Category Archives: Environment

Ecological Impacts of Mining Rivers for Gold

Mining in river channels provides a living for millions of people across the globe, particularly in the tropics. However, because this mining involves deforestation, excavating, dredging, and other work directly in or next to river channels, ecosystems are intensively degraded. Soils and river sediments excavated during mining are processed to extract the precious mineral of interest, usually gold, then discarded. Often the excess sand, silt, and clay is washed downstream by rivers, muddying river water for as much as 1,000 km downstream of mining sites. 

During the past 20 years, mining in rivers has increased dramatically, particularly during the Global Financial Crisis in 2008–09 when the price of gold increased significantly. Despite the human and ecological importance of mining-related environmental degradation, no global documentation of its environmental footprint exists. For the first time these environmental impacts were quantified through the use of satellite imagery and on-the-ground measurements, documenting more than 400 mining areas in 49 countries, mostly in the tropics. We show that the effects of mining have altered 173 rivers, which collectively represent 5–7% of large river length globally. In the tropical countries with river mining, on average nearly one-quarter of large river length is altered by river mining. 

Abstract Available online The recent rise of mining in rivers is a global crisis (Evan Dethier et al, 2022)

Playing Fast and Loose with Nuclear Substances: a missing radioactive capsule

In the Australian Outback, authorities are engaged in an unusual search-and-recovery effort. Gone missing is a capsule less than an inch long of radioactive material that can burn or sicken anyone who touches it. Their problem is that it could be anywhere along a 900-mile stretch of highway connecting a Rio Tinto PLC mine to Perth, Western Australia’s state capital…The capsule, which is 8-millimeters (about 5/16s of an inch) long and contains a small quantity of radioactive Cesium-137, worked its way loose from a piece of equipment that Rio Tinto had sent to Perth by truck for repair.

The tiny capsule fell along a route that is almost the distance between New York and St. Louis. Complicating the search effort is a gap of nearly two weeks between when the equipment left Rio Tinto’s Gudai-Darri mine on Jan. 12, 2023 and when the capsule was discovered to be missing on Jan. 25… Authorities worry the capsule could have become lodged in a tire of any of the vehicles that use the highway, potentially exposing their occupants to radiation levels that they compare to receiving around 10 X-rays in an hour. Exposure could cause radiation burns or severe illness, said Andrew Robertson, Western Australia’s chief health officer. 

Excerpts from Rhiannon Hoyle, Missing Radioactive Capsule Prompts Search and Concern in Australia, WSJ, Jan. 30, 2023

Rebranding Saudi Arabia as a Nuclear Superpower

Saudi Arabia plans to use domestically-sourced uranium to build up its nuclear power industry, energy minister Prince Abdulaziz bin Salman said in January 2023. Saudi Arabia has a nascent nuclear programme that it wants to expand to eventually include uranium enrichment, a sensitive area given its role in nuclear weapons. Riyadh has said it wants to use nuclear power to diversify its energy mix. It is unclear where its ambitions end, since Crown Prince Mohammed bin Salman said in 2018 that the kingdom would develop nuclear weapons if regional rival Iran did.

“The kingdom intends to utilize its national uranium resources, including in joint ventures with willing partners in accordance with international commitments and transparency standards,” Abdulaziz bin Salman said. He told a mining industry conference in Riyadh that this would involve “the entire nuclear fuel cycle which involves the production of yellowcake, low enriched uranium and the manufacturing of nuclear fuel both for our national use and of course for export“.

Fellow Gulf state the United Arab Emirates (UAE) has the Arab world’s first multi-unit operating nuclear energy plant. The UAE has committed not to enrich uranium itself and not to reprocess spent fuel. Atomic reactors need uranium enriched to around 5% purity, but the same technology in this process can also be used to enrich the heavy metal to higher, weapons-grade levels. This issue has been at the heart of Western and regional concerns about Iran’s nuclear program, and led to the 2015 deal between Tehran and global powers that capped enrichment at 3.67%.

Excerpts from Ahmed Yosri, Saudi Arabia plans to use domestic uranium for nuclear fuel, Reuters, Jan. 11, 2023

Floating on Ice: the Nuclear Infrastructure of Russia

Not since Soviet days has more nuclear-powered icebreakers been operating at the same time in Arctic waters, the Barents Observer reported in the beginning of 2023. Russia has over the last few years put three brand new icebreakers of the Project 22220 class into operation. Two more are under construction in St. Petersburg and a sixth vessel got funding with a goal to put it into service by 2030 as a transport- and maintenance ship for spent nuclear fuel and radioactive waste removal from the country’s fleet of icebreakers.

This  new service ship (Project 22770) will be nearly 160 meters long and carry its own cranes to lift in and out containers with spent nuclear fuel or fresh uranium fuel from the icebreaker reactors, either at Rosatom’s service base in Murmansk or in open sea anywhere along the Northern Sea Route. Typically, the uranium fuel is used in icebreaker reactors for 3-4 years before being replaced. The spent fuel elements are then taken out of the reactors and loaded over to special casks to the service vessel where they are stored for a few years before being loaded on land at Atomflot in Murmansk and later transported by train to Mayak in the South Urals for reprocessing.

The vessel could also serve Russia’s floating nuclear power plants (FNPP), like the “Akademik Lomonosov” which today provides electricity to Pevek or to any of the new FNPPs planned for the Arctic.

Excerpts from Thomas Nilsen, Arctic nuclear waste ship gets funding, The Barents Observer, Jan 11, 2023

A Costly Affair: Japan’s Nuclear Waste Legacy

The Japan Atomic Energy Agency estimates that it will cost taxpayers 36.1 billion yen ($280 million) to rectify the shoddy storage of radioactive waste in a storage pool at the Tokai Reprocessing Plant, the nation’s first facility for reprocessing spent nuclear fuel, 

Around 800 containers of transuranic radioactive waste, or “TRU waste,” were dropped into the pool from 1977 to 1991 using a wire in the now-disused plant in Tokai, a village in Ibaraki Prefecture northeast of Tokyo. They emit high levels of radiation. The waste includes pieces of metal cladding tubes that contained spent nuclear fuel, generated during the reprocessing process. The containers are ultimately supposed to be buried more than 300 meters below surface.

The agency has estimated that 19.1 billion yen will be needed to build a new storage facility for the containers, and 17 billion yen for a building that will cover the storage pool and the crane equipment to grab containers. The 794 containers each are about 80 centimeters in diameter, 90 cm tall and weigh about 1 ton, with many lying on their sides or overturned in the pool. Some have had their shape altered by the impact of being dropped. The containers were found stored in the improper manner in the 1990s. While the agency said the storage is secure from earthquakes and tsunamis, it has nonetheless decided to improve the situation. The extractions have been delayed by about 10 years from the original plan and are expected to begin in the mid-2030s.

The Tokai Reprocessing Plant was the nation’s first plant that reprocessed spent fuel from nuclear reactors to recover uranium and plutonium. Between 1977 and 2007, about 1,140 tons of fuel were reprocessed. The plant’s dismantlement was decided in 2014 and is expected to take about 70 years at a cost of 1 trillion yen.

Excerpts from Righting shoddy nuclear waste storage site to cost Japan 36 bil. yen, Kyodo News, Jan 15, 2023

Chronic Malnutrition–Manatees and Sewage

Wildlife officials in Florida are relaunching a program in December 2022 to feed manatees in a coastal area where many congregate in the winter, part of efforts to address the aquatic mammals’ chronic malnutrition caused by the disappearance of seagrasses they feed on…A key factor for the depletion of seagrasses is poor water quality in the Indian River Lagoon, an estuary spanning 156 miles of Florida’s eastern coast that draws many manatees.

The situation highlights a broader problem with polluted waterways in Florida. Algal blooms have broken out in numerous areas in recent years, fueled by nutrients such as nitrogen and phosphorus from improperly treated sewage, leaking septic tanks and fertilizer runoff, according to researchers. The outbreaks pose a threat to Florida’s economy, which relies heavily on tourism in coastal areas.

In  2021, mainly January to March, state and federal wildlife officials provided over 202,000 pounds of romaine lettuce, butter lettuce and cabbage to manatees gathering in warm water discharged by a power plant on the Indian River Lagoon. Many of the mammals, which typically are about 10 feet long and weigh more than 1,000 pounds, seek refuge there when waters cool in winter.

Excerpt from Arian Campo-Flores Florida Restarts Push to Feed Manatees, WSJ, Dec. 25, 2022

Space-based Solar Power: Endless Sunshine to a Fried Earth

In recent years, space agencies from all over the world have launched studies looking at the feasibility of constructing orbiting solar power plants. Such projects would be challenging to pull off, but as the world’s attempts to curb climate change continue to fail, such moonshot endeavors may become necessary.

Solar power plants in space, exposed to constant sunshine with no clouds or air limiting the efficiency of their photovoltaic arrays, could have a place in this future emissions-free infrastructure. But these structures, beaming energy to Earth in the form of microwaves, would be quite difficult to build and maintain…

A space solar power plant would have to be much larger than anything flown in space before. The orbiting solar power plant will have to be enormous, and not just to collect enough sunlight to make itself worthwhile. The main driver for the enormous size is not the amount of power but the need to focus the microwaves that will carry the energy through Earth’s atmosphere into a reasonably sized beam that could be received on the ground by a reasonably sized rectenna. These focusing antenna would have to be 1 mile (1.6 kilometers) or more wide, simply because of the “physics you are dealing with. Compare this with the International Space Station, at 357 feet (108 meters) long the largest space structure constructed in orbit to date…

In every case, building a space-based solar power plant would require hundreds of rocket launches (which would pollute the atmosphere depending on what type of rocket would be used), and advanced robotics systems capable of putting all the constituent modules together in space. This robotic construction is probably the biggest stumbling block to making this science fiction vision a reality.

Converting electricity into microwaves and back is currently awfully inefficient
Airbus, which recently conducted a small-scale demonstration converting electricity generated by photovoltaic panels into microwaves and beaming it wirelessly to a receiving station across a 118-foot (36 m) distance, says that one of the biggest obstacles for feasible space-based solar power is the efficiency of the conversion process… Some worry that microwave beams in space could be turned into weapons of mass destruction and used by evil actors to fry humans on the ground with invisible radiation.

A spaced-space solar plant transmits energy collected from the sun to a rectenna on earth by using a laser microwave beam. Image from wikipediia

The vast orbiting structure of flat interweaving photovoltaic panels would be constantly battered by micrometeorites, running a risk of not only sustaining substantial damage during operations, but also of generating huge amounts of space debris in the process. For the lifecycle of the station, you have to design it in a way that it can be maintained and repaired continuously…

And what about the whole thing once it reaches the end of its life, perhaps after a few decades of power generation?  It is assumed that, by the time we may have space-based solar power plants, we are most likely going to see quite a bit of permanent infrastructure on the moon. Space tugs that don’t exist yet could then move the aged plant to the moon, where its materials could be recycled and repurposed for another use…We could also have some kind of recycling center on the moon to process some of the material..

Excerpts from Tereza Pultarovanal, Can space-based solar power really work? Here are the pros and cons, Space.com, Dec. 23, 2022

Miracles Performed by Wild Crops

Grains that grow year after year without having to be replanted could save money, help the environment, and reduce the need for back-breaking labor. Now, the largest real-world test of such a crop—a perennial rice grown in China—is showing promise. Perennial rice can yield harvests as plentiful as the conventional, annually planted crop while benefiting the soil and saving smallholder farmers considerable labor and expense, researchers have found…

All rice is perennial to some extent. Unlike wheat or corn, rice roots sprout new stems after harvest. The trouble is that this second growth doesn’t yield much grain, which is why farmers plow up the paddies and plant new seedlings. The improved perennial rice, in contrast, grows back vigorously for a second harvest. Researchers developed it by crossing an Asian variety of rice with a wild, perennial relative from Nigeria. Improving the offspring took decades, and in 2018 a variety called Perennial Rice 23 (PR23) became commercially available to Chinese farmers. This was a “scientific breakthrough,” says Koichi Futakuchi, a crop scientist at the Africa Rice Center…

Over 4 years PR23 averaged 6.8 tons of rice per hectare, slightly higher than the annual rice, they report today in Nature Sustainability. As hoped, the perennial crop tended to grow back again and again without sacrificing the size of the harvest. In the fifth year, however, the yields of PR23 declined for some reason, suggesting it needed to be replanted. The perennial rice also improved the soil.

Researchers note potential risks. Because PR23 enables farmers to till less, fungi and other pathogens can build up in the fields. Insects can persist in the stubble after harvest, because it’s not plowed under, then transmit viruses when they feed on the regenerating sprouts in the spring. And without tilling, weeds can flourish; the researchers found that fields with PR23 needed one to two more herbicide treatments than regular rice. They also note that it’s more work to resow the perennial rice when its yield falters, because its larger and deeper roots need to be killed.

Excerpts from ‘Perennial’ rice saves time and money, but comes with risks, Science, Nov. 7, 2022

Reversing Industrialization: the Future of Plants?

Is it possible that the microbiomes of ancestors of our crops can be used to “rewild” microbiomes of current crops reinstating their diverse microbiota that were lost through domestication and industrialization processes, including including the (over)use of antibiotics, pesticides, and fertilizers?

Similar to reversing industrialization-associated changes in human gut microbiota , plant microbiome rewilding builds on the premise that wild ancestors harbor microbial genera with specific traits that are not found (or are strongly depleted) in the microbiome of modern crops. To date, however, it is unknown for most plant species whether (and which) microbial genera and functions were lost during plant domestication, and to what extent rewilding can enhance the health and sustainability of modern crops. In animal systems, the effectiveness of rewilding approaches is intensely debated , and similar discussions are needed for crop rewilding approaches.

Plant domestication is one of the most important accomplishments in human history, helping drive the transition from a nomadic to a sedentary lifestyle. Through stepwise processes, crop plants acquired a suite of new traits, including larger seeds, determinate growth, photoperiod sensitivity, and reduced levels of bitter substances. Although this led to a more continuous food supply, domestication caused a reduction in plant genetic diversity because only desired alleles were spread, while genomic regions next to the target genes suffered selective sweeps (6). This so-called “domestication syndrome” decreased the ability of crops to withstand pests and diseases

Excerpts from JOS M. RAAIJMAKERS AND E. TOBY KIERM, Microbiota of crop ancestors may offer a way to enhance sustainable food production, Science, Nov. 11, 2022

The Battle for Biodiversity and Human Rights

From the lush Amazon rainforest to the frigid Arctic Ocean, the world’s landscapes — and all the wildlife they contain — are under threat, and the world needs to set aside a third of all land and sea territories to save them, U.N. experts say.

The call is central to the global agreement being hashed out in December 2022 at the U.N. biodiversity summit in Montreal. If approved, governments would be agreeing to set aside 30% of their land and sea territories for conservation by 2030 – the so-called 30-by-30 goal, doubling the amount of land area and more than tripling the ocean territory currently under conservation…

A June 2022 study in the journal Science found, however, that at least 44% of global land area would be needed to protect areas with a high diversity of species, prevent the loss of intact ecosystems, and optimize the representation of different landscapes and species. But more than 1.8 billion people live in these areas

One of the key tension points that has emerged in the 30-by-30 debate at COP15 is whether the target should be carried out globally or at a national level…It is an important distinction, scientists and negotiators said. Some countries are small, without much land to set aside for nature. Others are vast and still contain a high degree of biodiversity, such as tropical forest nations like Brazil and Indonesia. Were such countries to protect only 30% of their territories, that could actually result in a significant loss of nature…Currently, just under 50% of the Amazon is under some form of official protection or indigenous stewardship, so a national pledge to conserve 30% would represent a significant downgrade.

The other dispute plaguing 30-by-30 is over what should count as protection. Some countries might allow people to live within protected areas or promote indigenous stewardship of these lands. Some might even allow for extractive industries to operate under permits and regulation. In other cases, conservation areas are off limits to everyone. The European Union has proposed allowing activities like logging, mining and fishing to be carried out under conservation management for 20% of protected areas, while 10% would be held under stricter protections.

The idea caused environmental nonprofit Greenpeace to accused the EU last week of trying to water down language on 30-by-30, which the EU denied.

Excerpts from Gloria Dickie, Protecting 30% of the planet to save nature is not as simple as it sounds, Reuters Dec. 14, 2022

Sins of Environmentalism

During the opening ceremony of the (Conference of the Parties) COP15 of the Biodiversity Convention taking place in early December 2022,  Canadian Prime Minister Justin Trudeau called for a global agreement to protect 30% of the world’s land and water by 2030. This so-called ’30×30′ plan is opposed by a number of groups that promote the rights of indigenous peoples. According to Survival International, an organization campaigning for Indigenous rights, 30 x 30 will be the biggest land grab in history.

Already in many Protected Areas around the world local people, who have called the land home for generations, are no longer allowed to live on and use the natural environment to feed their families, gather medicinal plants or visit sacred sites.

Fortress Conservation’ is one example of a conservation model that excludes Indigenous communities. It began with the formation of Yosemite, the world’s first national park, in North America over 150 years ago.  To preserve the ‘pristine wilderness’ humans needed to be expelled so the native Americans, who had lived in and cared for the region for thousands of years, were evicted.

Only 3 per cent of the world’s land remains ecologically intact, and biodiversity loss continues at an alarming rate.  In 2010, member states of the Convention on Biological Diversity (CBD) committed to placing 17 per cent of the world’s land within protected areas by 2020. Yet during that decade global biodiversity actually declined significantly.

