Category Archives: marine pollution

The Pristine Waters of Alaska and Big Oil: Exxon Valdez

Thirty years ago this Sunday, at just after midnight on March 24, 1989, the Exxon Valdez supertanker ran aground in Prince William Sound off the south coast of Alaska. No-one was hurt, but the ship’s hull was ruptured, and of the 1.26m barrels of crude on board about 258,000 spilled into the water. The National Transportation Safety Board inquiry found that the causes of the accident included the failure of the ship’s master to provide a proper navigation watch “because of impairment from alcohol”, as well as inadequate personnel training and deficient management oversight.

In terms of volume released, the spill does not make the list of the world’s largest, but it was one of the worst in US waters. The harm caused by a spill is also not a direct function of the quantity of oil: a release in the cool waters of Prince William Sound, where oil breaks down more slowly, could be more damaging than a larger volume in the Gulf of Mexico, where temperatures are warmer and there are more plentiful microbes that thrive on natural oil seeps. The location of the spill also added to its emotional impact: the pictures of the oil fouling the pristine waters of Alaska shocked the world.

Exxon Valdez Clean up

Even decades after the spill, there was still evidence of the oil visible on some of the beaches in the region. Exxon agreed to pay $900m for restoration to settle damages claims from the state and federal governments, and the work of the Exxon Valdez Oil Spill Trustee Council, which oversees the use of that money, goes on. The Pacific herring population in Prince William Sound has collapsed since the early 1990s, although it is not clear whether the spill was responsible, and other wildlife such as sea ottershave recovered.

For the oil industry, the disaster was transformative. Single-hulled tankers began to be phased out, to be replaced by safer double hulls, first in the US and then worldwide. The process was accelerated after the sinking of the tanker Erika off the coast of Brittany in 1999, an accident that was considered one of France’s worst environmental disasters.

For Exxon in particular, the Valdez spill prompted a fundamental rethink of its safety culture and practices. The company developed what is called its Operations Integrity Management System, a framework that “puts safety at the center of everything we do”. By the time that Rex Tillerson ran ExxonMobil, in 2006-16, the company could rightly boast of having a safety record that was admired across the industry, and its OIMS was widely emulated….But any employer’s highest duty is to make sure workers can do their jobs safely and go home at the end of the day, and on that measure Exxon has performed better than its peers. Any workplace death is one too many, of course, but over the past decade Exxon has suffered significantly fewer than other leading oil companies.

Excerpts from Ed Crooks,  The Exxon Valdez spill 30 years on, Financial Times, Mar. 22, 2019

Can’t Eat This! MicroPlastics Carrying Bacteria

The hard surface of waterborne plastic provides an ideal environment for the formation of biofilm by opportunistic microbial colonisers, and could facilitate a novel means of dispersal for microorganisms across coastal and marine environments. Biofilms that colonise the so-called ‘plastisphere’ could also be a reservoir for faecal indicator organisms (FIOs), such as Escherichia coli, or pathogenic bacteria such as species of Vibrio.

Nurdles on bathing beach

A study published in March 2019 looks into five public bathing beaches and quantifies their colonisation by E. coli and Vibrio spp. Nurdles [i.e., microplastics] were heterogeneously distributed along the high tide mark at all five beaches, and each beach contained nurdles that were colonised by E. coli and Vibrio spp. Knowledge of E. coli colonisation and persistence on nurdles should now be used to inform coastal managers about the additional risks associated with plastic debris.

Abastract from Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches

The Micro-Plastics Menance: Oceans

The IUCN report published in 2019 looked at primary microplastics – plastics that enter the oceans in the form of small particles, as opposed to larger plastic waste that degrades in the water – released from household and industrial products across seven geographical regions. Sources of primary microplastics include car tyres, synthetic textiles, marine coatings, road markings, personal care products, plastic pellets and city dust.  According to the report, between 15 and 31% of the estimated 9.5 m tonnes of plastic released into the oceans each year could be primary microplastics, almost two-thirds of which come from the washing of synthetic textiles and the abrasion of tyres while driving…Synthetic textiles are the main source of primary microplastics in Asia and tyres dominate in the Americas, Europe and Central Asia…. Synthetic clothes could be designed to shed fewer fibres, for example, and consumers can act by choosing natural fabrics over synthetic ones”

