Category Archives: Environment

Free-All-Countries: Gold Mining and the Polluted Rivers of Central African Republic

Four Chinese-run gold mines should be closed in the Central African Republic because of pollution threatening public health, a parliamentary panel said in a report published on July 14, 2019.  “Ecological disaster,” “polluted river,” “public health threatened,” were some of the phrases used in the report.  “Gold mining by the Chinese firms at Bozoum is not profitable for the state and harmful to the population and the environment,” the commission found after its investigation into mining in the northern town.  “The nature of the ecological disaster discovered onsite justifies the immediate, unconditional halt to these activities,” the report found.

Members of the commission spent four days in Bozoum a month ago in response to “multiple complaints from the population.”  There, they found a badly polluted River Ouham, shorn of several aquatic species following the excavation of its riverbed.  They discovered that a rising death rate in fishing villages as well as shrinking access to clean drinking water.

The investigators also voiced fears that the country’s “resources are being squandered with the complicity of certain ministry of mines officials.”  The CAR is rich in natural resources but riven by conflict which has forced around one in four of its 4.5 million population to flee their homes. Under those circumstances, exploitation of the country’s natural resources is difficult to monitor effectively given that the state only has partial control of its own territory.

Central African Republic Report Cites Ecological Disaster in Calling for Closing of 4 Chinese Gold MInes, Agence France Presse,  July 14, 2019

Forget Nevada! How America Buries its Nuclear Waste 1999-2019

Just before midnight on June 27, 2019, the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico received its 12,500th transuranic (TRU) waste shipment since operations began there in 1999.

Nuclear Waste heading to WIPP from Idaho

The shipment originated from the EM program at Idaho National Laboratory, which has sent WIPP the most TRU waste shipments — 6,500 and counting — of all Departement of Energy (DOE) generator sites over the past 20 years. .

Idaoho National Laboratory Nuclear Waste Management

.WIPP drivers have safely traveled over 14.9 million loaded miles, transporting more than 178,500 waste containers for permanent disposal 2,150 feet underground.

Excerpts from WIPP Reaches 12,500-Shipment Milestone, Press Release US Department of Energy, July 2, 2019

How to Prepare for Deadly Flu and Nuclear Fallout

Breakthroughs in the science of programmable gene expression inspired DARPA to establish the PReemptive Expression of Protective Alleles and Response Elements (PREPARE) program with the goal of delivering powerful new defenses against public health and national security threats. DARPA has now selected five teams to develop a range of new medical interventions that temporarily and reversibly modulate the expression of protective genes to guard against acute threats from influenza and ionizing radiation, which could be encountered naturally, occupationally, or through a national security event.

The program builds from the understanding that the human body has innate defenses against many types of health threats, but that the body does not always activate these defenses quickly or robustly enough to block the worst damage. To augment existing physiological responses, PREPARE technologies would provide a programmable capability to up- or down-regulate gene expression on demand, providing timely, scalable defenses that are proportional to anticipated threats. Service members and first responders could administer these interventions prior to threat exposure or therapeutically after exposure to mitigate the risk of harm or death.

Influenza: “Researchers working within the PREPARE program seek to improve rates of survival and recovery in catastrophic scenarios for which reliable and scalable countermeasures don’t currently exist,” said Dr. Renee Wegrzyn, the PREPARE program manager….Three PREPARE teams are pursuing multi-pronged approaches to influenza defense and treatment that use programmable gene modulators to boost the human body’s natural defenses against influenza and also weaken the virus’ ability to cause harm by directly neutralizing the viral genomes. If successful, their approaches would potentially protect against virtually all influenza strains — regardless of whether a virus is newly emergent or has developed drug resistance — and would provide near instantaneous immunity, in contrast to traditional vaccines. Additionally, the teams are designing their countermeasures so that they are simple to deliver — for example, as intranasal sprays — reducing the logistical challenge of protecting large numbers of people.A team led by DNARx LLC, under principal investigator Dr. Robert Debs, aims to develop a new DNA-encoded gene therapy that helps patients fight influenza by boosting the natural immune response and other protective functions of their nasal passages and lungs.

Radiation Hazard Symbol

Ionizing Gamma Radiation: Other PREPARE teams are pursuing treatments to protect the body from the effects of ionizing gamma radiation. In humans, radiation poisoning primarily affects stem cells in the blood and gut, yet existing treatments only help to regenerate blood cells, and only with limited effect. There is no possibility for prophylactic administration of these drugs, and most must be delivered immediately following radiation exposure to provide any benefit. There are no existing medical countermeasures for radiation damage to the gut
A team led by the University of California, San Francisco, under principal investigator Dr. Jonathan Weissman, also aims to develop gene therapies to enhance resilience against ionizing radiation. The team’s approach should result in an intravenous or orally available treatment that activates innate defenses in gut and blood stem cells for a period of several weeks.

A Dose of Inner Strength to Survive and Recover from Potentially Lethal Health Threats
New tools for programmable modulation of gene expression could yield enhanced resilience against influenza and ionizing radiation for service members and first responders, DARPA Press Release, June 27, 2019

Nuclear Submarines on Fire (2)

Vladimir Putin has confirmed  on July 4, 2019  that the top-secret submarine that suffered a deadly fire was nuclear-powered, but Russia’s defence minister said the nuclear unit had been sealed off and was in “working order.”  The incident, which left 14 Russian sailors dead,  The Russian government has been slow to reveal information about the incident because the submersible, thought to be a deep-diving vessel used for research and reconnaissance, is among Russia’s most secret military projects.  The fire aboard the “Losharik” AS-31 submersible began in the battery compartment and spread through the vessel…The vessel is thought to be made of a series of orb-like compartments, which increase the submersible’s resilience and allow it to dive to the ocean floor. Once there, it can perform topographical research and participate in rescue missions. It may even be able to tap and sever communications cables on the seabed.

