Category Archives: public health

How to Prepare for Deadly Flu and Nuclear Fallout

Breakthroughs in the science of programmable gene expression inspired DARPA to establish the PReemptive Expression of Protective Alleles and Response Elements (PREPARE) program with the goal of delivering powerful new defenses against public health and national security threats. DARPA has now selected five teams to develop a range of new medical interventions that temporarily and reversibly modulate the expression of protective genes to guard against acute threats from influenza and ionizing radiation, which could be encountered naturally, occupationally, or through a national security event.

The program builds from the understanding that the human body has innate defenses against many types of health threats, but that the body does not always activate these defenses quickly or robustly enough to block the worst damage. To augment existing physiological responses, PREPARE technologies would provide a programmable capability to up- or down-regulate gene expression on demand, providing timely, scalable defenses that are proportional to anticipated threats. Service members and first responders could administer these interventions prior to threat exposure or therapeutically after exposure to mitigate the risk of harm or death.

Influenza: “Researchers working within the PREPARE program seek to improve rates of survival and recovery in catastrophic scenarios for which reliable and scalable countermeasures don’t currently exist,” said Dr. Renee Wegrzyn, the PREPARE program manager….Three PREPARE teams are pursuing multi-pronged approaches to influenza defense and treatment that use programmable gene modulators to boost the human body’s natural defenses against influenza and also weaken the virus’ ability to cause harm by directly neutralizing the viral genomes. If successful, their approaches would potentially protect against virtually all influenza strains — regardless of whether a virus is newly emergent or has developed drug resistance — and would provide near instantaneous immunity, in contrast to traditional vaccines. Additionally, the teams are designing their countermeasures so that they are simple to deliver — for example, as intranasal sprays — reducing the logistical challenge of protecting large numbers of people.A team led by DNARx LLC, under principal investigator Dr. Robert Debs, aims to develop a new DNA-encoded gene therapy that helps patients fight influenza by boosting the natural immune response and other protective functions of their nasal passages and lungs.

Radiation Hazard Symbol

Ionizing Gamma Radiation: Other PREPARE teams are pursuing treatments to protect the body from the effects of ionizing gamma radiation. In humans, radiation poisoning primarily affects stem cells in the blood and gut, yet existing treatments only help to regenerate blood cells, and only with limited effect. There is no possibility for prophylactic administration of these drugs, and most must be delivered immediately following radiation exposure to provide any benefit. There are no existing medical countermeasures for radiation damage to the gut
A team led by the University of California, San Francisco, under principal investigator Dr. Jonathan Weissman, also aims to develop gene therapies to enhance resilience against ionizing radiation. The team’s approach should result in an intravenous or orally available treatment that activates innate defenses in gut and blood stem cells for a period of several weeks.

A Dose of Inner Strength to Survive and Recover from Potentially Lethal Health Threats
New tools for programmable modulation of gene expression could yield enhanced resilience against influenza and ionizing radiation for service members and first responders, DARPA Press Release, June 27, 2019

How Venom from Spiders Kills Malaria Mosquitoes

In the 1980s, the village of Soumousso in Burkina Faso helped launch one of the most powerful weapons against malaria: insecticide-treated bed nets, which had early field trials there and went on to save millions of lives. But as mosquitoes developed resistance to widely used insecticides, the nets lost some of their power. Now, researchers are hoping the village can help make history again by testing a new countermeasure: a genetically modified (GM) fungus that kills malaria-carrying mosquitoes. In tests in a 600-square-meter structure in Soumousso called the MosquitoSphere—built like greenhouse but with mosquito netting instead of glass—the fungus eliminated 99% of the mosquitoes within a month, scientists report in the  magazine Science.

MosquitoSphere, Burkina Faso

The fungus also has clear advantages, however: It spares insects other than mosquitoes, and because it doesn’t survive long in sunlight, it’s unlikely to spread outside the building interiors where it would be applied.  Fungi naturally infect a variety of insects, consuming the host’s tissues in order to reproduce, and they have been used for decades to control a wide variety of crop pests….Researchers have tested dozens of different fungal strains against disease-carrying mosquitoes, but none was effective enough to pass muster. So researchers from the University of Maryland (UMD) in College Park and the Research Institute of Health Sciences & Centre Muraz in Bobo-Dioulasso, Burkina Faso, endowed a strain called M. pingshaense with a gene for a toxin isolated from spider venom that turns on when it contacts hemolymph, the insect version of blood. In the lab, the team showed its creation could kill mosquitoes faster and that just one or two spores could cause a lethal infection. 

Burkina Faso was a promising place for a field test: Unlike many countries in Africa, it has an established system to evaluate and approve the use of GM organisms. It also has one of the highest rates of malaria in the world, and insecticide-resistant mosquitoes are widespread. For those and other reasons, the U.S. National Institutes of Health funded the MosquitoSphere, which is specifically designed to test GM organisms.