The World Health Organization is reviewing microplastics’ potential impact on human health after a study found plastic in 259 bottles of water from 11 different brands bought in nine countries. Microplastics have turned up in seafood, drinking water, beer, honey and sugar, according to studies, but the impact on human health is unclear.Research shows that ingesting microplastics can hurt the ability of planktonic organisms to feed and the ability of fish and marine worms to gain energy from food.  Pending bills in New York and California, if successful, would require labels on clothes made from more than 50% synthetic material to tell consumers that these shed plastic microfibers when washed.

Researchers also have zeroed in on how clothes are washed. Outdoor-apparel brand Patagonia found fabrics shed lots of microfibers on the first wash, but few in subsequent washes. That suggests pretreating garments before they are sold could potentially capture and recycle what otherwise goes down consumers’ drains.  It also found types of washing machines matter. Jackets washed in top-load washing machines shed seven times as many microfibers as front-loaders.

Excerpts from  Invisible plastic particles from textiles and tyres a major source of ocean pollution – IUCN study,Feb 2017; The Tiny Plastics in Your Clothes Are Becoming a Big Problem, Wall Street Journal, Mar. 7, 2019
 

Plastics in Seas as New Tiny Ecosystems

The malign effect of floating plastic debris on seabirds, turtles and other sea creatures is well known. But, as Dr Mincer and Dr Amaral-Zettler have discovered, plastic debris also provides a new habitat for organisms small enough to take advantage of it.  The two researchers collected pieces of plastic from various sites in the North Atlantic. They then examined each using DNA analysis, and also an electron microscope, to see what was living on it. Lots of things were. Altogether, they discovered about 50 species of single-celled plant, animal and bacterial life. Each bit of debris was, in effect, a tiny ecosystem….Plastics are energy-rich substances, which is why many of them burn so readily. Any organism that could unlock and use that energy would do well….Less encouragingly, Dr Mincer and Dr Amaral-Zettler also found cholera-like bacteria in their tiny floating ecosystems. Both fish and seabirds act as vectors for cholera (the former bring it into human settlements when caught by fishermen, the latter when resting ashore or nesting), so anywhere that such creatures might pick up cholera bugs is something worth keeping an eye on.

The researchers paint an intriguing picture of the adaptability of nature, and provide another piece of the jigsaw that is the Anthropocene. Conservationists intent on preserving charismatic megafauna have reason to lament the spread of plastics through the ocean. But those interested in smaller critters have been given a whole, new sphere—the plastisphere—to study.

Marine ecology: Welcome to the plastisphere, Economist, July 20, 2013, at 7

How the Shipping Industry Gets its Way: pollution from ships

Do not give the regulated power over the regulators, unless you want consumers to lose out and producers to game the system. ..That lesson has been learned in many places around the world. National regulators are increasingly independent of the firms they regulate. But international ones still have further to go—and none further than the specialised agencies of the United Nations, such as the International Maritime Organisation (IMO) for shipping where the interests of the shipping industry are upheld d in several ways. The first is the distribution of voting rights between countries. At the IMO, for example, Panama and Liberia, with populations of just 4m and 4.8m respectively, can automatically get seats on its decision-making body as they have the world’s biggest merchant fleets.

The second is the assignment of those voting rights by individual countries. Remarkably, many governments have handed voting rights to private-sector firms… At the IMO least 17 countries have assigned their voting rights to flag registries operated by private firms, reckons Transparency International, an anti-corruption group; that adds up to about a tenth of delegates. At an IMO environmental-committee meeting in 2017, almost a third of countries were represented, at least in part, by business interests.

The third way in which producer interests are protected is through a spectacular lack of transparency. The agenda of the IMO’s council in November 2018 in London is available only to those with a password. Journalists are forbidden to report what delegates say or how they vote. There are no rules on the suitability or conflict of interests of delegates. In 2014 St Lucia appointed a Saudi billionaire without previous shipping experience as its IMO representative; a court in London judged in 2016 that the appointment was obtained in order to gain diplomatic immunity against divorce proceedings. There are no limits on the amount of gifts that can be showered on representatives. Goodies put on top of desks at an IMO assembly meeting last year were so heavy that they broke 137 sets of headphones underneath.