Officials claim the submariners sealed themselves in one of the compartments to battle the blaze and toxic fumes…A Norwegian official told Reuters there had been no “formal communication” from Russia about an incident aboard a nuclear-powered vessel, but “we would have been happy to have been informed of such incidents”….Accidents aboard submarines invariably evoke comparisons to Putin’s clumsy handling of the sinking of the Kursk nuclear submarine in 2000, which left 118 dead and families desperate for information about their loved ones.

Excerpt Putin confirms fire-hit Russian submarine was nuclear-powerered, Guardian, July 4, 2019

Who Owns the Riches of the Melting North Pole

A competition for the North Pole heated up in May 2019, as Canada became the third country to claim—based on extensive scientific data—that it should have sovereignty over a large swath of the Arctic Ocean, including the pole. Canada’s bid, submitted to the United Nations’s Commission on the Limits of the Continental Shelf (CLCS), joins competing claims from Russia and Denmark. Like theirs, it is motivated by the prospect of mineral riches: the large oil reserves believed to lie under the Arctic Ocean, which will become more accessible as the polar ice retreats. And all three claims, along with dozens of similar claims in other oceans, rest on extensive seafloor mapping, which has proved to be a boon to science…

Coastal nations have sovereign rights over an exclusive economic zone (EEZ), extending by definition 200 nautical miles (370 kilometers) out from their coastline. But the 1982 United Nations Convention on the Law of the Sea opened up the possibility of expanding that zone if a country can convince CLCS that its continental shelf extends beyond the EEZ’s limits…..Most of the 84 submissions so far were driven by the prospect of oil and gas, although advances in deep-sea mining technology have added new reasons to apply. Brazil, for example, filed an application in December 2018 that included the Rio Grande Rise, a deep-ocean mountain range 1500 kilometers southeast of Rio De Janeiro that’s covered in cobalt-rich ferromanganese crusts.

The Rio Grande Rise, Brazil

To make a claim, a country has to submit detailed data on the shape of the sea floor and on its sediment, which is thicker on the shelf than in the deep ocean. …CLCS, composed of 21 scientists in fields such as geology and hydrography who are elected by member states, has accepted 24 of the 28 claims it has finished evaluating, some partially or with caveats; in several cases, it has asked for follow-up submissions with more data. Australia was the first country to succeed, adding 2.5 million square kilometers to its territory in 2008. New Zealand gained undersea territory six times larger than its terrestrial area. But CLCS only judges the merit of each individual scientific claim; it has no authority to decide boundaries when claims overlap. To do that, countries have to turn to diplomatic channels once the science is settled.

The three claims on the North Pole revolve around the Lomonosov Ridge, an underwater mountain system that runs from Ellesmere Island in Canada’s Qikiqtaaluk region to the New Siberian Islands of Russia, passing the North Pole. Both countries claim the ridge is geologically connected to their continent, whereas Denmark says it is also tied to Greenland, a Danish territory. As the ridge is thought to be continental crust, the territorial extensions could be extensive)

Lomonosov Ridge, Amerasian Basin

Tensions flared when Russia planted a titanium flag on the sea floor beneath the North Pole in 2007, after CLCS rejected its first claim, saying more data were needed. The Canadian foreign minister at the time likened the move to the land grabs of early European colonizers. Not that the North Pole has any material value: “The oil potential there is zip,” says geologist Henry Dick of the Woods Hole Oceanographic Institution in Massachusetts. “The real fight is over the Amerasian Basin” where large amounts of oil are thought to be locked up…

There’s also a proposal to make the North Pole international, like Antarctica (South Pole), as a sign of peace, says Oran Young, a political scientist at the University of California, Santa Barbara. “It seems a very sensible idea.”

Richard Kemeny, Fight for the Arctic Ocean is a boon for science, June 21, 2019

Taking Pride in Nuclear Waste: Finland and Sweden

The site for Posiva’s repository at Eurajoki for the disposal of Finland’s high-level radioactive waste (used nuclear fuel), near the Olkiluoto nuclear power plant, was selected in 2000. The Finnish parliament approved the the repository project the following year in 2001… The government granted a construction licence for the project in November 2015 and construction work on the repository started iin 2016.  Posiva’s plan is for used nuclear fuel to be packed inside copper-steel canisters at an above-ground encapsulation plant, from where they will be transferred into the underground tunnels of the repository, located at a depth of 400-450 meters, and further into deposition holes lined with a bentonite buffer. Operation of the repository is expected to begin in 2023. The cost estimate of this large-scale construction project totals about EUR500 million (USD570 million), the company said.

Posiva  announced on June 25, 2019  the start of construction of the used fuel encapsulation plant. Janne Mokka, Posiva’s President, noted, “In Finland, full lifecycle management of nuclear fuel is a precondition for the production of climate-friendly nuclear electricity. Posiva will execute the final disposal of the spent fuel of its owners’ Olkiluoto and Loviisa nuclear power plants responsibly.”

Sweden is planning a similar used fuel encapsulation and disposal facility using the same storage method. Under its current timetable, national radioactive waste management company Svensk Kärnbränslehantering AB plans to start construction of the used fuel repository and the encapsulation plant sometime early in the 2020s and they will take about 10 years to complete.

Exceprts from Work starts on Finnish fuel encapsulation plant, World Nuclear News, June 25, 2019

See also documentary “Into Eternity” (YouTube)