There have also been systemic human rights abuses. Rainforest Foundation UK protects the world’s rainforests by supporting and empowering the Indigenous people and local communities which live in them.  But its research into 34 Protected Areas in the Congo Basin showed that without the presence of Indigenous communities, animal populations dwindled, and extractive activities increased. This was despite large investments having been channeled into them.  It also uncovered widespread disregard for local communities’ rights and livelihoods and conflict between forest peoples and conservationists in this region.

According to Joe Eisen, Executive Director of Rainforest Foundation UK, human rights abuses are commonplace in the Congo Basin. “Our research has shown these human rights abuses are not just the isolated actions of rogue park rangers but are rather part of a system in which displacement, torture, gender-based violence and extrajudicial killings are used to control Indigenous peoples and other local communities who live in, and depend on, areas of high conservation value,” he says.

Protected Areas are often managed by major international conservation organizations, who employ armed guards to evict the local population and prevent their return. These actions have long-term consequences and destroy Indigenous livelihoods and cultures.

There are calls for the development of a community-based conservation model, which empowers Indigenous people, rather than removing them from their ancestral lands.

Excerpts from Plans to protect 30% of the planet by 2030 could be ‘devastating’ for Indigenous people, Euronews, Dec. 8, 2022

Bacteria Can Rescue World One Building at a Time

Concrete is one of the world’s most important materials. But making the cement that binds it generates about 8% of anthropogenic carbon-dioxide emissions. This is not just because of the heat involved. That could, in principle, be supplied in environmentally friendly ways. It is, rather, embedded in the very chemistry of the process. The heat is applied to limestone, to break up its principal constituent, calcium carbonate, into calcium oxide (cement’s crucial ingredient) and CO2…

Intriguingly, this may be an area where microbes can come to the rescue….One proposal is to recruit the services of chlorophyll-laden, photosynthezing organisms called cyanobacteria. That has allowed Prometheus Materials, a firm in Colorado, to develop a cement-making process in which the energy comes not from heat but light—something easily generated from electricity that has, in turn, been provided by renewable sources. Moreover, and perhaps more importantly, photosynthesis subtracts CO2 from the atmosphere rather than adding it.

Applications for biocement extend beyond conventional construction, too. America’s Department of Defense, for one, has shown interest. Its aim is to be able to build things in remote areas without having to hump in cement and other materials. That would be doubly valuable if the territory through which the humping would otherwise be happening were hostile. Indeed, it was the Defense Department that catalyzed the formation of Prometheus, by awarding the team at the University of Colorado which later founded the firm a grant of $1.8m back in 2017.

The department is also, in the guise of the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory, collaborating with Biomason to develop biocement sprays that can turn sand or loose soil into runways. Michael Dosier, Biomason’s chief technologist (and the boss’s husband), says the hardening involved could require less than 72 hours.

Kathleen Hicks, America’s deputy secretary of defense, during a talk at the DARPA Forward conference, outlined a goal that is literally out of this world: an ability to spray a bacterial liquid on lunar or Martian regolith, in order to “grow a landing pad”.

Excerpts Green Construction: Building with Bacteria, Economist,  Nov. 26, 2022

Nuclear Waste Helps Reach Dark Places of Universe

European scientists are developing a breed of battery for space missions that is powered by nuclear waste. The European Space Agency (ESA) hopes that the technology will, by the end of the decade…Ministers at ESA’s ministerial council meeting in Paris on 22 and 23 November, 2022 agreed to fund a €29-million (US$30-million) program called European Devices Using Radioisotope Energy (ENDURE). This aims to develop long-lasting heat and electricity units powered by the radioactive element americium-241, in time for a series of ESA Moon missions in the early 2030s.

Americium, a by-product of plutonium decay, has never been used as a fuel. For missions in which solar power would not suffice — either because of shade or because of distance from the Sun — ESA has relied on US or Russian partners, which have used plutonium-238 batteries to power missions since the space race. 

The lack of a power source has long restricted the solo missions that European scientists propose, and limited others. The agency felt its lack of radioisotope power keenly in 2014, when its comet-landing Philae probe was operational for less than three days because it ended up in a shaded spot where its solar panels were useless. “For years, European scientists have been saying that if you want to go far, or to dark and cold places, there is no other way,” says Coustenis.

Americium’s big advantage over plutonium is that it is cheaper and more abundant, repurposing waste that would otherwise be useless…Americium has a longer half-life than plutonium-238, which means it lasts longer but packs less power per gram. But because americium is more readily available, producing one watt of power costs about one-fifth as much as it does using plutonium…

Excerpts from Elizabeth Gibney, How Nuclear Waste Will Help Spacecraft Explore the Moon and Beyond, Nature, Dec. 6, 2022

Stargazing as a Right and Colonization of Skies

Do people have a right to an unobstructed view of the heavens? For most of human history, such a question would have been considered nonsensical—but with the recent rise of satellite mega constellations, it’s now being asked again and again. Mega constellations are vast groups of spacecraft, numbering in the thousands, that could spark a multitrillion-dollar orbital industry and transform global connectivity and commerce. But the rise of mega constellations also threatens to clutter the night sky, disrupt the work of some astronomers and create space debris that harms people on Earth and in space alike. The mega constellation era began in May 2019, when Elon Musk’s firm SpaceX launched the first 60 satellites in its Starlink constellation… Today the constellation’s numbers have swelled to more than 3,000 and account for fully half of all active satellites in space.

Ramon Ryan has argued in the in the Vanderbilt Journal of Entertainment and Technology Law that the regulatory approval of these satellites by the U.S. Federal Communications Commission (FCC) may breach environmental law as part of the U.S. National Environmental Policy Act (NEPA) enacted in 1970. Specifically, he argued that the natural aesthetic of the night sky and the profession of astronomy may be protected under NEPA—but that the FCC has so far sidestepped NEPA’s oversight , thanks to a “categorical exclusion” the agency was granted in 1986 (when it simply wasn’t licensing that many satellites)….  

In November 2022, the US General Accounting Office (GAO) published a report that suggest that the FCC should revisit its categorical exclusion from NEPA and consider whether it should update its procedures in light of the rise of mega constellations. “We think they need to revisit [the categorical exclusion] because the situation is so different than it was in 1986,” says Andrew Von Ah, a director at the GAO…The White House Council on Environmental Quality (CEQ) recommends that agencies “revisit things like categorical exclusions once every seven years,” Von Ah says. But the FCC “hasn’t really done that since 1986.”

According to the report’s recommendations, the FCC should review whether mega constellations affect the environment…The findings showed there were concerns in a number of areas, not just the brightness of the satellites but also the collision risk they pose in space and the possible creation of space junk, the interference to radio astronomy caused by satellite radio transmissions and even the potential for satellites reentering the atmosphere to affect Earth’s climate or harm humans on the ground. ..

The day after the GAO report’s release, the FCC  announced the creation of a new bureau for its space activities, which will help the agency handle the applications for 64,000 new satellites it is presently considering…

Excerpts from  Jonathan O’Callaghan Satellite Constellations Could Harm the Environment, New Watchdog Report Says, Scientific American, November 24, 2022

How Come Space is Full of Human Junk?

Getting rid of the deadly debris orbiting the Earth should become a priority for firms trying to do business there. If only they knew exactly where it is. The space race comes with a growing litter problem: U.S. officials expect the number of satellites to increase almost tenfold to 58,000 by 2030, many of them with lifespans not much longer than five years.

Space trash could potentially trigger devastating chain reactions, posing a significant threat to a space economy that is forecast by Morgan Stanley to generate $1 trillion in revenues by 2040. Only three big collisions have happened to date, but close calls are increasingly common. In November 2021, denizens of the International Space Station (ISS) had to take refuge in their capsules after a Russian antisatellite missile test created a cloud of wreckage.

In September 2022, the U.S. Federal Communications Commission ruled that operators of satellites in the “low Earth orbit,” or LEO—below 1,200 miles of altitude—will, in two years’ time, be required to remove them “as soon as practicable, and no more than five years following the end of their mission.” The National Aeronautics and Space Administration, or NASA, did ask for space junk to be disposed of within 25 years, but these were voluntary guidelines. NASA said in a 2021 report that compliance has averaged under 30% over the past decade. Yet 90% compliance would be required just to slow the pace at which dead satellites, rocket bodies and loose fragments are accumulating. There may be little choice but to mount a cleanup operation. The main questions are who will do it and how the junk will be found.

With only limited interest from big aerospace companies, startups have stepped up. Months after its inception in 2018, Switzerland’s ClearSpace signed a €86.2 million ($86.3 million) contract with the European Space Agency, or ESA, to eliminate remains of a Vega rocket by 2025. ClearSpace will use a robot to get hold of the debris and burn it in the atmosphere. Then there is Tokyo-based Astroscale, which has raised $300 million in venture capital since its inception nine years ago. This September, the U.K. Space Agency awarded £4 million, equivalent to $4.6 million, to both companies to remove defunct British satellites by 2026.

The LEO revolution unleashed by Elon Musk’s SpaceX, which has launched over 3,000 of its miniaturized Starlink satellites, may suddenly turn this into a viable commercial market. Officials are getting spooked by all the extra clutter. In orbits lower than 375 miles, re-entry into the Earth naturally happens after a few years, but these will be crowded by Starlink alone. Many players will need to go higher, and set up “deorbit” plans that regulators—and sustainability-minded investors—find solid.

That still leaves satellite operators and trash-removal firms with a fundamental problem: Their information on an object, including position, shape and mass, involves a lot of guesswork. Most observations come from ground radars, which firms access through government agencies like the U.S. Space Command. But this data is often several hours old and can miss the mark by miles, so satellites and stations can’t swerve out of the way of approaching debris with full confidence. For removal missions, this will mean accommodating extra fuel and allowing for the possibility that an object is spinning faster than estimated, making it impossible to grab.

And this is for pieces larger than 10 centimeters, which according to the ESA number above 30,000 and are the only ones visible from Earth. Mathematical models suggest there are a million additional fragments measuring between one and 10 centimeters, and 100 million even smaller than that, often traveling many times faster than a bullet. Yet the ISS’s “Whipple shield” can be pierced by anything larger than one centimeter…

[A]ny company aspiring to profit from the final frontier will need to better understand the risks of the terrain. The alternative is a true tragedy of the commons that ends a promising new space age before it has really begun.

Excerpts from Jon Sindreu, The Difficult Search for Dangerous Space Junk, WSJ, Nov. 14, 2022

Geo-engineering Wars and Termination Shock

What if a country experiencing the bad effects of climate change—crop failures, perhaps, or serious flooding—were to begin, unilaterally and perhaps quietly, to try to modify the climate? Such a project, reckons DARPA, a research arm of America’s defence department, is possible. But it could trigger chaos, and not just of the meteorological sort. The agency, the overall objectives of which include preventing “strategic surprise”, has therefore recently begun to pay for research into how such an event might happen, and how to react to it.

DARPA’s assumption is that any attempt at unilateral geoengineering would use a technique called stratospheric aerosol injection (SAI). This would employ aircraft to disperse sulfuric acid, or its precursor sulfur dioxide, into the upper atmosphere, to form tiny sulfate particles that would reflect sunlight back into space. This would probably work (big volcanic eruptions, which do something similar, have a measurable effect on global temperatures). The costs, though, could be considerable—and not just directly in dollars.

A poorly designed SAI program might break down ozone, a form of oxygen that shields organisms, people included, from harmful ultraviolet radiation. Patterns of precipitation would also change, for cooler air absorbs less moisture, and these effects would undoubtedly vary from region to region. Another problem is the acid rain that would result.

Perhaps most pertinent, though, is that SAI would serve only to mask the effects of greenhouse gases rather than ending them. That brings the risk of “termination shock”, for the injected sulfate is constantly washed out of the atmosphere in rain and snow. The closure of and SAI program, particularly a long-lasting one, might thus cause a sudden heat jolt more difficult to deal with than the existing, gradual, warming.

That is one reason why Joshua Elliott, head of DARPA’s AI-assisted Climate Tipping-point Modelling (ACTM) program, says “we do not want to be caught flat-footed”. Modelling how Earth’s various climactic subsystems might react to SAI is no easy matter. Dr Elliott, however, reckons that better computer simulations would help. They might even, he says, eventually highlight “signatures” in climate data that would suggest that such geoengineering is afoot.

Nor is the risk of someone doing something stupid a fantasy. In 2019 Massimo Tavoni, a game theorist at Milan Polytechnic who is unaffiliated with DARPA organized six games played by 144 students. Participants were given a variety of ideal climate outcomes and allowed to spend toy money they were given on geoengineering projects to achieve them…Some players tried to counter efforts at cooling which they deemed excessive with attempts to warm the planet, resulting in a chaotic outcome that Dr Tavoni calls “geoengineering wars”. In the end, he says, “everybody loses.”…

DARPA is also developing “early warning” code to detect people undertaking geoengineering mischief on the sly, and testing it by running pairs of parallel simulations, one of which has been tweaked to reflect an SAI program being under way…SAI could even, conceivably, be undertaken by “self-authorizing” billionaires.

Areas which suffer most from rising temperatures would have greater incentives to take the plunge…including Algeria, Australia, Bangladesh, Egypt, India, Indonesia, Libya, Pakistan, Saudi Arabia and Thailand.

Excerpts from America’s defense department is looking for rogue geoengineers, Economist, Nov. 5, 2022

The Act of Successful Sabotage: cables and pipelines

On October 12, 2022 Vladimir Putin, Russia’s president, gave an ominous warning. Energy infrastructure around the world was now “at risk”, he said. Mr Putin’s warning came a month after explosions tore through Nord Stream 1 and 2, a pair of gas pipelines running from Russia to Europe under the Baltic Sea. The pipes were not in use at the time. But the ruptures left plumes of methane bubbling to the surface for days…

Subsea pipelines and cables have proliferated since the first one was laid, in 1850…There are more than 530 active or planned submarine telecoms cables around the world. Spanning over 1.3m kilometers they carry 95% of the world’s internet traffic. In November 2021, cables serving underwater acoustic sensors off the coast of northern Norway—an area frequented by Russian submarines—were cut.

Western officials say that a particular source of concern is Russia’s Main Directorate of Deep-Sea Research, known by its Russian acronym GUGI. It has a variety of spy ships and specialist submarines—most notably the Belgorod, the world’s biggest submarine, commissioned in July 2022—which can work in unusually deep water. They can deploy divers, mini-submarines or underwater drones, which could be used to cut cables. 

Cable chicanery, though, is not a Russian invention. One of Britain’s first acts during the first world war was to tear up German telecoms cables laid across the Atlantic. Germany responded with attacks on Allied cables in the Pacific and Indian Oceans.

More recently, espionage has been the order of the day..I.n 2013 Edward Snowden, a contractor for the National Security Agency (NSA), America’s signals intelligence agency, revealed an Anglo-American project had tapped at least 200 fiber-optic cables around the world. Yet the seabed is not amenable to control. A paper published in 2021 noted that Estonia and other Baltic states had only a limited grasp of what was going on under the Baltic because of quirks of hydrology, scarce surveillance platforms and limited information-sharing between countries. It concluded, perhaps presciently: “It would be difficult to prevent Russian [drones] deployed in international waters from damaging critical undersea infrastructure.”…

The first step in a sabotage mission is finding the target. With big, heavy pipelines, which are typically made from concrete-lined metal sections, that is relatively easy. Older communication cables, being smaller and lighter, can shift with the currents. Newer ones are often buried, It is also increasingly possible for operators to detect tampering, through  “distributed fiber-optic sensing”, which can detect vibrations in the cable or changes in its temperature. But that will not reveal whether the problem is a geological event or an inquisitive drone—or which country might have sent it. Underwater attribution is slow and difficult.

Determined attackers, in other words, are likely to get through. The effects of a successful attack will differ. Pipelines and subsea electricity cables are few in number. If one is blown up, gas, oil or electricity cannot easily be rerouted through another. Communication cables are different. The internet was designed to allow data to flow through alternative paths if one is blocked. And at least when it comes to connections between big countries, plenty of alternatives exist. At least 18 communication cables link America and Europe…There is significant redundancy on these routes. But  “There’s no collective institution that records all the incidents that are going on, and what is behind them—we don’t have any statistics behind it.” according to  Elisabeth Braw of the American Enterprise Institute.

Excerpts from Sabotage at Sea: Underwater Infrastructure, Economist, Oct. 22, 2022

Taming the Apocalypse Horsemen: Steel Cement Chemicals

Heavy industry has long seemed irredeemably carbon-intensive. Reducing iron ore to make steel, heating limestone to produce cement and using steam to crack hydrocarbons into their component molecules all require a lot of energy. On top of that, the chemical processes involved give off lots of additional carbon dioxide. Cutting all those emissions, experts believed, was either technically unfeasible or prohibitively expensive.

Both the economics and the technology are at last looking more favorable. Europe is introducing tougher emissions targets, carbon prices are rising and consumers are showing a greater willingness to pay more for greener products. Several European countries have crafted strategies for hydrogen, the most promising replacement for fossil fuels in many industrial processes. Germany is launching the Hydrogen Intermediary Network Company, a global trading hub for hydrogen and hydrogen-derived products. Most important, low-carbon technologies are finally coming of age. The need for many companies to replenish their ageing assets offers a “fast-forward mechanism”, says Per-Anders Enkvist of Material Economics…Decarbonising industry has turned from mission impossible to “mission possible”, says Adair Turner of the Energy Transitions Commission, a think-tank.