Such swampiness matters. The IMO is responsible for limiting emissions from ships, which were excluded from the Paris climate deal.   Some countries are interested in reform. At the imo council meeting this week Australia proposed allowing journalists to report on its meetings as a first step. The Marshall Islands has taken back some of its votes from the private firm that runs its flag registry. But more radical change is needed. Countries should send civil servants, not private actors, as their representatives. The un’s rules on conflicts of interest should be imposed. And voting rights should be allocated with the interests of consumers in mind. These lessons have been widely absorbed within borders. They ought to cross them, too

Excerpts from UN Regulatory Bodies: Agency Problems, Economist, Nov. 24, 2018, at 15

Cleaning Up Dirty Shipping

Making shipping cleaner is made more urgent by the decision of the International Maritime Organisation (IMO), the United Nations body responsible for the world’s shipping, to reduce the amount of sulphur allowed in bunker fuel from 3.5% to 0.5% by 2020. Sulphur is nasty stuff. When burned, it forms sulphates, which cause acid rain and pollute the air. A paper published in February 2017 in Nature Communications, by Mikhail Sofiev of the Finnish Meteorological Institute, found that the imo’s new rule could stop between 139,000 and 396,000 premature deaths a year.

The trouble is that sulphates also scatter sunlight and help to form and thicken clouds, which reflect solar radiation away from Earth. As a result, shipping is thought to reduce rather than increase man-made global warming—by 7% throughout the 20th century, according to one study. Dr Sofiev’s research showed that this cooling effect could fall by 80% after 2020, with the new low-sulphur standard in place…

The obvious way to offset the loss of sulphur-related cooling is by steep cuts to shipping’s planet-cooking carbon-dioxide emissions. The IMO wants these to fall by half, compared with 2008 levels, by 2050, regardless of how many vessels then ply the seas. But unlike desulphurisation, which is both imminent and legally binding, the CO2 target looks fuzzy and lacks any enforcement mechanism. An attempt to begin fleshing it out, at a meeting of  IMO member states which concluded in London on October 26, 2018 foundered.

One way to cut fuel consumption is to reduce drag by redesigning hulls and propellers. This is happening. In the past five or so years many ships’ propellers have been fitted with tip fins analogous to the turbulence-reducing upturned winglets on aeroplanes.  Further percentage points can be shaved away by smoothing hulls. This means, in particular, stopping barnacles and other creatures growing on them. Tin-based antifouling paints are now banned as toxic to sea life, so paintmakers are returning to an 18th-century solution to the fouling problem—copper.   Hulls can be scraped smooth, too, but restrictions on littering waters with paint chips and species from foreign parts have made such cleaning problematic. This may change, though, thanks to an underwater drone described by its Norwegian maker, ecosubsea, as “a cross between a vacuum cleaner and a lawnmower”. Rather than scour hulls with a metal brush, ecosubsea’s robots blast water at an angle almost parallel with the hull’s surface, which mostly spares paint from abrasion but hits marine growth perpendicularly, and thus hard. 

Many have hopes of returning to wind propulsion, and engineers have devised various modern versions of the sail. None has yet succeeded. A system developed by SkySails, a firm in Hamburg, for example, relied on kites to pull ships along. It was installed on five ships from 2008-11, but proved fiddly to use and maintain…

Some hope to cut marine emissions by employing batteries and electric motors. For transoceanic shipping this looks a long-shot. But local shipping might benefit. Norway, for instance, has started to introduce battery-powered ferries. And a Dutch company called Port-Liner is building electric canal barges for transporting shipping containers. The technology is expensive. Without taxpayer subsidy it would hardly be a runner—a fact also true of the Norwegian ferries.

The problem of shifting emissions around rather than eliminating them also applies to the idea of powering ocean-going vessels using fuel-cells. These generate electricity by reacting hydrogen and oxygen together. Given that electric propulsion more usually disguises emissions than eliminates them, some suggest the most practical approach to reducing shipping’s contribution to global warming is to switch to low-carbon fuel systems rather than conducting a futile search for no-carbon fuels. One alternative is diesel-electric propulsion.  Liquefied natural gas (lng) is another option. 