Excerpts fromGretchen Vogel  Fungus with a venom gene could be new mosquito killer, Science, May 31, 2019

Hunting Down Polluters: Repairing the Ozone Layer

CFC-11 is also known as trichlorofluoromethane, and is one of a number of chloroflurocarbon (CFC) chemicals that were initially developed as refrigerants during the 1930s. However, it took many decades for scientists to discover that when CFCs break down in the atmosphere, they release chlorine atoms that are able to rapidly destroy the ozone layer which protects us from ultraviolet light. A gaping hole in the ozone layer over Antarctica was discovered in the mid 1980s.  The international community agreed the Montreal Protocol in 1987, which banned most of the offending chemicals. Recent research suggests that the hole in the Northern Hemisphere could be fully fixed by the 2030s and Antarctica by the 2060s.

CFC-11 was the second most abundant CFCs and was initially seen to be declining as expected.However in 2018 a team of researchers monitoring the atmosphere found that the rate of decline had slowed by about 50% after 2012.  Further detective work in China by the Environmental Investigation Agency in 2018 seemed to indicate that the country was indeed the source. They found that the illegal chemical was used in the majority of the polyurethane insulation produced by firms they contacted.One seller of CFC-11 estimated that 70% of China’s domestic sales used the illegal gas. The reason was quite simple – CFC-11 is better quality and much cheaper than the alternatives.

This new paper seems to confirm beyond any reasonable doubt that some 40-60% of the increase in emissions is coming from provinces in eastern China.  Using what are termed “top-down” measurements from air monitoring stations in South Korea and Japan, the researchers were able to show that since 2012 CFC-11 has increased from production sites in eastern China.They calculated that there was a 110% rise in emissions from these parts of China for the years 2014-2017 compared to the period between 2008-2012.

“If we look at these extra emissions that we’ve identified from eastern China, it equates to about 35 million tonnes of CO2 being emitted into the atmosphere every year, that’s equivalent to about 10% of UK emissions, or similar to the whole of London.”  The Chinese say they have already started to clamp down on production by what they term “rogue manufacturers”. In  November 2018, several suspects were arrested in Henan province, in possession of 30 tonnes of CFC-11.

Excerpts from Matt McGrath,  Ozone layer: Banned CFCs traced to China say scientists, BBC, May 22, 2019

How Companies Buy Social License: the ExxonMobil Example

The Mobil Foundation sought to use its tax-exempt grants to shape American laws and regulations on issues ranging from the climate crisis to toxic chemicals – with the explicit goal of benefiting Mobil, documents obtained by the Guardian newspaper show.  Recipients of Mobil Foundation grants included Ivy League universities, branches of the National Academies and well-known civic organizations and environmental researchers.  Benefits for Mobil included – in the foundation’s words – funding “a counterpoint to so-called ‘public interest’ groups”, helping Mobil obtain “early access” to scientific research, and offering the oil giant’s executives a forum to “challenge the US Environmental Protection Agency (EPA) behind-the-scenes”….

A third page reveals Mobil Foundation’s efforts to expand its audience inside environmental circles via a grant for the Environmental Law Institute, a half-century-old organization offering environmental law research and education to lawyers and judges.  “Institute publications are widely read in the environmental community and are helpful in communicating industry’s concerns to such organizations,” the entry says. “Mobil Foundation grants will enhance environmental organizations’ views of Mobil, enable us to reach through ELI activities many groups that we do not communicate with, and enable Mobil to participate in their dialogue groups.”

The documents also show Mobil Foundation closely examining the work of individual researchers at dozens of colleges and universities as they made their funding decisions, listing ways that foundation grants would help shape research interests to benefit Mobil, help the company recruit future employees, or help combat environmental and safety regulations that Mobil considered costly.  “It should be a wake-up call for university leaders, because what it says is that fossil fuel funding is not free,” said Geoffrey Supran, a postdoctoral researcher at Harvard and MIT.  “When you take it, you pay with your university’s social license,” Supran said. “You pay by helping facilitate these companies’ political and public relations tactics.”

In some cases, the foundation described how volunteer-staffed not-for-profits had saved Mobil money by doing work that would have otherwise been performed by Mobil’s paid staff, like cleaning birds coated in oil following a Mobil spill.  In 1987, the International Bird Rescue Research Center’s “rapid response and assistance to Mobil’s West Coast pipeline at a spill in Lebec, CA not only defused a potential public relations problem”, Mobil Foundation said, “but saved substantial costs by not requiring our department to fly cross country to respond”.d of trustees at the Woods Hole Oceanographic Institution (recipient of listed donations totalling over $200,000 from Mobil) and a part of UN efforts to study climate change.