In July 2022 the board of Salzgitter, a German steel company, gave the nod to a €723m project called SALCOS that will swap its conventional blast furnaces for direct-reduction plants by 2033 (it will use some natural gas until it can secure enough hydrogen). Other big European steel producers, including ArcelorMittal and Thyssenkrupp, have similar plans.

HeidelbergCement, the world’s fourth-largest manufacturer of the cement has launched half a dozen low-carbon projects in Europe. They include a carbon capture storage (CCS) facility in the Norwegian city of Brevik and the world’s first carbon-neutral cement plant on the Swedish island of Gotland…The chemicals industry faces the biggest challenge. Although powering steam crackers with electricity instead of natural gas is straightforward in principle, it is no cakewalk in practice, given the limited supply of low-carbon electricity. Moreover, the chemicals business breathes hydrocarbons, from which many of its 30,000 or so products are derived. Even so, it is not giving up. BASF, a chemicals colossus, is working with two rivals, SABIC and Linde, to develop an electrically heated steam cracker for its town-sized factory in Ludwigshafen. It wants to make its site in Antwerp net-zero by 2030. 

A few dozen pilot projects—even large ones—do not amount to a green transition. The hard part is scaling them up.  However, the first movers will be able to  set the standards and grabbing a slice of potentially lucrative businesses such as software to control hydrogen- and steelmaking equipment. 

Excerpts from Green-dustrialization, Economist, Sept. 24, 2022

Exist, Evolve, Be Restored: the Rights of Nature

Only a few years ago, the clear, shallow waters of Mar Menor, a saltwater lagoon off eastern Spain that is Europe’s largest, hosted a robust population of the highly endangered fan mussel, a meter-long bivalve. But in 2016, a massive algal bloom, fueled by fertilizer washing off farm fields, sucked up the lagoon’s oxygen and killed 98% of the bivalves, along with seahorses, crabs, and other marine life.

The suffocating blooms struck again and again, and millions of dead fish washed onto shore. In 2021 local residents—some of whom benefit from tourism to the lagoon—had had enough. Led by a philosophy professor, activists launched a petition to adopt a new and radical legal strategy: granting the 135-square-kilometer lagoon the rights of personhood. Nearly 640,000 Spanish citizens signed it, and on 21 September, Spain’s Senate approved a bill enshrining the lagoon’s new rights. The new law doesn’t regard the lagoon and its watershed as fully human. But the ecosystem now has a legal right to exist, evolve naturally, and be restored. And like a person, it has legal guardians, including a scientific committee, which will give its defenders a new voice.

The lagoon is the first ecosystem in Europe to get such rights, but this approach to conservation has been gaining popularity around the world over the past decade…The clearest success story, scholars say, is the Whanganui River in New Zealand, which was given legal rights by an act of Parliament in 2017. Like a person, the river and its catchment can sue or be sued, enter contracts, and hold property. In that case, the aim was not to stop pollution but to incorporate the Māori connection between people and nature into Western law. “The river and the land and its people are inseparable,” Niko Tangaroa, a Māori elder of the Whanganui Iwi people and a prominent activist for the river, wrote in 1994.

Excerpts from Erik Stokstad, This Lagoon is Effectively a Person, New Spanish Law Says, Science, Oct. 7, 2022

Rich Environmental Criminals

“The brutality and profit margins in the area of environmental crime are almost unimaginable. Cartels have taken over entire sectors of illegal mining, the timber trade and waste disposal,” according to Sasa Braun, intelligence officer with Interpol’s environmental security program  Braun listed examples. Villages in Peru that had resisted deforestation efforts had been razed to the ground by criminal gangs in retribution, he said, while illegal fishing fleets had thrown crew overboard to avoid having to pay them.

Environmental crime has many faces and includes the illegal wildlife trade, illegal logging, illegal waste disposal and the illegal discharge of pollutants into the atmosphere, water or soil. It is a lucrative business for transnational crime networks. Illegal waste trafficking, for example, accounts for $10 to 12 billion (€10.28 to 12.34 billion) annually, according to 2016 figures from the United Nations Environment Program. Criminal networks save on the costs of proper disposal and obtaining permits. For some crime networks, the profits from waste management are so huge that it has become more interesting than drug trafficking…The profits from illegal logging have also grown…

According to the European Union Agency for Law Enforcement Cooperation (Europol), environmental crime — the third most lucrative area of crime worldwide after drug trafficking and counterfeit goods — generates profits of between $110 billion and $280 billion each year.

Excerpts from Environmental crime: Profit can be higher than drug trade, DW, Oct. 16, 2022

Patriotic Traitors: Covering Up Oil Theft in Nigeria

Nigeria, Africa’s most populous country desperately needs the money an oil boom could bring. Some 40% of its people live on less than the equivalent of $1.90 a day. The woeful economy has contributed to the violence that afflicts much of the country. In the first half of this year, nearly 6,000 people were killed by jihadists, kidnappers, bandits or the army.

One of the reasons Nigeria’s public finances benefit so little from high oil prices is that production itself has slumped to 1.1m barrels per day, the lowest in decades. Output has been dipping since 2005.  Output is falling partly because the Nigerian National Petroleum Corporation (NNPC) is so short of cash…And a lot of the oil it pumps never makes it into official exports because it is stolen. Watchdogs reckon that 5-20% of Nigeria’s oil is stolen…The spate of vandalism at one point prompted the NNPC to shut down its entire network of pipelines, he said.

One way to steal is to understate how much oil has been loaded in legitimate shipments. Another is to break into pipelines and siphon oil off, then cook it up in bush refineries before selling it. Five years ago the Stakeholder Democracy Network, a watchdog in the Niger Delta, carried out a survey that found more than a hundred such refineries in just two of Nigeria’s nine oil-producing states. Lacking other ways to make a good living, hundreds of thousands of young people are involved in illegal refining, says Ledum Mitee, a local leader from Ogoniland, a region in the Delta.
 
Plenty of stolen crude goes straight into the international market. Small boats glide along the Delta’s canals, filling up from illegally tapped pipelines. They deliver it to offshore tankers or floating oil platforms. Sometimes the stolen crude is mixed with the legal variety, then sold to unknowing buyers. Much of it, however, is bought by traders who pretend not to know it is stolen, or simply do not care if it is or not. “

Tapping into the pipes for large volumes, heated to keep the crude flowing, requires real expertise. It also requires complicity from some of the officials running the pipelines and from the security forces supposedly guarding them…The NNPC itself is “the north star in Nigeria’s kleptocratic constellation”, says Matthew Page of Chatham House, a think-tank in London.

Excepts from How oil-rich Nigeria failed to profit from an oil boom, Economist, Sept. 17, 2022

Irradiating Plastics to Death: the IAEA Solution

Plastic pollution has become one of the major global environmental challenges of the century; projections show that by 2050 the oceans may have more plastic than fish. Nuclear technology has emerged as one innovative solution to this growing problem. The International Atomic Energy Agency (IAEA) has been working on an initiative called  Nuclear Technology for Controlling Plastic Pollution – NUTEC Plastics.

Nuclear technology can be used to innovate plastic waste recycling and support development of biodegradable, green alternatives to single use petroleum-based plastic products – an approach aimed at reducing the volume of plastic waste world-wide and prevent the plastics from reaching earth’s marine environments.  Nuclear techniques can also be used to quantify and characterize marine microplastic pollution and to assess their impact on coastal and marine ecosystems.  A global plastics monitoring network of marine laboratories can also help tackle marine pollution. Presently, there are 55 laboratories in the global NUTEC Plastics Monitoring Network. ..

The Philippines has a significant plastic pollution problem and a great interest in recycling. The Department of Science and Technology (DOST) in the Philippines has undertaken a pre-feasibility study for a pilot plant employing electron beam radiation to combine two waste streams – plastics and palm tree fibers – into a new consumer product, construction material…

The IAEA is unique within the United Nations system in having laboratories in Austria and Monaco that apply nuclear science to help states address some of the world’s biggest issues, including plastic pollution… The Monaco laboratories serve as the central hub to the global NUTEC Plastics Monitoring Network.

Excerpts from Sinead Harvey, More Plastic Than Fish by 2050 – IAEA Event Gathers Experts Working Together to Save Marine Environments from Plastic Pollution, IAEA Newsletter, Sept. 28, 2022
 

The Power of Listening: when Indigenous People Win

 Indigenous traditional owners on Sept. 21, 2022 won a court challenge that prevents an energy company from drilling for gas off Australia’s north coast. The Federal Court decision against Australian oil and gas company Santos Ltd. was a major win for Indigenous rights in the nation. Dennis Murphy Tipakalippa, who was described in court documents as an elder, senior lawman and traditional owner of the Munupi clan on the Tiwi Islands, had challenged the regulator’s approval of Santos’ $3.6 billion plan to drill the Barossa Field beneath the Timor Sea. Justice Mordy Bromberg quashed the February decision by the regulator, the National Offshore Petroleum Safety and Environmental Management Authority, to allow the drilling.

Tipakalippa had argued that the regulator could not be “reasonably satisfied,” as required by law, that Santos had carried out necessary consultations with indigenous peoples about its drilling plans. Santos had not consulted with his clan, Tipakalippa said, and he feared the project would harm the ocean environment.

See Tipakalippa v National Offshore Petroleum Safety and Environmental Management Authority (No 2) [2022] FCA 1121    

Judge Bromberg went to the Tiwi Islands in August and took evidence about the Munupi people’s connection to the environment. According to indigenous peoples, the court’s willingness  to travel and listen to communities are signs that Australian institutions are increasingly taking  the concerns and heritage of indigenous peoples into account.

ROD McGUIRK, Australian Indigenous traditional owners halt gas drilling, AP, Sept. 21, 2022; Mike Cherney, In Australian Gas-Project Dispute, Sacred Dances Part of Court Hearing, WSJ, Sept. 8, 2022

New Drugs: Animals Stuck to the Seabed

Biologists are working with engineers to develop new tools to accelerate the development of medicines derived from marine animals, focusing on ocean-going robots with onboard DNA-sequencing gear. They foresee fleets of autonomous submersible robots trolling the ocean like electronic bloodhounds to sniff out snippets of the animals’ DNA in seawater—and then gathering and analyzing this so-called environmental DNA, or eDNA.

“The ultimate goal is an underwater vehicle that collects environmental DNA samples, sequences them and then sends the data back to the lab,” says Kobun Truelove, senior research technician at the Monterey Bay Aquarium Research Institute in California. “We would like to set up a network where you would have these autonomous vehicles out there sampling and then basically be getting the data back in real time.”

More than 1,000 marine-organism-derived compounds have shown anticancer, antiviral, antifungal or anti-inflammatory activity in medical assays, according to a database compiled by the Midwestern University Department of Marine Pharmacology. The U.S. Food and Drug Administration has approved 15 drugs derived from marine organisms, including ones for chronic pain and high cholesterol. Another 29 marine animal-derived compounds are now in clinical trials, according to the database.

Marine invertebrates are a key target of biomedical research because the animals—mostly attached to the seabed and unable to move—have evolved sophisticated chemical defenses to fend off fish, turtles and other predators in their environment. Research has shown that the natural toxins that comprise these defenses can be toxic to cancer cells and human pathogens. These sea creatures “make a broad range of different chemistries, things that synthetic chemists never thought of making,” says Barry O’Keefe, who have also identified compounds produced by bacteria living symbiotically with marine invertebrates. Once scientists have a suitable sample of eDNA and it’s been sequenced, they say, they can identify compounds the organisms are capable of producing. Then researchers can synthesize the compounds and test them to see if they have medicinal properties…

Collection of eDNA promises to be faster and less costly than the complex method commonly used   collect marine specimens—one that Amy Wright, director of the natural products group at Florida Atlantic University’s Harbor Branch Oceanographic Institution, likens to a treasure hunt. Currently, research vessels on weekslong expeditions launch submersible vehicles equipped with clawlike grabbers and suction tubes for gathering specimens. Once the vehicles and their payload are back on the ships, researchers preserve them and deliver them to labs, where their genomes are sequenced. The entire process can take weeks and is expensive. Just paying the crew to operate a research vessel for a single day can cost $35,000, according to the National Science Foundation.

Excerpts from  Eric Niile, Finding New Drugs From the Deep Sea via ‘eDNA’, WSJ, Sept. 3, 2022

Bury It and Forget It: Nuclear Waste

The first nuclear burial site has been built in Finland, the Onkalo spent nuclear fuel repository]. Deep geological disposal of this sort is widely held to be the safest way to deal with the more than 260,000 tons of spent nuclear fuel which has accumulated in 33 countries since the first nuclear plants began churning out electricity in the mid-1950s, and the still large…. Spent fuel is a high-level nuclear waste. That means it is both physically hot (because of the energy released by radioactive decay) and metaphorically so—producing radiation of such intensity that it will kill a human being in short order. Yet unlike the most radioactive substances of all, which necessarily have short half-lives, spent fuel will remain hot for hundreds of thousands of years—as long, in fact, as Homo sapiens has walked Earth—before its radioactivity returns to roughly the same level as that of the ore it came from.

Once full, the waste repository will be backfilled with bentonite before their entrances are sealed with a reinforced-concrete cap. In 100 years’ time, Finland will fill the whole site in, remove all traces of buildings from the surface and hand responsibility over to the Finnish government. The thinking is that leaving no trace or indication of what lies below is preferable to signposting the repository for the curious to investigate.

[Unless someone decides to drill?]

Excerpt from Nuclear Waste: Oubliette, Economist, June 25, 2022

Military Uses of Dolphins

The U.S. NAVY MARINE MAMMAL PROGRAM: Since 1959, the U.S. Navy has trained dolphins and sea lions  to help guard against threats underwater….Dolphins naturally possess the most sophisticated sonar known to science. Mines and other potentially dangerous objects on the ocean floor that are difficult to detect with electronic sonar, especially in coastal shallows or cluttered harbors, are easily found by the dolphins. Both dolphins and sea lions have excellent low light vision and underwater directional hearing that allow them to detect and track undersea targets, even in dark or murky waters. They can also dive hundreds of feet below the surface, without risk of decompression sickness or “the bends” like human divers. Someday it may be possible to complete these missions with underwater drones, but for now technology is no match for the animals…Dolphins are trained to search for and mark the location of undersea mines that could threaten the safety of those on board military or civilian ships..
How do the animals travel to remote work sites? By airplanes and helicopters (yes!)

Excerpt from US Naval Information Warfare Center

Stopping the Bleeding of the Horseshoe Crab

Every April in South Carolina, fishermen catch hundreds of horseshoe crabs as they crawl onto shore to mate. The crabs are transported to labs owned by Charles River, an American pharmaceutical company, in Charleston. There they are strapped to steel countertops and, still alive, drained of about a third of their blue-colored blood. Then they are returned to the ocean. This liquid is vital for America’s biomedical industry. A liter of it goes for as much as $15,000. Bleeding is not without harm to the crabs. Conservationists estimate that between 5% and 30% of them die on release…In 2016 the International Union for Conservation of Nature listed them as “vulnerable” to extinction… 

Parts of modern medicine have been unusually reliant on the horseshoe crab. Its blood is the only known natural source of limulus amebocyte lysate (LAL), an extract that detects endotoxin, a nasty and sometimes fatal bacterium. Drug firms use it to ensure the safety of medicines and implanted devices, including antibiotics, anti-cancer drugs, heart stents, insulin and vaccines. The immune cells in the crab’s blood clot around toxic bacteria, giving a visual signal of unwanted contamination. As pharmaceutical companies ramped up production of the covid-19 jab, demand for the blue liquid soared. In 2020 nearly 650,000 crabs were bled in America, 36% more than in 2018.

As crab numbers fall and demand for LAL rises, America’s biomedical industry will face a crunch. Yet a synthetic alternative to LAL is already available and used in China and Europe.

Excerpt from In America, crab blood remains vital for drug- and vaccine-making, Economist, Sept. 3, 2022

Spoiling the Nuclear-Industry Party: Nuclear Waste

According to a new study, the world’s push for Small Modular Nuclear Reactors to address climate change will generate more radioactive waste than the larger, existing reactors, and its chemical complexity will make it more difficult to manage.

Published in the peer-reviewed journal of the National Academy of Sciences, the study compared designs for three small modular reactors (SMRs) with a standard pressurized-water reactor… It concluded that most SMR designs will “entail a significant net disadvantage for nuclear waste disposal” and will produce wastes that aren’t compatible with existing disposal practices and facilities…

Traditional reactors have been capable of generating up to 1,000 or more megawatts of electricity, and are water-cooled; their spent fuel is highly radioactive and must be isolated from the environment for hundreds of thousands of years. SMRs by definition produce less than 300 megawatts, and would be cooled by novel substances such as molten salt or helium, producing different wastes…The smaller a reactor is, the more neutrons tend to escape the core and affect other components. That will create more radioactivity in the materials used in the reactor vessel which will have to be accounted for as a waste product. The researchers also determined that fuels from some SMRs would likely need processing to make them suitable for underground disposal.

The researchers found the SMRs would produce between double and 30-fold the volumes of waste arising from a typical reactor. They estimated spent fuel would contain higher concentrations of fissile materials than that from traditional reactors. That means the fuel could be at risk of renewed fission chain reactions if stored in high concentrations, meaning it would need to occupy more space underground. Such assertions contradict marketing claims from many SMR vendors…

In 2021, the Union of Concerned Scientists published a report that concluded many proposed SMRs would require new facilities to manage their wastes. It called claims that SMRs could burn existing waste “a misleading oversimplification.” The report found that reactors can consume only a fraction of spent fuel as new fuel – and that requires reprocessing to extract plutonium and other materials that could be used in weapons, thus raising what the organization described as an “unacceptable” risk.