Excerpts  from Marine Technology of the Future: In Need for a Cean Up, Economist,  Nov. 3, 2018, at 75

Sucking the Life out of Deep Sea

Those involved in deep-sea mining hope it will turn into a multi-billion dollar industry. Seabed nodules are dominated by compounds of iron (which is commonplace) and manganese (which is rarer, but not in short supply from mines on dry land). However, the nodules also contain copper, nickel and cobalt, and sometimes other metals such as molybdenum and vanadium. These are in sufficient demand that visiting the bottom of the ocean to acquire them looks a worthwhile enterprise. Moreover, these metals seldom co-occur in terrestrial mines. So, as Kris Van Nijen, who runs deep-sea mining operations at Global Sea Mineral Resources (gsr), a company interested in exploiting the nodules, observes: “For the same amount of effort, you get the same metals as two or three mines on land.”

Though their location several kilometres beneath the ocean surface makes the nodules hard to get at in one sense, in another they are easily accessible, because they sit invitingly on the seabed, almost begging to be collected. Most are found on parts of the ocean floor like the Clarion Clipperton Zone (ccz), outside the 200-nautical-mile exclusive economic zones of littoral countries. They thus fall under the purview of the International Seabed Authority (isa), which has issued 17 exploration licences for such resources. All but one of these licences pertain to the ccz, an area of about 6m square kilometres east-south-east of Hawaii.

The licensees include Belgium, Britain, China, France, Germany, India, Japan, Russia, Singapore and South Korea, as well as several small Pacific island states. America, which is not party to the United Nations Convention on the Law of the Sea that established the isa, is not involved directly, but at least one American firm, Lockheed Martin, has an interest in the matter through a British subsidiary, uk Seabed Resources. And people are getting busy. Surveying expeditions have already visited the concessions. On land, the required mining machines are being built and tested. What worries biologists is that if all this busyness does lead to mining, it will wreck habitats before they can be properly catalogued, let alone understood.

 Some of the ccz’s creatures stretch the imagination. There is the bizarre, gelatinous, yellow “gummy squirrel”, a 50cm-long sea cucumber with a tall, wide tail that may operate like a sail. There are galloping sea urchins that can scurry across the sea floor on long spines, at speeds of several centimetres a second. There are giant red shrimps, measuring up to 40cm long. And there are “Dumbo” octopuses, which have earlike fins above their eyes, giving them an eerie resemblance to a well-known cartoon elephant…Of 154 species of bristle worms the surveyors found, 70% were previously unknown. 

the Whale fossils, sea cucumbers and shrimps are just the stuff that is visible to the naked eye. Adrian Glover, one of Dr Amon’s colleagues at the Natural History Museum, and his collaborators spent weeks peering down microscopes, inspecting every nook and cranny of the surfaces of some of the nodules themselves. They discovered a miniature ecosystem composed of things that look, at first sight, like flecks of colour—but are, in fact, tiny corals, sponges, fan-like worms and bryozoans, all just millimetres tall. In total, the team logged 77 species of such creatures, probably an underestimate.

Inevitably, much of this life will be damaged by nodule mining. The impacts are likely be long-lasting. Deep-sea mining technology is still in development, but the general idea is that submersible craft equipped with giant vacuum cleaners will suck nodules from the seafloor. Those nodules will be carried up several kilometres of pipes back to the operations’ mother ships, to be washed and sent on their way.

The largest disturbance experiment so far was carried out in 1989 in the Peru Basin, a nodule field to the south of the Galapagos Islands. An eight-metre-wide metal frame fitted with ploughs and harrows was dragged back and forth repeatedly across the seabed, scouring it and wafting a plume of sediment into the water…. The big question was, 26 years after the event, would the sea floor have recovered? The answer was a resounding “no”. The robots brought back images of plough tracks that looked fresh, and of wildlife that had not recovered from the decades-old intrusion.

Conservation and seabed minerals: Mining the deep ocean will soon begin, Economist, Nov. 10, 2018