hitachi Ltd. and U.S. firm General Electric Co.; and Federal State Unitary Enterprise RosRAO, a Russian radioactive waste management firm.

The government will provide up to ¥1 billion for each examination of the technologies and running costs, and consider whether any of them can be applied to treat the water at Fukushima No. 1, the industry ministry said.  The three companies are to conclude their experiments by the end of March 2016, a ministry official said.  The official cautioned there is no guarantee that any of the technologies will be put to practical use.

Three firms picked to help tackle toxic water at Fukushima No. 1, Japan Times, Aug. 26, 2014

In January 2014 it was made public that a total of 875 terabecquerels (2.45 g) of tritium are on the site of Fukushima Daiichi,and the amount of tritium contained in the contaminated water is increasing by approximately 230 terabecquerel (0.64 g) per year. According to a report by Tepco “Tritium could be separated theoretically, but there is no practical separation technology on an industrial scale.”  See Wikipedia