Excerpt from MATTHEW MCCLEARN,The world’s push for small nuclear reactors will exacerbate radioactive waste issues, researchers say, Globe and Mail, June 3, 2022

What is your Extinction-Risk Footprint?

A new study quantifies how the consumption habits of people in 188 countries, through trade and supply networks, ultimately imperil more than 5,000 threatened and near-threatened terrestrial species of amphibians, mammals and birds on the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. For the study, recently published in Scientific Reports, researchers used a metric called the extinction-risk footprint. The team found that 76 countries are net “importers” of this footprint, meaning they drive demand for products that contribute to the decline of endangered species abroad. Top among them are the U.S., Japan, France, Germany and the U.K. Another 16 countries—with Madagascar, Tanzania and Sri Lanka leading the list—are designated as net “exporters,” meaning their extinction-risk footprint is driven more by consumption habits in other countries. In the remaining 96 countries, domestic consumption is the most significant driver of extinction risk within those nations.

African trees logged in gorilla habitat, for example, could end up as flooring in Asia.  Other species highlighted in the study include the Malagasy giant jumping rat, a mammal that can jump 40 inches high and is found only in Madagascar. Demand for food and drinks in Europe contributes to 11 percent of this animal’s extinction-risk footprint through habitat loss caused by expanding agriculture. Tobacco, coffee and tea consumption in the U.S. accounts for 3 percent of the extinction-risk footprint for Honduras’s Nombre de Dios streamside frog, an amphibian that suffers from logging and deforestation related to agriculture.

Excerpt from Susan Cosier, How Countries ‘Import’ and ‘Export’ Extinction Risk Around the World, Scientific American, May 31, 2022

God’s Channels: How to Hear Whales and Bomb Explosions

About 1 kilometer under the sea lies a sound tunnel that carries the cries of whales and the clamor of submarines across great distances. Ever since scientists discovered this Sound Fixing and Ranging (SOFAR) channel in the 1940s, they’ve suspected a similar conduit exists in the atmosphere. But few have bothered to look for it, aside from one top-secret Cold War operation.

Today by listening to distant rocket launches with solar-powered balloons, researchers say they have finally detected hints of an aerial sound channel, although it does not seem to function as simply or reliably as the ocean SOFAR. If confirmed, the atmospheric SOFAR may pave the way for a network of aerial receivers that could help researchers detect remote explosions from volcanoes, bombs, and other sources that emit infrasound—acoustic waves below the frequency of human hearing.

After geophysicist Maurice Ewing discovered the SOFAR channel in 1944, he set out to find an analogous layer in the sky. At an altitude of between 10 and 20 kilometers is the tropopause, the boundary between the troposphere, the lowest layer of the atmosphere (where weather occurs), and the stratosphere. Like the marine SOFAR, the tropopause represents a cold region, where sound waves should travel slower and farther. An acoustic waveguide in the atmosphere, Ewing reasoned, would allow the U.S. Air Force to listen for nuclear weapon tests detonated by the Soviet Union. He instigated a top-secret experiment, code-named Project Mogul, that sent up hot air balloons equipped with infrasound microphones. The instruments often malfunctioned in the high winds, and in 1947, debris from one balloon crashed just outside of Roswell, New Mexico; that crash sparked one of the most famous UFO conspiracy theories in history. Soon after, the military disbanded the project. But the mission wasn’t declassified for nearly 50 years…

[Today] researchers plan to listen to launches of rockets with multiple solar-powered balloons staggered at different altitudes to figure out where the channel’s effects are strongest. They also plan to test the range of the signals and investigate the mysterious background noise. Understanding how the channel functions could help lay the groundwork for a future aerial infrasound network, which would monitor Earth constantly for major explosions and eruptions.

Excerpts from Zack Savisky, Balloon Detects First Signs of a ‘Sound Tunnel’ in the Sky, Science, Apr. 27, 2022

The Best Opportunity for Nuclear Industry

[After the war on climate change….]Russia’s war in Ukraine has created the “best opportunity” for Japan’s nuclear industry to stage a comeback since the 2011 Fukushima disaster, according to the country’s largest reactor maker. Akihiko Kato, nuclear division head at Mitsubishi Heavy Industries, said in an interview with the Financial Times…” Japan’s heavy reliance on Russian gas imports has rekindled a debate over nuclear power in the country more than a decade after regulators took most plants offline following one of the worst nuclear disasters in history. The world’s third-largest economy has been plunged into a power crisis exacerbated by the soaring cost of liquefied natural gas and oil. Japan imports about 9 per cent of its LNG from Russia, putting it in a difficult diplomatic position as its western allies impose sanctions on Moscow.

But in contrast with the US, which sources close to a quarter of its processed uranium from Russia, Japan imports about 55 per cent of its processed uranium from western European countries, according to Ryan Kronk, a power markets analyst at Rystad Energy. Kato’s remarks underscored a shift in the country’s nuclear narrative, with an industry that had been in retreat now emboldened to speak out. His remarks come after Prime Minister Fumio Kishida told investors this month in London that Japan would use nuclear power to “help the world achieve de-Russification of energy”. “

Mitsubishi Heavy expects an increase in orders for components from Europe in the coming years, as countries including the UK and France commit to building new nuclear plants.  

Excerpts from Ukraine war is ‘best opportunity’ for nuclear comeback since Fukushima, industry says, FT, May 15, 2022

The Lies Around Plastics

California’s attorney general is investigating Exxon Mobil C and other fossil-fuel and petrochemical companies, accusing them of misleading the public about the impact of plastic pollution. He said his office has issued a subpoena to Exxon seeking information about what he called an “an aggressive campaign to deceive the public, perpetuating a myth that recycling can solve the plastics crisis.” 

“The truth is: The vast majority of plastic cannot be recycled,” Mr. Bonta said. “This first-of-its-kind investigation will examine the fossil fuel industry’s role in creating and exacerbating the plastics pollution crisis—and what laws, if any, have been broken in the process.”

Plastics and other petrochemical products are ubiquitous features of modern life, used to fashion everything from car fenders and shampoo bottles to smartphones. The United Nations estimates that the world generates more than 400 million metric tons of plastic waste every year and that vast amounts of that end up in oceans and other waterways. Plastics take hundreds of years to decompose and first break down into tiny particles. Scientists have found these particles in drinking water and food, and some estimate many human beings will consume dozens of pounds of plastic in their lifetimes.

Driven by the shale drilling revolution, which unleashed massive volumes of oil and gas, the petrochemical industry has invested more than $200 billion in U.S. plastics-and-chemical-manufacturing plants over the past decade. Exxon has invested billions of dollars on such facilities and is one of the world’s largest producers of virgin plastic.

Petrochemical companies have recently promised to invest billions of dollars in recycling. Exxon said last year that it would build its first large recycling facility in Texas, which it said would initially have the capacity to recycle 30,000 metric tons of plastic waste a year. The Minderoo Foundation, an Australian philanthropic group, estimates that Exxon produced 5.9 million metric tons of single-use plastic in 2019. The Environmental Protection Agency estimates the U.S. typically recycles only about 9% of produced plastic.

Excerpts from Christopher M. Matthew, Exxon Subpoenaed in California’s Probe of Plastics Makers, Apr. 29, 2022

See also Inside the long war to protect plastic

Should We Boil Lobsters Alive?

If the UK joins a handful of other nations to recognize the sentience of invertebrates, such as cephalopod mollusks and decapod crustaceans, by, for example, prohibiting the boiling of live lobsters, this will be based on evidence that emotions and felt experiences (i.e., sentience) are not limited to animals close to humans, such as the mammals.

Over a decade ago, the same debate revolved around fish. Do fish feel pain? …This debate was settled when fish were found to learn from encounters with negative stimuli by avoiding dangerous locations. The best explanation is that fish remember these locations because they felt and neuronally processed aversive experiences. The same logic has been followed for arthropods, such as crabs, which in experiments learn to avoid locations where they have been shocked…

For example, the face—the proverbial window on human emotions—expresses emotions through similar muscular contractions…indistinguishable between humans and chimpanzees. Obviously, increasingly distant species have increasingly different expressions of the emotions, but research has found that, for example, physiological changes, lowered temperature of the extremities, and activation of the amygdala during fear are notably similar in fearful rats and fearful humans…. 

Bees subjected to vigorous physical agitation (shaking) to simulate a predatory attack proved less willing to explore new tastes, and hence were negatively biased by their experience. They also showed reduced amounts of hemolymph dopamine, octopamine, and serotonin. Changes in these neurotransmitters mark anxiety or depression in humans.

 It is not hard to see that the denial of animal emotions, and by extension animal feelings, has been morally convenient during human’s history of animal exploitation. Conversely, their recognition is bound to shake up our moral decision-making…If crabs experience emotional states, then they have an interest in these states being positively valenced. Current research indicates that a wide range of animals have interests in avoiding felt pain, and that they would not consent to painful procedures if given the opportunity….

When the medical community recognized infant pain in the 1980s, it was because the evidence was so overwhelming that physicians could no longer act as if infants are immune to pain.

Excerpts from Frans BM de Waal and Kristin Andrews, The question of Animal Emotions, Science, Mar. 25, 2022

Who Is Responsible for the Death of Birds?

Oil industry groups and wildlife conservation advocates are squaring off over Biden administration plans of 2022 to adopt new federal rules for the accidental killing of migratory birds…The measures being considered could include a permit process for new skyscrapers, power lines, wind turbines and other structures that birds fly into, often with fatal results. Businesses that secure a permit would limit exposure to steep fines for inadvertent bird killings under the Migratory Bird Treaty Act. Fish and Wildlife officials are also considering assessing a conservation fee as part of that permit process, with the money going to help mitigate habitat loss that has contributed to declining bird populations.

The agency said the rules are needed to protect declining populations of migratory birds, noting that nearly 10% of roughly 1,100 species protected by the Migratory Bird Treaty Act are threatened or endangered. While much of that is because of habitat loss from new development and agriculture, the agency says that “millions of birds are directly killed by human-caused sources such as collisions with man-made structures,” according to a Fish and Wildlife document.

Environmentalists are backing the effort, along with some businesses that say existing regulations are ambivalent and need clarification. But the permit system, even in its infancy, is being opposed by the American Exploration & Production Council and several other oil and gas production groups. They say no data exists to show that a permitting program will protect birds “over and above our industry’s operational practices and conservation measures.” Oil and gas drilling contributes to accidental deaths of birds in several ways, including when birds fly into the colorless flames as excess methane gas is being burned off from wells.

Pits used for disposal of mud, wastewater and other liquids in connection with oil drilling are estimated to kill hundreds of thousands of birds annually, according to a Fish and Wildlife report….The American Petroleum Institute, the industry’s top lobbying group, said the Biden administration should limit criminal punishments to intentional killings following court rulings that the law doesn’t apply to accidents. If regulators create a permit program, they said it should be general, not project specific, to minimize “undue administrative burdens or delay.”

The U.S. Chamber of Commerce and other business groups raised concerns that the permit process could obstruct projects funded by the bipartisan $1 trillion infrastructure plan—along with new wind and solar energy projects that the White House wants to reduce U.S. dependence on fossil fuels and help combat climate change…Wind turbines are estimated to kill between 140,000 and 500,000 birds a year, according to Fish and Wildlife, and a major expansion of those turbines could push bird deaths over 1 million annually, wildlife researchers have estimated.

Duke Energy Corp., whose subsidiary was fined $1 million in 2013 after dozens of birds died at a wind-turbine project in Wyoming, said it supports the new rule-making effort.

TOP THREATS TO BIRDS
Hazard type — Average annual deaths (est.)

Cats — 2,400,000,000
Building glass collisions — 599,000,000
Vehicle collisions — 214,500,000
Poison — 72,000,000
Power line collisions — 25,500,000
Communication tower collisions — 6,600,000
Electrocutions — 5,600,000
Oil Pits — 750,000
Wind-turbine collisions (land-based) — 234,012
Source: U.S. Fish and Wildlife Service, 2017

Excerpts from Katy Stech Ferek, Battle Looms Over Bird Protection, WSJ, Apr. 15, 2022

Normal Nuclear Accidents

In March 2022, a nearly tragic accident involving India and Pakistan pointed to another path to nuclear war. The accident highlighted how complex technological systems, including those involving nuclear weapons, can generate unexpected routes to potential disaster—especially when managed by overconfident organizations.

India and Pakistan possess more than 300 nuclear weapons between them, and have fought multiple wars and faced many military crises. On March 9,2022 three years after their dispute over Kashmir escalated into attacks by jet fighters, the Pakistan Air Force detected “a high speed flying object” inside Indian territory change course and veer suddenly toward Pakistan.* It flew deep into Pakistan and crashed. The object was a BrahMos cruise missile, a weapon system developed jointly by India and Russia. India soon stated the launch was an accident.

The firing of the BrahMos missile falls within a long history of accidents involving military systems in India. Military aircraft have strayed across the borders during peacetime. India’s first nuclear submarine was reportedly “crippled” by an accident in 2018, but the government refused to divulge any details. Secrecy has prevented the investigation of an apparent failure of India’s ballistic missile defense system in 2016. Engagements between India and Pakistan can arise from such accidents, as in 1999 when a Pakistani military plane was shot down along the border by India, killing 16 people. Pakistan has had its share of accidents, including a Pakistani fighter jet crashing into the capital city in 2020.

All these weapons systems are inherently accident-prone because of two characteristics identified by organizational sociologist Charles Perrow decades ago—interactive complexity and tight coupling—that combine to make accidents a “normal” feature of the operation of some hazardous technologies. The first characteristic refers to the possibility that different parts of the system can affect each other in unexpected ways, thus producing unanticipated outcomes. The second makes it hard to stop the resulting sequence of events. For Perrow, “the dangerous accidents lie in the system, not in the components,” and are inevitable.

Perhaps the best and most troubling proof of this proposition is in the realm of nuclear weapons—which embody all the properties of high-risk technological systems. Despite decades of efforts to ensure safety, these systems have suffered many failures, accidents and close calls. During 1979–1980, for example, there were several false warnings of Soviet missile attacks, some of which resulted in U.S. nuclear forces being put on alert.  

Given the secretive nature of Indian nuclear policymaking, little is known about India’s nuclear command and control system. However, the 1999 Draft Nuclear Doctrine called for “assured capability to shift from peacetime deployment to fully employable forces in the shortest possible time.” The combination of technology and plans for being able to rapidly launch nuclear weapons raises the risk of accidental and inadvertent escalation to nuclear war.  

South Asia’s geography is pitiless. It would only take five to 10 minutes for a missile launched from India to attack Pakistan’s national capital, nuclear weapon command posts or bases….Compounding these dangers is the overconfidence of India’s officials, who displayed no recognition of the gravity of the Brahmos accident.

Excerpt from Zia Mian, M. V. Ramana, India’s Inadvertent Missile Launch Underscores the Risk of Accidental Nuclear Warfare, Scientific American, Apr. 8, 2022
 

Regulators are Smart but Smugglers are Smarter

In a move cheered by climate activists, the European Union began in 2015 to restrict the production and import of gases known as hydrofluorocarbons (HFCs). HFCs are widely used in refrigeration, air-conditioning and manufacturing, but they are also potent greenhouse gases. The first big shortages hit in early 2018. Prices across Europe multiplied sixfold or even more. The EU wanted to push HFC users to adopt pricey, climate-friendlier alternatives. It thought that the engineered shortage would do the trick.

But prices are still not much higher than before the crunch. The reason: HFCs were being smuggled into the EU. The trafficking is still going on. The Environmental Investigation Agency, a watchdog based in London that has dispatched researchers to pose as buyers in Romania, estimates that a quarter of all HFCs  in the EU are contraband. A body formed by chemical companies, the European FluoroCarbons Technical Committee (EFCTC), says the proportion may be as high as a third.

Such estimates are rough. But they have not been plucked from thin air. Much can be inferred, for example, by examining officially registered trade flows. Data from Turkish sources show that in 2020 more than four times as much HFC tonnage left Turkey bound for the EU than the latter reported as imported. This suggests that plenty of tanks and canisters holding HFCs enter on the sly.

The smuggling has hit some firms particularly hard. To supply greener alternatives to HFCs, Chemours, an American firm, spent around $500m on r&d and production facilities. But with illegal imports continuing to hold down HFC prices, demand for alternatives has been “stagnating” and even declining…

This has miffed America. In a report last year on barriers to trade, Katherine Tai, the American trade representative, wrote that the eu’s “insufficient oversight and enforcement” of its HFC caps is hurting American chemical firms, not to mention the climate. European officials, for their part, point to the difficulty of preventing profitable

When prices first soared, a car boot could be filled in Ukraine with canisters of an HFC blend called R404A that would sell, hours later, for ten times as much in Poland. Margins have since shrunk as legions have got in on the action. But contraband HFCs are still so valuable that canisters are sometimes given space on boats trafficking migrants from north Africa to Europe…The black market is now dominated by crime syndicates that move large volumes, says the European Anti-Fraud Office (OLAF). Most of the contraband seems to come from China, Russia, Turkey and Ukraine.

Excerpts from HFC Smuggling: Free as Air, Economist, Feb. 26, 2022

How Forests Create Clouds and Cool the Earth

Tropical forests have a crucial role in cooling Earth’s surface by extracting carbon dioxide from the air. But only two-thirds of their cooling power comes from their ability to suck in CO2 and store it. The other one-third comes from their ability to create clouds, humidify the air and release cooling chemicals. This is a larger contribution than expected for these ‘biophysical effects’ says Bronson Griscom, a forest climate scientist.