Wise ultimately co-authored two UN Intergovernmental Panel on Climate Change reports, serving as a lead author on one. One report chapter Wise co-authored prominently recommended, among other things, burning natural gas (an ExxonMobil product) instead of coal as a way to combat climate change.

Excerpts from How Mobil pushed its oil agenda through ‘charitable giving’, Guardian, June 12, 2019

Biodiversity and Respect for Human Rights

The instinctive response of many environmentalists  is to to fence off protected areas as rapidly and extensively as possible. That thought certainly dominates discussions of the Convention on Biological Diversity, the main relevant international treaty. An eight-year-old addendum to the pact calls for 17% of the world’s land surface and 10% of the ocean’s water column (that is, the water under 10% of the ocean’s surface) to be protected by 2020. Currently, those figures are 15% and 6%. Campaigners want the next set of targets, now under discussion, to aim for 30% by 2030—and even 50% by 2050. This last goal, biogeographers estimate, would preserve 85% of life’s richness in the long run.  As rallying cries go, “Nature needs half” has a ring to it, but not one that sounds so tuneful in the poor countries where much of the rhetorically required half will have to be found. Many people in such places already feel Cornered by Protected Areas.” (See also Biodiversity and Human Rights)

James Watson, chief scientist at the Wildlife Conservation Society (wcs), another American charity, has an additional worry about focusing on the fence-it-off approach. If you care about the presence of species rather than the absence of humans, he warns, “‘nature needs half’ could be a catastrophe—if you get the wrong half.” Many terrestrial protected areas are places that are mountainous or desert or both. Expanding them may not translate into saving more species. Moreover, in 2009 Lucas Joppa and Alexander Pfaff, both then at Duke University in North Carolina, showed that protected areas disproportionately occupy land that could well be fine even had it been left unprotected: agriculture-unfriendly slopes, areas remote from transport links or human settlements, and so on. Cordoning off more such places may have little practical effect.

Southern Appalachians, Virginia. image from wikipedia

 In the United States it is the underprotected southern Appalachians, in the south-east of the country, that harbour the main biodiversity hotspots. The largest patches of ring-fenced wilderness, however, sit in the spectacular but barren mountain ranges of the west and north-west. In Brazil, the world’s most speciose country, the principal hotspots are not, as might naively be assumed, in the vast expanse of the Amazon basin, but rather in the few remaining patches of Atlantic rainforest that hug the south-eastern coast.

Deforestation Atlantic Rainforest in Rio de Janeiro. Image from wikipedia

Nor is speciosity the only consideration. So is risk-spreading. A team from the University of Queensland, in Australia, led by Ove Hoegh-Guldberg, has used a piece of financial mathematics called modern portfolio theory to select 50 coral reefs around the world as suitable, collectively, for preservation. Just as asset managers pick uncorrelated stocks and bonds in order to spread risk, Dr Hoegh-Guldberg and his colleagues picked reefs that have different exposures to rising water temperatures, wave damage from cyclones and so on. The resulting portfolio includes reefs in northern Sumatra and the southern Red Sea that have not previously registered on conservationists’ radar screens…

Another common finding—counterintuitive to those who take the “fence-it-all-off” approach—is that a mixed economy of conservation and exploitation can work. For example, rates of deforestation in a partly protected region of Peru, the Alto Mayo, declined by 78% between 2011 and 2017, even as coffee production increased from 20 tonnes a year to 500 tonnes.

Environmental groups can also draw on a growing body of academic research into the effective stewardship of particular species. For too long, says William Sutherland, of Cambridge University, conservationists have relied on gut feelings. Fed up with his fellow practitioners’ confident but unsubstantiated claims about their methods, and inspired by the idea of “evidence-based medicine”, he launched, in 2004, an online repository of relevant peer-reviewed literature called Conservation Evidence.  Today this repository contains more than 5,400 summaries of documented interventions. These are rated for effectiveness, certainty and harms. Want to conserve bird life threatened by farming, for example? The repository lists 27 interventions, ranging from leaving a mixture of seed for wild birds to peck (highly beneficial, based on 41 studies of various species in different countries) to marking bird nests during harvest (likely to be harmful or ineffective, based on a single study of lapwing in the Netherlands). The book version of their compendium, “What Works in Conservation”, runs to 662 pages. It has been downloaded 35,000 times.

Excerpts from How to preserve nature on a tight budget, Economist, Feb. 9, 2919

How to Make Broken Ships Disappear: pollution

How do you make a 10,000-tonne container ship disappear? At Alang, a small town in Gujarat, on the western coast of India  is the world’s biggest ship-breaking town. Almost a third of all retired vessels—at least 200 each year—are sent to be broken up here, at over 100 different yards stretching along 10km of sand. The industry employs some 20,000 people, almost all men who migrate from the poorer states of India’s northern Hindi-speaking belt. Taxes paid by breakers generate huge sums for the state government. Yet it is a dangerous industry for its workers and a filthy one in environmental terms.