The analysis, published in Frontiers in Forests and Global Change in March 2022, could enable scientists to improve their climate models, while helping governments to devise better conservation and climate strategies. The findings underscore growing concerns about rampant deforestation across the tropics. Scientists warn that one-third of the world’s tropical forests have been mown down in the past few centuries, and another one-third has been degraded by logging and development. This, when combined with climate change, could transform vast swathes of forest into grasslands

Trees in the tropics provide shade, but they also act as giant humidifiers by pulling water from the ground and emitting it from their leaves, which helps to cool the surrounding area in a way similar to sweating, Griscom says. “If you go into a forest, it immediately is a considerably cooler environment,” he says.

This transpiration, in turn, creates the right conditions for clouds, which like snow and ice in the Arctic, can reflect sunlight higher into the atmosphere and further cool the surroundings. Trees also release organic compounds — for example, pine-scented terpenes — that react with other chemicals in the atmosphere to sometimes create a net cooling effect… When they considered only the biophysical effects, the researchers found that the world’s forests collectively cool the surface of the planet by around 0.5 °C.

Threats to tropical rainforests are dangerous not only for the global climate, but also for communities that neighbour the forests, Lawrence says. She and her colleagues found that the cooling caused by biophysical effects was especially significant locally. Having a rainforest nearby can help to protect an area’s agriculture and cities from heatwaves, Lawrence says. “Every tenth of a degree matters in limiting extreme weather. And where you have forests, the extremes are minimized.”

Excerpts from Freda Kreier, Tropical forests have big climate benefits beyond carbon storage, Nature, 

Unleashing Hydropower without Wasteful Disasters

After years of fighting, Native American tribes, environmentalists and the hydroelectric power industry say they have reached a deal on a proposed legislative package that could boost clean energy as well as river conservation. The compromise deal, which would require approval from Congress, is the result of four years of talks between groups that have long been courtroom and policy adversaries because of disagreements involving vanishing fish populations and changes to river ecosystems. Concerns over climate change have helped them find common ground to potentially expand hydroelectric power, a carbon-free energy source, they said.

The deal seeks to grant approvals to add hydroelectric power to some existing dams in as little as two years, while speeding the approval of off-river pumped-storage projects, which store surplus energy for later use, in as little as three years. Another key component would give tribes, instead of the Department of the Interior, authority on the conditions put on permits for things like the protection of tribal cultural resources or fish passage.

Groups supporting the package include the National Hydropower Association, American Rivers, the Skokomish Tribe, Upper Skagit Indian Tribe and the Union of Concerned Scientists. “Our respective constituencies have battled each other to a draw for generations,” said Malcolm Woolf, the National Hydropower Association’s chief executive.

Hydroelectric power makes up about 7% of the U.S. electricity mix. Around 281 hydro-generating facilities, making up roughly one-third of non-federally owned generation, are up for re-licensing by 2030. The re-licensing process usually takes more than seven years and new projects take almost as long, a regulatory environment that has been likened to nuclear power approvals. Republican Sen. John Barrasso of Wyoming, ranking member of the Senate Energy and Natural Resources Committee, called the current permitting process for hydropower “a wasteful disaster” because of its yearslong timelines. “I look forward to seeing the agreement various stakeholders have reached,” he said Friday.

The proposal would amend the Federal Power Act, first passed in 1920.

Excerpts from Jennifer Hille, Tribes, Industry Groups Reach Deal to Boost U.S. Hydroelectric Power, WSJ, Apr. 4, 2022

Under Chemical Attack: the Human Body

The European Food Safety Authority (EFSA) has proposed reducing by a factor of 100,000 the tolerable daily intake of bisphenol A (BPA), an endocrine disruptor that interferes with hormone systems and has been linked to disease. The huge reduction could lead to a de facto ban on the cheap and durable material in food-related uses, such making plastic water bottler or lining metal cans. And it could mark a shift in how European regulators use research findings in setting exposure limits. Traditionally, those limits have been shaped by large studies directly linking a chemical to an increased risk of disease. In this case, however, risk assessors put greater weight on smaller studies showing low levels of BPA can cause subtle changes that could lead to future health problems. This approach, if adopted widely, could justify much lower exposure limits for other chemicals.

“It’s a big deal,” says Laura Vandenberg, an endocrinologist at the University of Massachusetts, Amherst, who calls the proposed limit “a gravestone for BPA in Europe.” Environmental and public health advocates are praising the proposal, which is open for comment until 22 February. Industry groups, however, are dismayed. Plastics Europe argues EFSA ignored relevant, older studies in setting the standard…

Bisphenol A is used in many plastics, including thermal paper for receipts, but most people are exposed through food. BPA leaches out of polycarbonates used to make bottles and food containers, for example, as well as the epoxy liners used to protect steel and aluminum cans from acidic food and beverages….

In the United States, a number of groups recently urged FDA to follow EFSA’s lead and consider new limits on BPA. Others note that people are often exposed to BPA in combination with other chemicals, which could increase the risk from low doses. F

Even if Europe adopts the new standard, public health advocates worry manufacturers will replace BPA with very similar chemicals, such as bisphenol S (BPS), that have also been linked to health effects. “We don’t want to see this assessment repeated for the BPS or BPF [bisphenol F] and need more decades of risk assessment,” says Ninja Reineke, head of science at the CHEM Trust, an advocacy group that focuses on environmental and health impacts of endocrine disruptors.

To avoid that problem, many advocates have called for regulators around the world to set limits for whole classes of related compounds, rather than consider them one by one. For now, Vandenberg says, regulators are simply playing “chemical whack-a-mole.”

Excerpts from Erik Stokstad, Europe Proposes Drastic Cut of Endocrine Disruptor in Plastic, Science, Feb, 18, 2022, at 708

Toxic Waste: Down the Toilet and into the Seas

Dumping oily wastewater into the ocean has been outlawed globally for decades, but an investigation by DW, in collaboration with the European nonprofit newsroom Lighthouse Reports and eight other European press outlets, has found that the practice is still common today, with potentially devastating effects for the environment.

Satellite imagery and data provided by the environmental group SkyTruth helped identify hundreds of potential dumps across the globe in 2021 alone. But the number of spills is most likely significantly higher because the satellites used by SkyTruth cover less than one-fifth of the world’s oceans. According to the group’s estimate, the amount of oily water dumped into the oceans this way could amount to more than 200,000 cubic meters (52.8 million gallons) annually, or roughly five times the equivalent of the 1989 Exxon Valdez spill in Alaska — one of the worst maritime environmental disasters.

As merchant ships make their journeys, liquids from the engine room, oil, detergents, water and other substances collect in the bottom of the vessel, the bilge. This noxious mixture, called “bilgewater,” is then stored in tanks. In a day, a single merchant ship can produce several tons of it. International regulations require that large vessels treat the bilgewater with an “oily water separator” before it is discharged into the ocean. Each liter of bilgewater pumped into the sea after treatment is permitted a maximum residual-oil proportion of 15 parts per million, or 15 milligrams of oil per liter of water (0.0005 ounces per quart), according to a limit set by the International Maritime Organization (IMO) in 1973. The remaining toxic mixture is stored in tanks onboard and later discharged at harbor in port reception facilities.

All big vessels are required to have working separators. But many ships circumvent the system entirely…through a small, portable pump. “It’s very easy,” one man who had witnessed it in operation on several occasions told DW. “You can assemble this portable pump in five minutes and then detach (in) five minutes and hide (it) if someone is coming.”

The pump is used to transfer the oily water into a different tank — in most cases, the sewage tank. On the high seas, ships are allowed to dump their sewage untreated. Then, the toxic mix is quietly released into the ocean, often under the cover of night or during inclement weather, when there is a lower chance of getting caught, according to several seafarers DW talked to. At night it is harder for authorities to verify the crime, and bad weather can prevent the deployment of surveillance ships and planes… Because the illegal dumps happen at sea, it is difficult for authorities and researchers to track them. That is why satellite imagery is used to monitor the seas for pollution. When a vessel discharges oily wastewater illegally, it usually creates a spill kilometers long and with a very distinct shape.

A system set up in 2007 by the European Maritime Safety Agency, or EMSA, uses radar satellites to “see” through cloud cover and at night to identify possible spills. It alerts the respective member states when one is found…Illegal dumps “still regularly occur in European waters,” according to EMSA, and the number of spills detected and prosecuted remains low. Individual member states do not always follow up on the alerts, and, when they do, it is often not quickly enough. The longer it takes authorities to verify a spill in situ, the less likely they are to find oil, as spills begin to dissipate. In 2019, only 1.5% of spills were verified within a critical three-hour time frame. Polluters are only caught in a fraction of cases.

The satellites are also not able to monitor EU waters continuously, meaning that there is a window of several hours each day during which oil spills can go unnoticed. To get a sense of the total scope of this issue in EU waters, SkyTruth combined data and assumptions from EMSA with calculations of satellite coverage. Based on that fairly conservative estimate, the group expects that every year nearly 3,000 slicks are caused by vessels discharging mineral oil into EU waters. That averages out to more than eight per day — the majority of which go unseen by satellites.

Excerpts from Exclusive: How chronic oil pollution at sea goes unpunished, DW, Mar. 2022

Loving Oil in Any Way, Shape or Form — Damn Climate Change!

Many oil assets are ending up in the hands of private-equity (PE) firms. In the past two years alone these bought $60bn-worth of oil, gas and coal assets, through 500 transactions… Some have been multibillion-dollar deals, with giants such as Blackstone, Carlyle and KKR carving out huge oilfields, coal-fired power plants or gas grids from energy groups, miners and utilities. Many other deals, sealed by smaller rivals, get little publicity. This sits uncomfortably with the credo of many pension funds, universities and other investors in private funds, 1,485 of which, representing $39trn in assets, have pledged to divest fossil fuels. But few seem ready to leave juicy returns on the table.

As demand for oil and gas persists while dwindling investment in production limits supply, prices are rising again, boosting producers’ profits….And discounts imposed on “brown” assets by the stock market, linked to sustainability factors rather than financial… create even more pockets of opportunity…The Economist has looked at 8 PE firms that have closed fossil-fuel deals in 2020-2021 The investors in some of their latest energy-flavored vehicles include 53 pension funds, 23 universities and 32 foundations. Many are from America, such as Teacher Retirement System of Texas, the University of San Francisco and the Pritzker Traubert Foundation, but that is partly because more institutions based there disclose pe commitments. The list also features Britain’s West Yorkshire Pension Fund and China Life. Over time, some investors may decide to opt out of funding their portion of fossil-fuel deals.

But a third, yet more opaque class stands ready to step in: state-owned firms and sovereign funds operating in the shadows. Last month Saudi Aramco, the Kingdom’s national oil company, acquired a 30% stake in a refinery in Poland, and Somoil, an Angolan group, bought offshore oil assets from France’s Total. In 2020 Singapore’s GIC was part of the group that paid $10bn for a stake in an Emirati pipeline.

Excerpts from Who buys the dirty energy assets public companies no longer want?, Economist, Feb. 12, 2022

How Artificial Intelligence Can Help Produce Better Chemical Weapons

An international security conference convened by the Swiss Federal Institute for NBC (nuclear, biological and chemical) Protection —Spiez Laboratory explored how artificial intelligence (AI) technologies for drug discovery could be misused for de novo design of biochemical weapons.  According to the researchers, discussion of societal impacts of AI has principally focused on aspects such as safety, privacy, discrimination and potential criminal misuse, but not on national and international security. When we think of drug discovery, we normally do not consider technology misuse potential. We are not trained to consider it, and it is not even required for machine learning research.

According to the scientists, this should serve as a wake-up call for our colleagues in the ‘AI in drug discovery’ community. Although some expertise in chemistry or toxicology is still required to generate toxic substances or biological agents that can cause significant harm, when these fields intersect with machine learning models, where all you need is the ability to code and to understand the output of the models themselves, they dramatically lower technical thresholds. Open-source machine learning software is the primary route for learning and creating new models like ours, and toxicity datasets that provide a baseline model for predictions for a range of targets related to human health are readily available.

The genie is out of the medicine bottle when it comes to repurposing our machine learning. We must now ask: what are the implications? Our own commercial tools, as well as open-source software tools and many datasets that populate public databases, are available with no oversight. If the threat of harm, or actual harm, occurs with ties back to machine learning, what impact will this have on how this technology is perceived? Will hype in the press on AI-designed drugs suddenly flip to concern about AI-designed toxins, public shaming and decreased investment in these technologies? As a field, we should open a conversation on this topic. The reputational risk is substantial: it only takes one bad apple, such as an adversarial state or other actor looking for a technological edge, to cause actual harm by taking what we have vaguely described to the next logical step. How do we prevent this? Can we lock away all the tools and throw away the key? Do we monitor software downloads or restrict sales to certain groups?

Excerpts from Fabio Urbina et al, Dual use of artificial-intelligence-powered drug discovery, Nature Machine Intelligence (2022)

Who Cares? Clicking Away Privacy Rights

The latest developments in a high-profile criminal probe by  US special counsel John Durham show the extent to which the world’s internet traffic is being monitored by a coterie of network researchers and security experts inside and outside the US government. The monitoring is made possible by little-scrutinized partnerships, both informal and formal, among cybersecurity companies, telecommunications providers and government agencies.

The U.S. government is obtaining bulk data about network usage, according to federal contracting documents and people familiar with the matter, and has fought disclosure about such activities. Academic and independent researchers are sometimes tapped to look at data and share any findings with the government without warrants or judicial authorization…

Unlike the disclosures by former intelligence contractor Edward Snowden from nearly a decade ago, which revealed U.S. intelligence programs that relied on covert access to private data streams, the sharing of internet records highlighted by Mr. Durham’s probe concerns commercial information that is often being shared with or sold to the government in bulk. Such data sets can possess enormous intelligence value, according to current and former government officials and cybersecurity experts, especially as the power of computers to derive insights from massive data sets has grown in recent years.

Such network data can help governments and companies detect and counter cyberattacks. But that capability also has privacy implications, despite assurances from researchers that most of the data can’t be traced back to individuals or organizations.

At issue are several kinds of internet logs showing the connections between computers, typically collected on networking devices such as switches or routers. They are the rough internet equivalent of logs of phone calls—showing which computers are connecting and when, but not necessarily revealing anything about the content of the transmissions. Modern smartphones and computers generate thousands of such logs a day just by browsing the web or using consumer apps…

“A question worth asking is: Who has access to large pools of telecommunications metadata, such as DNS records, and under what circumstances can those be shared with the government?…Surveillance takes the path of least resistance…,” according to Julian Sanchez, a senior fellow at the Cato Institute.

Excerpts from Byron Tau et al., Probe Reveals Unregulated Access to Data Streams, WSJ, Feb.. 28, 2022

The Sacrificial Lambs of Green Energy

Lithium Americas, a Canadian company, has plans to build a mine and processing plant at Thacker Pass, near the southern tip of the caldera in Nevada. It would be America’s biggest lithium mine. Ranchers and farmers in nearby Orovada, a town of about 120 people, worry that the mine will threaten their water supply and air quality. Native American tribes in the region say they were not properly consulted before the Bureau of Land Management (BLM), a federal agency that manages America’s vast public lands, decided to permit the project. Tribes also allege that a massacre of their ancestors took place at Thacker Pass in 1865…

The fight over Thacker Pass is not surprising. President Joe Biden wants half of all cars sold in 2030 to be electric, and to reach net-zero emissions by 2050. These ambitious climate targets mean that battles over where and how to mine are coming to mineral-rich communities around the country. America is in need of cobalt, copper and lithium, among other things, which are used in batteries and other clean-energy technologies. As with past commodity booms, large deposits of many of these materials are found in America’s western states . America, of course, is not the only country racing to secure access to such materials. As countries pledge to go carbon-free, global demand for critical minerals is set to soar. The International Energy Agency, a forecaster, estimates that by 2040 demand for lithium could increase by more than 40 times relative to 2020. Demand for cobalt and nickel could grow by about 20 times in the same period.

Beyond its green goals, America is also intent on diversifying mineral supplies away from China and Russia (big producer of nickel), which—by virtue of its natural bounty and muscular industrial policy—has become a raw-materials juggernaut… The green transition has also turned the pursuit of critical minerals into a great-power competition not unlike the search for gold or oil in eras past. Mining for lithium, the Department of Energy (DOE) says, is not only a means of fighting climate change but also a matter of national security.

Westerners have seen all this before, and are wary of new mines…The economic history of the American West is a story of boom and bust. When a commodity bubble burst, boomtowns were abandoned. The legacy of those busts still plagues the region. In 2020 the Government Accountability Office estimated that there could be at least 530,000 abandoned hardrock-mine features, such as tunnels or waste piles, on federal lands. At least 89,000 of those could pose a safety or environmental hazard. Most of America’s abandoned hardrock mines are in 13 states west of the Mississippi River…

Is it possible to secure critical minerals while avoiding the mistakes of previous booms? America’s debates over how to use its public lands, and to whom those lands belong, are notoriously unruly. Conservationists, energy companies, ranchers and tribal nations all feel some sense of ownership. Total harmony is unlikely. But there are ways to lessen the animosity.

Start with environmental concerns. Mining is a dirty business, but development and conservation can coexist. In 2020 Stanford University helped broker a national agreement between the hydropower industry and conservation groups to increase safety and efficiency at existing dams while removing dams that are harming the environment….Many worry that permitting new development on land sacred to tribes will be yet another example of America’s exploitation of indigenous peoples in pursuit of land and natural resources. msci, a consultancy, reckons that 97% of America’s nickel reserves, 89% of copper, 79% of lithium and 68% of cobalt are found within 35 miles of Native American reservations.

TThe BLM is supposed to consult tribes about policies that may affect the tribes but the  consultation process is broken. Often it consists of sending tribes a letter notifying them of a mining or drilling proposal.

Lithium Americas has offered to build the town a new school, one that will be farther away from a road that the firm will use to transport sulphur. Sitting in her truck outside a petrol station that doubles as Orovada’s local watering hole, Ms Amato recalled one group member’s response to the offer: “If all I’m going to get is a kick in the ass, because we’re getting the mine regardless, then I may as well get a kick in the ass and a brand new school.”

Excerpt from America’s Next Mining Boom: Between a Rock and a Hard Place, Economist, Feb. 19, 2022

Noise-Barriers and Noise-Victims: the Plants

Sounds are concussive pressure waves transmitted through gases, liquids and solids. Scientists have previously hypothesized that plants may be able to sense these waves as they are struck by them. A number of experiments have confirmed this in recent years—plants bombarded with ultrasound in the lab have shown a range of adverse responses including the expression of stress-related genes, stunted growth and reduced germination of seeds.

Yet blasting plants with ultrasound is not the same as growing them in the presence of actual traffic noise. To this end, Dr Ghotbi-Ravandi decided to set up an experiment to study precisely this question….Dr Ghotbi-Ravandi’s results were published in the journal Basic and Applied Ecology. His findings make it clear that, though plants lack ears, the vibrations generated by the noise of traffic still bothers them enough to trigger potent stress responses that are not much different to those that would be found in plants exposed to drought, high salinity or heavy metals in their soil… Whether some plant species have evolved coping mechanisms, which might one day be collected and transferred into urban-dwelling species, is a mystery worth exploring.

Excerpt from Botany: Deafened, Economist, Feb. 12, 2022

Ending the Plastic Paradise?

Heads of State, Ministers of environment and other representatives from 175 nations endorsed a historic resolution at the UN Environment Assembly (UNEA-5) on March 2, 2022: “End Plastic Pollution: Towards an internationally legally binding instrument.” The resolution addresses the full lifecycle of plastic, including its production, design and disposal. 

The resolution…establishes an Intergovernmental Negotiating Committee (INC), which will begin its work in 2022, with the ambition of completing a draft global legally binding agreement by the end of 2024…The UN Environment Programme (UNEP) will convene a forum by the end of 2022 that is open to all stakeholders in conjunction with the first session of the INC, to share knowledge and best practices in different parts of the world.

Plastic production soared from 2 million tonnes in 1950 to 348 million tonnes in 2017, becoming a global industry valued at US$522.6 billion, and it is expected to double in capacity by 2040. 

Exposure to plastics can harm human health, potentially affecting fertility, hormonal, metabolic and neurological activity, and open burning of plastics contributes to air pollution. By 2050 greenhouse gas emissions associated with plastic production, use and disposal would account for 15 per cent of allowed emissions, under the goal of limiting global warming to 1.5°C (34.7°F). More than 800 marine and coastal species are affected by this pollution through ingestion, entanglement, and other dangers.

Some 11 million tonnes of plastic waste flow annually into oceans. This may triple by 2040. A shift to a circular economy can reduce the volume of plastics entering oceans by over 80 per cent by 2040; reduce virgin plastic production by 55 per cent; save governments US$70 billion by 2040; reduce greenhouse gas emissions by 25 per cent; and create 700,000 additional jobs – mainly in the global south.

Excerpts from ,Historic day in the campaign to beat plastic pollution: Nations commit to develop a legally binding agreement, UNEP Press Release, Mar.  2, 202

Robots to the Rescue: Best Dams on Amazon River

Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the production electricity and the protection of biodiversity. 

Researchers are using artificial intelligence (AI) to identify sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. The researchers found that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone environmental benefits from the river. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. 

Alexander Flecker et al., Reducing adverse impacts of Amazon hydropower expansion, Science, Feb. 17, 2022

How to Make Carbon-Negative Chemicals

Bacteria engineered to turn carbon dioxide into compounds used in paint remover and hand sanitiser could offer a carbon-negative way of manufacturing industrial chemicals.

Michael Köpke at LanzaTech in Illinois and his colleagues searched through strains of an ethanol-producing bacterium, Clostridium autoethanogenum, to identify enzymes that would allow the microbes to instead create acetone, which is used to make paint and nail polish remover. Then they combined the genes for these enzymes into one organism. They repeated the process for isopropanol, which is used as a disinfectant.

The engineered bacteria ferment carbon dioxide from the air to produce the chemicals. “You can imagine the process similar to brewing beer,” says Köpke. “But instead of using a yeast strain that eats sugar to make alcohol, we have a microbe that can eat carbon dioxide.” After scaling up the initial experiments by a factor of 60, the team found that the process locks in roughly 1.78 kilograms of carbon per kilogram of acetone produced, and 1.17 kg per kg of isopropanol. These chemicals are normally made using fossil fuels, emitting 2.55 kg and 1.85 kg of carbon dioxide per kg of acetone and isopropanol respectively.

This equates to up to a 160 per cent decrease in greenhouse gas emissions, if this method were to be broadly adopted, say the researchers. The technique could also be made more sustainable by using waste gas from other industrial processes, such as steel manufacturing.

Excerpt from Chen Ly, Engineered bacteria produce chemicals with negative carbon emissions, New Scientist, Feb. 21, 2022

Who Will Save the Red Sea from the Safer Oil Spill?

An oil tanker, the Safer,  tuffed with a load of more than 1 million barrels of crude oil has been left abandoned and rusting off the coast of Hodeidah, Yemen since 2015. Its decaying hulk encompasses the complexity of the civil war in Yemen. The Safer was permanently anchored off Hodeidah in 1987 and used for some four decades as a floating storage unit by Yemen’s state-run oil company to get oil from other tankers onto the mainland. However, the tanker fell into the hands of Houthi insurgents in March 2015 and has since then been – for all intents and purposes – left to rot. As a result, the structural integrity of the ship, which was built in 1976, is now at serious risk. Its firefighting system is out of order, and it has sprung several leaks over the past couple of years.

Experts estimate that the risks of an explosion on the tanker are huge and that the impact of this would be massive, as a full-blown leak in the closed basin of the Red Sea would be four times bigger than the historic Exxon Valdez disaster of 1989. Under the worst-case scenario, all of Yemen’s Red Sea ports would have to shut down, depriving millions of people of food and life-saving humanitarian aid. A spill would also affect the country’s water supply by shutting down its desalination plants…

The question is who will undertake the cost of around $75-100 million needed to defuse the Safer time bomb…On February 16, 2022 the UN under-secretary-general for humanitarian affairs, Martin Griffiths, informed the Security Council of an agreement, in principle, for a UN-coordinated proposal to shift the oil to another ship. Now all eyes are turned to the conference of donors that the UN is holding at the end of March 2022, where various states are expected to offer money to bankroll the operation.

Excerpt from Nikolas Katsimpras, An impending Red Sea disaster and Greece, Ekathimerini, Feb. 23, 2022

See also Greenpeace report

Sustainability or Lethality: Space

The United States SPACEWERX is the innovation arm of the U.S. Space Force and a part of AFWERX (the Air Force technology accelerator) whose purpose is to increase lethality at a lower cost.

The SPACEWERX has launched Orbital Prime whose purpose is to invigorate the On-orbit Servicing, Assembly, and Manufacturing (OSAM) market using Active Debris Remediation (ADR) as a use case for the foundational technologies. As the congestion of the space domain and  space debris threaten the long-term sustainability of the space domain, Orbital Prime will transition agile, affordable, and accelerated OSAM space capabilities to build the foundation for space logistics while preserving the global commons.

Excerpt from Space Prime

Relentless Efficiency: the View of Pigs

Gestation crates for pigs are typically about two feet wide and prevent sows from turning around, maximizing use of available space. Some producers say it also prevents the pigs from harming one another. Breeding pigs can produce seven or more piglets per litter, totaling well over 60 piglets in consecutive pregnancies over a few years. Widespread use of gestation crates began in the 1970s as pork producers gave priority to efficiency. A 1978 article in the industry publication National Hog Farmer suggested producers consider the sow “a valuable piece of machinery whose function is to pump out baby pigs like a sausage machine.”

“Under that mind-set, the industry went, no pun intended, hog wild into moving pigs into gestation crates,” says Matthew Prescott, senior director of food and agriculture for the Humane Society, who has been focused on eliminating the crates since 2002.

Excerpt from Cara Lombardo, Relentless Wall Street Billionaire Has a Secret Cause, WSJ, Feb. 8, 2021

The Most Fantastic Thing in the World: Icefish

The most extensive and densely populated breeding colony of fish anywhere lurks deep underneath the ice of the Weddell Sea.. The 240 square kilometers of regularly spaced icefish nests, east of the Antarctic Peninsula, has astonished marine ecologists. “We had no idea that it would be just on this scale, and I think that’s the most fantastic thing,” says Mark Belchier, a fish biologist…

In February 2021, the RV Polarstern—a large German research ship–came upon thousands of 75-centimeter-wide nests, each occupied by a single adult icefish—and up to 2100 eggs…High-resolution video and cameras captured more than 12,000 adult icefish (Neopagetopsis ionah)….The  team on the RV Polarstern saw 16,160 closely packed fish nests, 76% of which were guarded by solitary males. Assuming a similar density of nests in the areas between the ship’s transects, the researchers estimate that about 60 million nests cover roughly 240 square kilometers.

The vast colony, the researchers say, is a new reason to create a marine protected area in the Weddell Sea…The Weddell Sea—a unique and largely undisturbed ecosystem—is already protected from a destructive fishing practice called bottom trawling…

Excerpt from Huge Icefish Colony Found, Science, Jan. 14, 2022

Nuclear Power Invades Space

The Defense Advanced Research Projects Agency (DARPA) is testing a technology known as “nuclear thermal propulsion”… DARPA spacecraft will carry a small nuclear reactor. Inside, uranium atoms will be split to generate tremendous heat…to produce thrust. Such a spacecraft could climb to a geostationary orbit above the Earth, nearly 36,000km up, in mere hours. Satellites that burn normal rocket fuel need several days for the same trip. Nuclear-powered satellites with abundant power would also be hard to destroy—their trajectories could be changed often enough to become unpredictable. DARPA  wants to test its spacecraft, dubbed DRACO  (Demonstration Rocket for Agile Cislunar Operations), in orbit in 2025.

Other proposals are for radioisotope thermoelectric generators (RTGs). These kinds of “nuclear batteries” have long been used to power probes sent into deep space, where solar power is especially feeble. Instead of building a nuclear reactor, an RTG uses devices called thermocouples to produce a modest wattage from heat released by the decay of radioactive isotopes. Plutonium-238, which is a by-product of weapons development, has been used by NASA to power both the Voyager probes, launched in the 1970s and still functioning, as well as the Curiosity rover currently trundling around Mars. Plutonium-238, however, is heavily regulated and in short suppl..Cobalt-60, with a half-life of 5.3 years, is a promising alternative and available commercially.

DARPA Draco Image https://www.youtube.com/watch?v=h3ubR9F55nk

How safe is it, however, to send nuclear devices, especially reactors, into space?…A danger is accidental atmospheric re-entry. The Soviet Union flew at least 33 spy satellites with nuclear reactors for onboard power (but not propulsion). In one accident, the reactor in a satellite named Kosmos 954 failed to ascend into a high-enough “disposal orbit” at the end of its mission. In 1978 it ended up spraying radioactive debris over a swathe of Canada’s Northwest Territories…The fuel for the Soviet Kosmos 954…was 90% uranium-235, similar to the material used in the atom bomb detonated over Hiroshima in 1945…

America is not alone in its nuclear quest. China and Russia are also developing nuclear power for space. China’s wish list includes a fleet of nuclear-powered space shuttles. Russia is designing an electric-propulsion cargo spacecraft called Zeus, which will be powered by a nuclear reactor. Roscosmos, Russia’s space agency, hopes to launch it in 2030. The prospect of more capable satellites will, no doubt, raise suspicions among spacefaring nations. Nuclear spacecraft with abundant electrical energy could be used to jam satellite communications…..

And not all of the interest in nuclear power comes from the armed forces. NASA…wants a nuclear plant to power a base on the Moon

Excerpt from Faster, higher, stronger: Why space is about to enter its nuclear age, Economist, Feb. 5, 2022

The Super Polluters: methane

Methane is a colorless, odorless greenhouse gas that makes up the bulk of the natural gas burned to heat homes, cook food and generate electricity. It is also the second largest driver of global warming after carbon dioxide, responsible for at least one-quarter of the rise in global average temperatures since the Industrial Revolution. Once emitted, methane molecules degrade in around a decade so they do not pile up in the atmosphere in the same way as carbon dioxide, which can persist for hundreds of years.

Slashing methane emissions, therefore, could help reduce the overall atmospheric volume of greenhouse gases and slow the pace of global warming in the near term. Patching up leaky oil-and-gas infrastructure, responsible for 22% of all man-made methane emissions, would help meet those goals. This has led to efforts to quantify methane leaks…

Two-thirds of the ultra-emitting events of methane were co-located with oil and gas production sites and pipelines; the rest came from coal production, agricultural or waste-management facilities. Accounting for 1.3m tonnes of methane per year, Turkmenistan is a ultra emitter of methane…followed by Russia, the United States, Iran, Kazakhstan and Algeria…

At the United Nations COP26 climate negotiations, held in November 2021 in Glasgow, leaders of more than 100 countries made a pact to reduce global emissions of methane by 30% by 2030. The cheapest, most cost-effective way of doing this will be to patch up oil-and-gas infrastructure, starting with the ultra-emitters…

Excerpts from Climate Change: Methane Mission, Economist, Feb. 5, 2022

The Heavy Toll of Nuclear Waste Inheritance

After decades of prevarication, Sweden decided on a final storage plan for its nuclear waste, becoming only the second country in the world after Finland to take such a step. Permission was granted in January 2022 to build a facility to package and store spent nuclear fuel at a coastal site near the Forsmark nuclear power plant, about an hour’s drive north of the capital. 

The decision is significant because it confirms Sweden’s position as a global leader in the storage of nuclear waste. Finland is the only other country to decide on such a plan and is building a storage facility at Olkiluoto, across the Gulf of Bothnia from Forsmark. Like the Forsmark project, the Finnish plan was based on a process developed by Swedish researchers. 

The method — referred to as KBS3 — will see the spent nuclear fuel stored in copper containers surrounded by bentonite clay and placed in 500 tunnels that will be 500 meters under the ground. The aim is to keep the radioactive waste isolated for at least 100,000 years….But there has been criticism of the KBS3 method over recent years, including by researchers who have suggested that copper may not be as resistant to corrosion as the method assumes, meaning the risk of leaks could be higher than expected. 

The approval of the Forsmark site is a big step forward in a long-running saga.  Since the 1970s, Swedish authorities — like their counterparts in nuclear-power-dependent states the world over — have been seeking a solution for the final storage of nuclear waste, scouring the country for suitable sites while also tasking researchers to develop safe methods.  But it took until 2011 for an application to be made by the company SKB — a nuclear waste manager owned by Swedish nuclear power producers — for planning permission at Forsmark. Since then, lengthy consultations have been held with interested parties, from scientists to residents in Östhammar municipality where Forsmark is located. The process became more politically divisive as the Green Party, which quit the government in November 2021, said the process was being rushed and more time was needed for research. 

According to the Environmental Minister Strandhäll:  “Today we have the knowledge and technology which means we don’t need to pass this responsibility onto our children and grandchildren,” she said. “This is a responsibility the government needs to take now.” 

Excerpts from  CHARLIE DUXBUR, Sweden approves nuclear waste storage site, http://www.politico.eu, Jan. 27, 2021

The Secret Nuclear Weapons Capabilities of States

South Korea, like the United States, has long relied on nuclear power as a major source of electric power. As a result, it has amassed large stores of spent nuclear fuel and, as in the United States, has experienced political pushback from populations around proposed central sites for the spent fuel.

South Korea also has a history of interest in nuclear weapons to deter North Korean attack. South Korea’s interest in spent fuel disposal and in a nuclear-weapon option account for the Korea Atomic Energy Research Institute’s dogged interest in the separation of plutonium from its spent fuel. Plutonium separated from spent fuel can be used to make nuclear weapons.

Two US Energy Department nuclear laboratories, Argonne National Laboratory  and the Idaho National Laboratory have encouraged South Korea’s interest in plutonium separation because of their own interests in the process. Now, a secret, leaked, joint South Korean-US report shows deliberate blindness to the economic and proliferation concerns associated with plutonium separation and lays the basis for policies that would put South Korea on the threshold of being a nuclear-weapon state. 

Japan is the only non-nuclear-armed state that separates plutonium. The Korea Atomic Energy Research Institute has domestic political support, however, for its demand that South Korea have the same right to separate plutonium as Japan. 

In 2001 Argonne and Idaho National Laboratories (INL) persuaded an energy-policy task force led by then-Vice President Dick Cheney that pyroprocessing is “proliferation resistant” because the extracted plutonium is impure and unsuitable for nuclear weapons. On that basis, Argonne and INL were allowed to launch a collaboration on pyroprocessing research and development with Korea. The Korea Atomic Energy Research Institute was enthusiastic. It had been blocked from pursuing reprocessing R&D since it had been discovered in 1974 that the institute was part of a nuclear-weapon program.

At the end of the Bush administration, however, nonproliferation experts from six US national laboratories, including Argonne and INL, concluded that pyroprocessing is not significantly more proliferation resistant than conventional reprocessing because it would be relatively easy to remove the weakly radioactive impurities from the plutonium separated by pyroprocessing. The finding that pyroprocessing is not proliferation resistant precipitated a struggle between the Obama administration and South Korea’s government during their negotiations for a new US-Republic of Korea Agreement of Cooperation on the Peaceful Uses of Nuclear Energy. The new agreement was required to replace the existing agreement, which was due to expire in 2014. But the negotiations stalemated when South Korea demanded the same right to reprocess the Reagan administration had granted Japan in 1987. 

At the beginning of September 2021, INL and the Korea Atomic Energy Research Institute submitted a 10-year report on their joint fuel cycle study. Instead of making a policy recommendation on the future of pyroprocessing, however, the Korea-US Joint Nuclear Fuel Cycle Research Steering Committee decided to continue the joint research. A senior US official with knowledge of the situation, told that “at least three or four more years will be necessary for the two governments to be in a position to draw any actual conclusions related to the technical and economic feasibility and nonproliferation acceptability of pyroprocessing on the Korean Peninsula.”

Excerpts from  Frank N. von Hippel, Jungmin Kang, Why joint US-South Korean research on plutonium separation raises nuclear proliferation danger, January 13, 2022

Are We Transgressing the Planetary Boundaries?

There are an estimated 350,000 different types of manufactured chemicals on the global market. These include plastics, pesticides, industrial chemicals, chemicals in consumer products, antibiotics and other pharmaceuticals….The rate at which these pollutants are appearing in the environment far exceeds the capacity of governments to assess global and regional risks, let alone control any potential problems..

In 2009, an international team of researchers identified nine planetary boundaries that demarcate the remarkably stable state Earth has remained within for 10,000 years – since the dawn of civilization. These boundaries include greenhouse gas emissions, the ozone layer, forests, freshwater and biodiversity. The researchers quantified the boundaries that influence Earth’s stability, and concluded in 2015 that four boundaries have been breached. But the boundary for chemicals was one of two boundaries that remained unquantified.

This new research takes this a step further. The researchers say there are many ways that chemicals and plastics have negative effects on planetary health, from mining, fracking and drilling to extract raw materials to production and waste management.

Some of these pollutants can be found globally, from the Arctic to Antarctica, and can be extremely persistent…Global production and consumption of novel entities is set to continue to grow. The total mass of plastics on the planet is now over twice the mass of all living mammals, and roughly 80% of all plastics ever produced remain in the environment. Plastics contain over 10,000 other chemicals, so their environmental degradation creates new combinations of materials – and unprecedented environmental hazards. Production of plastics is set to increase and predictions indicate that the release of plastic pollution to the environment will rise too, despite huge efforts in many countries to reduce waste.

Excerpt from Safe planetary boundary for pollutants, including plastics, exceeded, say researchers, Stockholm Resilience Center Press Release, Jan. 18, 2022

For an alternative view on planetary boundaries see NY Times Article, 2015

After We Vacuum the Earth, We Vacuum the Moon

Chinese nuclear scientists are studying samples carried back by China’s mission to the the moon in 2019. One of those under the microscope at the Beijing Research Institute of Uranium Geology is a 50-milligram rock—approximately the size of a lentil—believed to contain an isotope called helium-3. The isotope… is thought by scientists to have the potential to one day provide safer nuclear energy in a fusion reactor, as it isn’t radioactive. Rare on earth, helium-3 is thought to be abundant on the moon.

While researchers in the U.S. and other nations have studied the isotope, China’s renewed pursuit is part of a decadeslong plan to establish itself as a leading space power, mirroring the country’s rising economic and strategic influence on Earth. Since being shut out of working with the U.S. space agency by law a decade ago, the country has invested heavily in its own program. China is still playing catch-up technologically but is seeking to gain an edge through its moon missions…

China now building the Silk Road to space,” said James Head, a professor of geological sciences at Brown University who has lectured at universities across China in the past few years. 

The theory that the moon might have abundant reserves of helium-3 goes back several decades. In 1986, scientists at the University of Wisconsin estimated that lunar soil could contain a million tons of the isotope, also known as He3. A byproduct of the sun’s intense heat, it is carried through the solar system by solar winds…

In the future, there could be machines that vacuum up the top layer of the moon’s surface, which could then be used to address Earth’s energy needs or to power moon bases for future missions…

Excerpts from Natasha Khan, Moon Dust Fuels China’s Pursuit of Space Power, WSJ, Dec. 14, 2021

Lunatics or Climate Fixers?

The ocean has already absorbed nearly one-third of the carbon emissions from human activities, and scientists hope it can shoulder even more of the burden. Ocean Iron fertilization is among the cheapest options. Ocean fertilization is a form of geoengineering  that involves adding iron to the upper layers of the ocean to stimulate phytoplankton activity  in an attempt to remove carbon from the atmosphere and, thus, abate global warming.

Photosynthetic plankton act like tropical rainforests, sucking CO2 from the atmosphere. Their populations are often limited by a scarcity of iron, which sifts into the ocean in windblown dust from deserts, in volcanic ash, and even from underwater hydrothermal vents. Extra iron would stimulate a bloom, the thinking goes, causing plankton to take up extra carbon. The carbon would sink into the depths in the form of dead plankton, or the feces or bodies of organisms that eat them. In theory, the carbon would be entombed for centuries.

Ocean scientists contended in 2021 that ocean fertilization  experiments were a priority and called for the United States to spend up to $290 million on even larger ones that would spread 100 tons of iron across 1000 square kilometers of ocean. Already, researchers next year plan to pour iron across a patch of the Arabian Sea (Center for Climate Repair at the University of Cambridge.)

But skeptics note that a recent survey of 13 past fertilization experiments found only one that increased carbon levels deep in the ocean. That track record is one reason why making iron fertilization a research priority is “barking mad,” says Wil Burns, an ocean law expert at Northwestern University. Stephanie Henson, a marine biogeochemist at the United Kingdom’s National Oceanography Centre, also worries about surprise consequences of the approach, likening it to the catastrophic introduction of rabbits to Australia ecology. “You could just imagine something like that happening in the oceans completely by accident.”

Excerpts from Warren Cornwall, To Draw Carbon, Ocean Fertilization Gets Another Look, Science, Dec. 17, 2021

The Other Middle East Crisis: Rivers are Drying

Protests in the Iranian city of Isfahan erupted in November 2021 due to a severe shortage of water, as the region continues to suffer from a year of low rainfall and drought. Thousands of farmers and others who supported them took to the streets in Isfahan in central Iran, expressing their dissatisfaction at the water shortages and urging the government to solve the crisis. They shouted “let Isfahan breathe again, revive Zayandeh Rud,” referring to the dried river which supplies their crops with water.

The drying up of the Zayandeh Rud river has not only been caused by drought, however, but also by the government’s diversion of water from the river to supply other areas and with a pipeline supplying water to Yazd province also having been damaged. Those incidences have contributed to the farms being left dry and the famers’ livelihoods being threatened.

The water shortages and the drying of the river come at a time when the region is suffering from a similar shortage, as rainfall has been low and temperatures have increased to make it one of the hottest and driest years recorded. ..Neighboring Iraq and Syria have also been expressed concern over the shortage of water this year… In November 201, a major reservoir in Syria also dried up completely, and was similarly due to a combination of climatic and structural causes.

Excerpts from Protests over water shortages erupt in Iran, as river dries up, Middle East Monitor, Nov. 21, 2021

The Stealth Burial of Nuclear Waste

The U.S. government’s underground nuclear waste repository received more than 200 shipments from federal laboratories and other sites around the nation in 2021.
Officials with the U.S. Energy Department announced the number in December 2021, noting that total shipments to the Waste Isolation Pilot Plant have topped 13 000 since opening in 1999. Over more than 20 years, tons of Cold War-era waste have been stashed deep in the salt caverns that make up the repository. The shipments have included special boxes and barrels packed with lab coats, rubber gloves, tools and debris contaminated with plutonium and other radioactive elements.

The majority of shipments come from the decommissioning of legacy nuclear waste sites at the Idaho National Laboratory. More nuclear waste will be heading to the WIPP as the Biden Administration has approved a Trump rule that has redefined high-level nuclear waste. According to the new rule, what constitutes high-level radioactive waste  will be based on the waste’s radioactivity rather than how it was produced.

U.S. nuclear repository marks more than 200 shipments of waste in 2021, Associated Press, Dec. 30, 2021

The Forced Migration of Endangered Species

Rhino translocations have become a critical tool in the arsenal for the protection of these endangered animals. Recently, 30 white rhinos were flown into Rwanda from South Africa and introduced into the Akagera National Park, in what is the single largest translocation. 

In the late 19th century, southern white rhinos were almost on the brink of extinction. This was due to poaching and hunting. But in 1895 a small population of fewer than 100 individuals was discovered in KwaZulu-Natal, South Africa. After more than a century of protection and good management, there are now around 17,600 white rhinos (as of 2018) living in protected areas and private game reserves…However, this success story is being threatened by the illegal trade in horn. Between 2006 and 2020, 10,600 rhinos across the continent have been lost. With the exception of a few areas, rhinos are surviving in well protected, smaller national parks and reserves.

Why were rhinos translocated to Rwanda? Having a population in a Rwanda could create a secure new breeding stronghold in East Africa and help ensure the long-term survival of the species in the wild…

Any international translocation requires political support from national governments and conservation authorities and should be in full compliance with international agreements, such as CITES…Sourcing the animals is also an important aspect… South Africa has a vibrant wildlife industry based upon the buying and selling of wildlife. 

Catching and Translocating the Animals: A lot of time is spent on planning for this and ensuring the animals are treated as well as possible. Moving animals over thousands of kilometers is a serious endeavor. With 30 animals, chartered jumbo jets are the best way. This requires considerable veterinary and logistical coordination to capture the animals, load into crates, transport to the aircraft, load as quickly as possible, unload similarly, transport to the site and release into well-sited and secure bomas. 

Upon arrival, animals are put into holding bomas to get them adjusted to the local different foods that they’ll encounter…Once they’re in the new habitat, the next concern is security and making sure people can take care of them and monitor them.

Excerpts from Mike Knight, Africa: Moving African Rhinos – What It Takes to Translocate an Endangered Species, AllAfrica.com, Dec. 14, 2021

Global Microbiome Living on Plastics

The number of microbial enzymes with the ability to degrade plastic is growing, in correlation with local levels of plastic pollution. That is the finding of a study from Chalmers University of Technology, Sweden, that measured samples of environmental DNA from around the globe. The results illustrate the impact plastic pollution is having on the environment, and hint at potential new solutions for managing the problem.

The study analyzed samples of environmental DNA from hundreds of locations around the world. The researchers used computer modelling to search for microbial enzymes with plastic-degrading potential, which was then cross-referenced with the official numbers for plastic waste pollution across countries and oceans. “Using our models, we found multiple lines of evidence supporting the fact that the global microbiome’s plastic-degrading potential correlates strongly with measurements of environmental plastic pollution – a significant demonstration of how the environment is responding to the pressures we are placing on it,” says Aleksej Zelezniak, Associate Professor in Systems Biology at Chalmers University of Technology. 

More enzymes in the most polluted areas: In other words, the quantity and diversity of plastic-degrading enzymes is increasing, in direct response to local levels of plastic pollution. In total, over 30,000 enzyme ‘homologues’ were found with the potential to degrade 10 different types of commonly used plastic. Homologues are members of protein sequences sharing similar properties. Some of the locations that contained the highest amounts were notoriously highly polluted areas, for example samples from the Mediterranean Sea and South Pacific Ocean…

The researchers believe that their results could potentially be used to discover and adapt enzymes for novel recycling processes…“The next step would be to test the most promising enzyme candidates in the lab to closely investigate their properties and the rate of plastic degradation they can achieve. From there you could engineer microbial communities with targeted degrading functions for specific polymer types,” explains Aleksej Zelezniak.

Plastic-degrading enzymes increasing in correlation with pollution, Chalmers University of Technology Press Release, Dec. 14, 2021

Detoxing the Fish of Our Lakes and Rivers

Fish populations appear to recover rapidly from mercury pollution once humans stop adding it to their environment. A 15-year study of a lake in Canada found that eight years after the metal’s supply ceased, concentrations of methylmercury – a highly toxic substance made from mercury by bacteria in aquatic ecosystems – fell by 76 per cent… 

“I can’t imagine a much faster recovery,” says Paul Blanchfield at government agency Fisheries and Oceans Canada, who led the research. The team are not suggesting the fish excrete the mercury quickly – the experiment in fact shows they hang on to it for a long time – but that quick turnover of generations sees concentrations fall fast when new pollution stops.

Mercury pollution is still a major global environmental problem, with small-scale gold mining and coal burning being the two biggest sources. Transported in the atmosphere and rained down on lakes and oceans, the metal’s accumulation in freshwater and marine species has raised concerns over the human health impact of eating fish.

Excerpts from Adam Vaughan, Freshwater fish can recover from mercury pollution in just a few years, New Scientist, Dec. 15, 2021

To Save the Congo Rainforest, We Must Save the People First

The Special Representative of the Secretary-General in the Democratic Republic of the Congo told the Security Council in December 2021  that “a lasting solution” to the violence” in Congo requires a broader political commitment to address the root causes of conflict.”  Bintou Keita argued that, for stability to return to eastern Congo, “the State must succeed in restoring and maintaining the confidence of the people in state’s ability to protect, administer, deliver justice and meet their basic needs.” 

Starting on November 30, 2021  the Congolese Armed Forces initiated joint military operations with the Ugandan army against the rebel Allied Democratic Forces (ADF) in the east.  In May 2021, the Congolese authorities declared a state of siege in the provinces of Ituri and North Kivu, whose duration has just been extended for the 13th time

But the challenges facing the Government in implementing the state of siege highlight “the limits of a strictly military approach to the protection of civilians and the neutralization of armed groups.”  In fact, the period of the state of siege saw a 10 per cent increase in the number of violations and abuses of human rights in the country.  


According to the Special Representative, the humanitarian situation continues to deteriorate in the restive east, due to insecurity, epidemics, and limited access to basic services.  The number of internally displaced people stands at nearly 6 million, of which 51 per cent are women. This is the highest number of internally displaced people in Africa.  

The Special Representative pointed out the illegal exploitation of natural resources as “a major driver of conflict”, saying it must be addressed, and commended President Tshisekedi’s intervention at the COP26 Summit, where he committed to combat deforestation in the Congo Basin rainforest and reduce greenhouse gas emissions by 21 per cent, by 2030….  

Excerpts from DR Congo: Limitations to ‘strictly military approach’ to stem violence, mission chief warns, UN News, Dec. 6, 2021

Nowhere to Go: Nuclear Waste Germany

Germany is to shut down its last nuclear reactors in 2022. However, the country still has no place to store the 27,000 cubic meters of highly radioactive material it has already produced, with the amount set to grow as power stations are decommissioned and dismantled. German authorities have set a deadline of 2031 to find a permanent storage location – but for now, the waste is being stored in temporary locations, much to the anger of local residents.

See Youtube video France24

Re-Growing Our Lost Tropical Forests

Scientists have concluded that tropical forests demonstrate high resilience, even after they are cut down, due to agriculture or pasture use, if they are left alone for 20 years.  According to the study published in December 2021. 

“Tropical forests are converted at alarming rates to other land uses yet they also have the potential to regrow naturally on abandoned agricultural fields and pastures. Widespread land abandonment because of fertility loss, migration, or alternative livelihood options has led to a rapid increase in the extent of regrowing forests. Currently, regrowth covers as much as 28% (2.4 million km2) of the neotropics alone. Regrowing secondary forests form a large and important component of human-modified tropical landscapes and have the potential to play a key role in biodiversity conservation, climate change mitigation, and landscape restoration. 

See Multidimensional tropical forest recovery, SCIENCE VOL. 374, NO. 6573, Dec. 9, 2021

What’s in that Suitcase? Endangered Turtles

Live animals, python skins and slimming pills made from crocodile blood are just a few of the items seized at world borders recently. In the space of a month, 29 big cats, 531 turtles, 336 reptiles, 1.4 million plant-derived products and 75,320kg of timber were found in luggage. 300 arrests were made. Many of the items are part of the world’s fourth biggest illegal market – the illegal wildlife trade. Despite decades of lawmakers’ crackdowns, it is still worth an estimated €17 billion annually.

The smuggled items were found as part of Operation Thunder 2021, which spanned 118 countries and the work of customs, police and wildlife enforcement agencies. The operation, coordinated by the World Customs Organisation (WCO) and INTERPOL, involved searching cars, boats and lorries with sniffer dogs and X-ray scanners. Law enforcement found that online platforms are being used to arrange trafficking, and illegal money transfers are used to enable money laundering.

Excerpt from Nichola Daunton, These are all the endangered species criminals tried to smuggle in just one month, Euronews, Dec. 1, 2021

See also Press Release of UNODC World Wildlife Crime

Why Crabs and Mussels Love Plastic Pollution

The “Great Pacific Garbage Patch,” is considered the world’s largest accumulation of ocean plastic. It’s so massive, in fact, that researchers found it has been colonized by species — hundreds of miles away from their natural home. The research, published in the journal Nature, found that species usually confined to coastal areas — including crabs, mussels and barnacles — have latched onto, and unexpectedly survived on, massive patches of ocean plastic.  As suitable habitat made of plastics now exists in the open ocean, coastal organisms can both survive at sea for years and reproduce, leading to self-sustaining coastal communities on the high seas!

But the mingling of the neuston and coastal species is “likely recent,” researchers said, and was caused largely because of the accumulation of “long-lived plastic rafts” that have been growing since the middle of the 20th century. Just by itself, the Great Pacific Garbage Patch, located between California and Hawai’i, is estimated to have at least 79,000 tons of plastic within a 1.6 million-square-kilometer area. There are at least four other similar patches throughout the world’s oceans. Researchers expect that plastic waste is going to “exponentially increase,” and by 2050, there will be 25,000 million metric tons of plastic waste.  

For lead author Linsey Haram, the research shows that physical harm to larger marine species should not be the only concern when it comes to pollution and plastic waste. “The issues of plastic go beyond just ingestion and entanglement,” Haram said in a statement. “It’s creating opportunities for coastal species’ biogeography to greatly expand beyond what we previously thought was possible.” 

But that expansion could come at a cost. “Coastal species are directly competing with these oceanic rafters,” Haram said. “They’re competing for space. They’re competing for resources. And those interactions are very poorly understood.” There is also a possibility that expansions of these plastic communities could cause problems with invasive species. A lot of plastic found in the Great Pacific Garbage Patch, for example, is debris from the 2011 Tohoku tsunami in Japan, which carried organisms from Japan to North America. Over time, researchers believe, these communities could act as reservoirs that will provide opportunities for coastal species to invade new ecosystems. 

There are still many questions researchers say need to be answered about these new plastic-living communities — like how common they are and if they can exist outside the Great Pacific Garbage Patch — but the discovery could change ocean ecosystems on a global scale, especially as climate change exacerbates the situation. 

Excerpts from LI COHEN, There’s so much plastic floating on the ocean surface, it’s spawning new marine communities, CBS News, Dec. 2, 2021
BY LI COHEN

Battle for Storing Medical Nuclear Waste: Australia

Napandee, a 211 hectare property near the town of Kimba, has been acquired by the Australian  government and will be used to store low and medium-level nuclear waste. “This is still the right decision at the right site,” Resources Minister Keith Pitt said.  “It’s certainly got all of the right geological requirements, we have majority support from the local community and we should never forget that this has taken 40 years and I understand some 16 ministers,” he said.  “Fundamentally, for the local community of Kimba it’s been over six years of consultation.” The consultation culminated in a ballot which showed just over 60 per cent of Kimba residents supported the project.

However, the Barngarla traditional owners opposed the project and said they were not included in the consultation. “There have been significant and repeated grave problems with the government’s conduct regarding the site selection process,” a spokesperson for the Barngarla Determination Aboriginal Corporation said in a statement. “We remain confident that, once assessed by the Court, the declaration to locate the facility at Napandee on our Country will likely be overturned.”

According to the Australian minister, every Australian would need to use nuclear medicine at some point in their life. “If we are going to use this technology, it produces low-level radioactive waste and we have to deal with it and store it. This is the best option on the table.” “This is a facility that will last more than 100 years and it’s important for the country.” The Australian Radioactive Waste Agency, created to establish the Napandee facility, will start work on detailed designs.

Excerpts from Declan Gooch and Emma Pedler, Napandee chosen as nuclear waste storage site after ‘six years of consultation’, ABC, Nov. 29, 2021

The Limits of Green Energy: Wind Blades of Wood and Plastic

What does the deforestation of balsa wood in Ecuador’s Amazon region have to do with wind power generation in Europe? There is a perverse link between the two: a drive for renewable energy has boosted global demand for a prized species of wood that grows in the world’s largest rainforest. As Europe and China increase the construction of blades for wind turbines, balsa trees are being felled to accelerate an energy transition driven by the need to decarbonize the global economy.

In the indigenous territories of the Ecuadorian Amazon, people began to notice an uptick in international demand for balsa wood from 2018 onwards. Balsa is very flexible but tough at the same time, and offers a light yet durable option for long-term wind power production. The typical blades of a wind turbine are currently around 80 meters long, and the new generation of blades can extend up to 100 meters. That means about 150 cubic meters of wood are required to build a single unit, according to calculations by the United States National Renewable Energy Laboratory.

Ecuador is the world’s main exporter of balsa wood, holding 75% of the global market. Major players include Plantabal S.A. in Guayaquil, which has around 10,000 hectares dedicated to the cultivation of balsa wood destined for export. With the boom in demand starting in 2018, this company and many others struggled to cope with the quantity of international orders. This increase has led directly to the deforestation of the Amazon. Irregular and illegal logging has proliferated by those who have reacted to the scarcity of wood grown for timber by chopping down the virgin balsa that grows on the islands and riverbanks of the Amazon

The impact on the indigenous people who live in the area has been as devastating as mining, oil and rubber were in their day…The Amazon’s defenders are calling for the wind turbine industry to implement strict measures to determine the origin of the wood used in turbine blades, and to prevent market pressure leading to deforestation. Ultimately, they say, balsa wood should be replaced by other materials…

In 2019, Ecuador’s balsa exports were worth almost €195 million, 30% more than the previous record from 2015. In the first 11 months of 2020, this jumped to €696 million.

Wind turbine blades are mainly made from polymethacrylamide (PMI) foam, balsa wood and polyethylene terephthalate (PET) foam…But The Spanish-German company Siemens-Gamesa..has  introduced blade designs using PET only, other competitors soon followed. Wood Mackenzie, a consultancy firm, forecasts that this “will increase from 20% in 2018 to more than 55% in 2023, while demand for balsa will remain stable…”

Today’s blades also present a problem for recycling. The first generation of wind turbines are reaching the end of their lives, and thousands will need to be dismantled… “But the blades represent a challenge due to their composite materials, as their recycling requires very specific processes…

Excerpts from How the wind power boom is driving deforestation in the Amazon, ElPais, Nov. 26, 2021

How to Lift Nuclear Submarines from Arctic Seabed

Projects aimed to improve nuclear safety are some of the few successful arenas for cooperation still going strong between the European Union and Russia…especially wiht regard to the two old Soviet submarines K-159 and K-27, both rusting on the Arctic seabed with highly radioactive spent nuclear fuel elements in their reactors…

“The sunken submarines K-27 and K-159 are the potential source of contamination of the Arctic, the riskiest ones,” Ambassador Jari Vilén of Filand explains. “Assessments made by the European Union together with Rosatom show that in 20-30 years’ time the metals will start corroding and there is a genuine risk of leakage. Therefore, lifting them in the coming decade is extremely important.”

“I’m very happy we are making progress and that a decision to make a technical review has been decided by the European Bank for Reconstruction and Development (EBRD) through the Northern Dimension Environmental Partnership. Hopefully, when these technical reviews are done, we will come to a phase where we can make decisions on a lifting operation,” Vilén says with enthusiasm.

Lifting a nuclear submarine from the seabed is nothing new. It is difficult, but doable. In 2002, the Dutch salvage company Mammoet managed to raise the ill-fated “Kursk” submarine from the Barents Sea. A special barge was built with wires attached underneath. The wreak of “Kursk” was safely brought in and placed in a dry-dock where the decommissioning took place.

K-159 is a November-class that sank in late August 2003 while being towed in bad weather from the closed naval base of Gremikha on the eastern shores of the Kola Peninsula towards the Nerpa shipyard north of Murmansk. The two onboard reactors contain about 800 kilograms of spent nuclear fuel, with an estimated 5,3 GBq of radionuclides. A modeling study by the Norwegian Institute of Marine Research said that a pulse discharge of the entire Cesium-137 inventory from the two reactors could increase concentrations in cod in the eastern part of the Barents Sea up to 100 times current levels for a two-year period after the discharge. While a Cs-137 increase of 100 times in cod sounds dramatic, the levels would still be below international guidelines. But that increase could still make it difficult to market the affected fish.

K-27, the other submarine in urgency to lift, was on purpose dumped in the Kara Sea in 1982….

Lifting the dumped reactors from the Kara Sea, a price tag of nearly €300 million has been mentioned. The sum includes K-27 and K-159, but also the other dumped reactors from K-11, K-19 and K-140, as well as spent nuclear fuel from an older reactor serving icebreaker “Lenin”. “The value of the fishing stocks in the area is ruffly €1.4 billion annually,” he says.

Excerpts from Thomas Nilsen, EU willing to co-fund lifting of sunken nuclear subs from Arctic seabed, The Barents Observer, Nov. 22, 2021

Exchanging Nature for Crushing Debt

In 2020 tourism in Belized dried up, growth contracted sharply and public debt jumped from just under 100% GDO in 2019 to over 125%. That forced Belize,  into a debt restructuring…As part of the deal, concluded on November 5th, 2021 Belize bought back its only international bond, a $553m, at 55 cents on the dollar. It funded that with $364m of fresh money, arranged by The Nature Conservancy, an NGO, which is insured by the International Development Finance Corp, an American agency. The transaction is backed by the proceeds of a “blue bond” arranged by Credit Suisse, a bank. The payback is due over 19 years. It is called a blue bond because Belize has pledged to invest a large chunk of the savings into looking after the ocean. That includes funding a $23m endowment to support future marine-conservation projects and promising to protect 30% of its waters by 2026…

Debt-for-nature swaps are nothing new. Lenders have been offering highly indebted countries concessions in return for environmental commitments for decades. But these transactions have historically involved debt owed to rich countries, not commercial bondholders. As Lee Buchheit, a lawyer who specialises in sovereign-debt restructurings, points out, they were “negligible in size”. In total, the value of debt-for-climate and nature-swap agreements between 1985 and 2015 came to just $2.6bn, according to the United Nations Development Programme. Of the 39 debtor nations that benefited from the swaps, only 12 negotiated debts of over $30m. “It was really an exercise in public relations,” Mr Buchheit says….

Other poor countries are trying to move in the same direction. At the COP26 climate summit in Glasgow Ecuador’s president Guillermo Lasso proposed enlarging the country’s Galapagos nature reserve through a debt-for-nature swap…Yet no amount of creative dealmaking can distract from the grim truth: many emerging markets still suffer from crushing debts.

Excerpts from Debt-for Nature Swaps: Reef relief, Economist, Nov. 13, 2021

No Matter What they Say-Nobody Likes Nuclear Waste

The first stage of the process has been under way since November 2020 for the town of Suttsu and the village of Kamoenai assessing two municipalities in Hokkaido for their suitability to host a final disposal facility for high-level radioactive waste from nuclear power plants.  Under the government’s plan, the first-stage surveys take two years and will be followed by the second phase… which will include geophysical exploration, geological reconnaissance surveys and drilling surveys. Already stories about divisions and conflict over the surveys are emerging from the local communities.

The mayoral election of Suttsu in October 2021, for example, turned into a bitter and divisive political battle over the issue between the incumbent who decided to apply for the first-phase survey and a challenger who ran on opposition to the project. Some of the neighboring municipalities have enacted an ordinance to ban the entry of radioactive materials. Both the Hokkaido prefectural government and most of the local administrations around the two municipalities have declined to accept state subsidies related to the surveys. These actions have been driven by the fear that accepting the surveys will set in motion an unstoppable process leading to a permanent repository for nuclear waste.

The NUMO (Nuclear Waste Management Organization of Japan) and the METI (Ministry of Economy, Trade and Industry)  have jointly held more than 100 meetings to explain the plan to local communities across the nation. Even though they have continued calling for localities to volunteer, no local governments except for the two in Hokkaido have responded.

Excerpts from Entire nation should share in disposal of spent nuke fuel, Asahi Shimbun, Nov. 22, 2021

The Mining Curse

Two poor, fragile, post-Soviet democracies, two spectacular holes in the ground. Mongolia’s Oyu Tolgoi, or “Turquoise Hill”, is a vast mine in the southern Gobi desert, just 80km from the Chinese border. Kumtor in the Tian Shan mountains of Kyrgyzstan, operating since 1997, is if anything even more remote. Located beside a series of glaciers at 13,000 feet above sea level, it is the world’s second-highest gold mine.

It is hard to exaggerate the importance of these two mines to their respective economies. Once completed, Oyu Tolgoi will be the world’s fourth-biggest copper mine. When the contract with Rio Tinto, an Anglo-Australian mining giant, was first signed in 2009, Oyu Tolgoi was predicted to add five percentage points to Mongolia’s annual economic growth, which, for a while, it did. The mine has created 15,000 jobs directly and another 45,000 indirectly, for a Mongolian population of 3.3m. As for Kumtor, its owner, Centerra, a Canadian exploration company, is the country’s largest private investor. In a good year the mine generates a tenth of Kyrgyzstan’s GDP and is the biggest contributor to the state budget.

Both mines loom large in national life. Both foreign operators won sweet, initial deals when naïve young states opened their doors to foreign investment. Controversy surrounding the mines was thus inevitable. Oyu Tolgoi has long been controversial. Politicians often accuse Rio Tinto of fleecing the country…In Kyrgyzstan the goverment accuses Centerra of corruption, enriching politicians instead of the national budget. 

Accusations of being cheated are common in poor, resource-rich countries. With Oyu Tolgoi, the stand-off is more easily resolved….A recent independent review makes it hard for Rio to deny it bears some blame for delays and cost overruns in developing the mine…. In Kyrgyzstan the situation is bleaker. There, bribery and corruption are not incidental to business but central to it….Foreign investors too often blame “resource nationalism” for their woes in host countries. That is self-serving. After all, the resources usually belong to the state. It is reasonable for citizens to ask how best to benefit from them…. 

Excerpts from Banyan: Mine for the Taking, Economist, Nov. 6, 2021

The Right to Know from Space

Rebuilding an entire planet’s energy system is a big job…The most basic problem is knowing what, exactly, you are trying to rebuild. Academic-research groups, think-tanks, charities and other concerned organizations try to keep track of the world’s wind turbines, solar-power plants, fossil-fueled power stations, cement factories and so on. To this end, they rely heavily on data from national governments and big companies, but these are often incomplete. The most comprehensive database covering American solar-power installations, for instance, is thought to miss around a fifth of the photovoltaic panels actually installed on the ground.

In a paper published in Nature, a team of researchers demonstrate another way to keep tabs on the green-energy revolution. Dr Kruitwagen and his colleagues have put together an inventory of almost 69,000 big solar-power stations (defined as those with a rated capacity of 10kw of electricity or more) all over the world—more than four times as many as were previously listed in public databases. This new inventory includes their locations, the date they entered service and a rough estimate of their generating capacity…

Pictures came from two sets of satellites, Sentinel-2 and SPOT, run by the European Space Agency and Airbus respectively. These peer down on the world, recording visible light and also the infrared and ultraviolet parts of the spectrum. The images amounted to around 550 terabytes of data, spanning the period between 2016 and 2018. That is enough to fill more than a hundred desktop hard drives. Sifting through this many pictures by eye would have been impractical. That is where the second technological trend comes in. Dr Kruitwagen and his colleagues trained a machine-learning system to spot the solar panels for them.

More generally, Dr Kruitwagen hopes that his eye-in-the-sky approach—which, despite the planetary scale of the project, cost only around $15,000 in cloud-computing time—could presage more accurate estimates of other bits of climate-related infrastructure, such as fossil-fuel power stations, cement plants and terminals for ships carrying liquefied natural gas. The eventual result could be the assembly of a publicly available, computer-generated inventory of every significant bit of energy infrastructure on Earth. Quite apart from such a model’s commercial and academic value, he says, an informed public would be one better able to hold politicians’ feet to the fire. 

Excerpt from Solar-cell census: An accurate tally of the world’s solar-power stations, Economist, Oct. 30, 2021

Animal Rights March On

A dispute over the fate of hippos in Colombia has given rise to a federal court ruling in Ohio, United States that, for the first time in American law, recognizes animals as people. This should come as welcome news to the 100-plus hippos of Colombia’s Magdalena river. They are the offspring of four hippos smuggled into the country by Pablo Escobar, a drug lord. 

The surfeit of hippos has coated lakes with algae and could displace otters, manatees and endangered turtles. Hippos have begun wandering into villages, too—a potential peril for human persons. In 2020, Colombia’s government considered a cull, prompting a Colombian lawyer to take up the cause. The hippos, his lawsuit says, enjoy protection under Colombian law and must not be killed….

Judge Karen Litkovitz, the federal judge in Ohio (USA), does not get to decide the hippos’ fate. But on October 15, 2021 she agreed with the Animal Legal Defense Fund that the hippos are “interested persons” under a law permitting foreign litigants to gather evidence in America that may buttress their claims. Experts in non-surgical sterilization will be deposed for their insights on PZP, a contraceptive that could spare the hippos while dampening their growth.

America is not the first country to regard animals as legal persons. An Indian court cited the constitution in banning a bullfighting festival in 2014. A judge in Argentina ruled that Sandra, an orangutan, was a non-human person eligible for better environs than her concrete enclosure in a Buenos Aires zoo; she now luxuriates in a sanctuary in Florida. In 2020 a court in Islamabad, faced with cases involving stray dogs, an elephant and a bear, recognized the “right of each animal…to live in an environment that meets the latter’s behavioral, social and physiological needs”.

Judge Litkovitz’s decision is not couched in such sweeping terms. It remains to be seen whether other American courts take her cue