Of 744 ships that were pulled apart worldwide last year, 518 were dismantled on beaches. Only 226 were processed “off the beach” at industrial sites designed for the purpose, according to the Shipbreaking Platform, an ngo which campaigns against beach-breaking. The majority of big shipping firms use beaches, except a tiny few such as Hapag Lloyd of Germany and Boskalis of the Netherlands.

A typical operation involves a ship being beached at low tide. Once her fittings and other resaleable parts are removed, hundreds of workers with gas blowtorches clamber over the vessel’s hull, cutting it into huge steel blocks. These are then dropped onto the beach, where they are cut up again before being sold, then rerolled for use in construction.

Apart from the danger of dropping tens of tonnes of steel from a great height, the method is immensely polluting. A review in 2015 by Litehauz, a Danish marine environmental consultancy, found that in the process of scrapping a 10,000-tonne ship at least 120 tonnes of steel becomes molten and is lost in the sea. Levels of mercury and lead, as well as oil, in Alang’s water are at least 100 times higher than at other beaches. Workers must handle asbestos and dangerous chemicals. Accidents are common. Last year 14 workers died at Alang.Alang is just one of many ship-breaking centres in South Asia. Among the others are beaches in Bangladesh (where workers reportedly include children) and Pakistan. Last year the subcontinent recycled around 90% of the world’s ships by tonnage.

Ship-breaking is concentrated in the region for three reasons. Prices for scrap steel are higher than elsewhere (90% of a ship is typically steel), thanks to demand for rerolled steel for construction. Labour costs are lower than at yards in Europe, America or Turkey (workers at Alang make up to 800 rupees, or $11, per day, and usually less) and safety and environmental regulations are much weaker. Most sellers scrap their ships in South Asia because they get better prices for them.

 Shipowners, in particular Maersk, a Danish company which is the world’s biggest shipper, are preparing to comply with them…At the Baijnath Melaram shipyard a huge crane barge sits in the water next to a stretch of “impermeable” concrete. “We used to have to winch the blocks up the beach,” says Siddharth Jain, the firm’s business manager. Now, the crane lifts blocks of steel down from the ships directly to the concrete, so that they need never touch the sand. In contrast to the yards nearby, where men in simple work clothes and no safety goggles operate blowtorches, the workers scuttling around Baijnath Melaram wear boiler suits, face masks and helmets.

Blocks of steel from recycled ships

The changes are largely down to Maersk… Around 70 more are upgrading in order to meet standards set by the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships, an unratified treaty on ship recycling.  Maersk’s campaign is in response to new regulations in force since December 31st 2018 that require all European-flagged vessels to be recycled at shipyards approved by Brussels. Just over a third of the world’s ships fall in this category. Maersk, whose fleet is roughly 40% European-flagged, hopes that the best yards at Alang will be able to comply with the new rules. Two Indian yards have already been audited for the European certification; 11 more have applied. “If we sustain that momentum, in five, six or seven years all of Alang could be really responsible,” says John Kornerup Bang, Maersk’s sustainability chief.

But on January 30, 2019 the eu announced that the Indian yards audited will not make the list,… Ingvild Jenssen of the Shipbreaking Platform says that even Alang’s best yards are not clean enough. She argues that Maersk’s efforts merely “greenwash” a model that needs to change completely…. Not clean enough for Europe; but too expensive to compete with breakers in Bangladesh or Pakistan which have not changed at all. If that happens, the industry in Alang—and the jobs and revenue it generates—could disappear almost as quickly as the ships it dismantles.

Gadani, Pakistan

Excerpt from HIgh by the Beach: Ship Recycling, Economist, Mar. 9, 2019

Can’t Eat This! MicroPlastics Carrying Bacteria

The hard surface of waterborne plastic provides an ideal environment for the formation of biofilm by opportunistic microbial colonisers, and could facilitate a novel means of dispersal for microorganisms across coastal and marine environments. Biofilms that colonise the so-called ‘plastisphere’ could also be a reservoir for faecal indicator organisms (FIOs), such as Escherichia coli, or pathogenic bacteria such as species of Vibrio.

Nurdles on bathing beach

A study published in March 2019 looks into five public bathing beaches and quantifies their colonisation by E. coli and Vibrio spp. Nurdles [i.e., microplastics] were heterogeneously distributed along the high tide mark at all five beaches, and each beach contained nurdles that were colonised by E. coli and Vibrio spp. Knowledge of E. coli colonisation and persistence on nurdles should now be used to inform coastal managers about the additional risks associated with plastic debris.

Abastract from Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches