Tag Archives: radioactive contamination

Forever Fukushima: Cleaning Up the Huge Mess

By the end of 2019, Japan further delayed the removal of thousands of spent fuel units that remain in cooling pools since the 2011 disaster The government and the plant operator, Tokyo Electric Power Co., are keeping a 30- to 40-year completion target.

More than 4,700 units of fuel rods remain at the three melted reactors and two others that survived the 2011 earthquake and tsunami. They pose a high risk because their storage pools are uncovered and a loss of water in case of another major disaster could cause the fuel rods to melt, releasing massive radiation. Their removal at Units 1 and 2, after repeated delays, is now postponed by up to 10 years from the initial target of 2018, with more preparation needed to reduce radiation and clear debris and other risks.

Fuel rod removal at the Unit 1 reactor pool will begin sometime in 2027-2028, after debris is cleaned up and a huge rooftop cover installed to contain radioactive dust. Fuel removal at Unit 2 pool is to begin in 2024-2026. Work at the Unit 3 reactor pool began in April 2019 and all 566 units will be removed by March 2021. TEPCO has emptied the pool at Unit 4, which was offline and only suffered building damage, and aims to have all remaining rods in reactor pools removed by 2031 for safer storage in dry casks.

TEPCO has been unable to release the 1.2 million tons of treated but still radioactive water kept in nearly 1,000 tanks at the plant, fearing public repercussions and the impact on the area’s struggling fishing and agriculture. The amount of water is growing by 170 tons daily because it is used to cool the melted fuel inside the reactors.

The Ministry of Economy, Trade and Industry recently drafted a proposal to release the water to the sea or the air, or a combination of both. TEPCO says it can only store up to 1.37 million tons, or until the summer of 2022. Time is limited because preparation is needed before any water release. TEPCO and the government say the tanks pose risks if they were to spill their contents in another major earthquake, tsunami or flood…. The water is still somewhat contaminated, but TEPCO says further treatment can remove all but radioactive tritium to levels allowed for release. Experts say tritium is not harmful to humans in small amounts and has been routinely released from nuclear plants around the world.

Removing an estimated 880 tons of molten fuel from Fukushima’s three melted reactors is the toughest and unprecedented challenge. It’s six times the amount dealt with in the aftermath of the 1979 Three Mile Island partial core melt in the United States.  Removal is to begin in 2021 at Unit 2, where robotic probes have made more progress than at Units 1 and 3. A robotic arm was developed to enter the reactor from the side to reach the melted fuel, which has largely fallen to the bottom of the primary containment vessel… The first decade through 2031 is a crucial phase that will affect future progress…

Japan has yet to develop a plan to dispose of the highly radioactive melted fuel and other debris that come out of the reactors. TEPCO will compile a plan for those after the first decade of melted fuel removal. Managing the waste will require new technologies to reduce its volume and toxicity. TEPCO and the government say they plan to build a site to store waste and debris removed from the reactors, but finding one and obtaining public consent will be difficult.

Additionally, there will be an estimated 770,000 tons of solid radioactive waste by 2030, including contaminated debris and soil, sludge from water treatment, scrapped tanks and other waste. They will be sorted, treated and compacted for safe storage under a plan to be compiled by 2028.

The government says Fukushima’s decommissioning cost is estimated at 8 trillion yen ($73 billion), though adding compensation, decontamination of surrounding areas and medium-term storage facilities would bring the total to an estimated 22 trillion yen ($200 billion). The Japan Center for Economic Research, a think tank, estimates that decommissioning alone would cost 51 trillion yen ($470 billion) if the water is not released and tritium removal technology is pursued.

More than 10,000 workers will be needed annually in coming years, about one third assigned to work related to the radioactive water. 

Excerpts from MARI YAMAGUCHI,  Japan revises Fukushima cleanup plan, delays key steps, Associated Press, Dec. 27, 2019

Making Friends with Radioactive Waste: the Nuclear Dump of Moscow

Russian environmental activists and residents are sounding the alarm (in December 2019) over government plans to build a motorway near a Soviet-era radioactive waste site in southeast Moscow that they fear could spew dangerous particles into the air.  The 34-km (21-mile) road, which city authorities say is safe and will help ease traffic, is set to pass the Moscow Polymetal Plant and a fenced-off site where it disposed of radioactive substances decades ago.  Vasily Desyatkov, a senior city construction official, said surface and underground tests carried out where the foundations of the road were due to be laid had turned back normal readings that show there is no risk.

But that has not placated activists who have led a series of protests in recent months.  “It could lead to the release of radionuclides contained in the soil which will be dispersed with the dust. They will be spread everywhere – on people’s feet, car wheels, anything,” said Igor, a protester.

The site, the Moscow Polymetals Plant’s slag heap, is Just 13 kilometers from the Kremlin and steps from Kolomenskoye Park, a popular spot for Muscovites to ski in winter and picnic in summer, the Moskvorechye-Saburovo hill is the most contaminated of the bunch, according to Radon, a government agency tasked with locating and clearing radioactive waste. A legacy of a rushed Soviet effort to begin nuclear research as the race to build an atomic bomb gained steam in the 1930s, the hill is one of many contaminated sites across Russia …

Moskvorechye-Saburovo District Moscow

It contains tens of thousands of tons of radioactive waste left over after the extraction of thorium and uranium from ore. The factory ceased production of metals in 1996 for “environmental reasons,” according to its website — it now produces weapons and military equipment — and the dump is now a hill half a kilometer wide sloping down to the banks of the Moscow River.  City officials had been considering a full-scale clean-up for years, but never rubber-stamped a plan due to the risky location of the site near a source of water for Moscow’s southern suburbs. 

“Operations in such an environment are a serious engineering challenge — one incautious step, and radioactive soil gets into the river,” said Alexander Barinov, Radon’s chief engineer for Moscow…. “Full decontamination by removing all of the radioactive waste is simply impossible,” he added, noting that Radon every year conducts “a kind of therapy” to ensure the site’s safety — in short, dumping dirt on top of the waste to keep it buried after topsoil runoff each spring. 

Excerpts from Russians protest over plans to build road near Soviet-era radioactive waste site, Reuters, Dec. 10, 2019; Will a Road Through a Nuclear Dumping Ground Result in ‘Moscow’s Chernobyl’?, Moscow Times, July 16, 2019

Where to Go? 1 Million Tons Radioactive Water at Fukushima

In August 2019, Tepco projected that storage of radioactive water at the Fukushima nuclear plant would reach full capacity by around summer 2022 even after the expansion — the first time it has issued such a precise estimate.  According to Tepco, the Fukushima No. 1 plant had 960 massive tanks containing 1.15 million tons of treated water as of July 18, 2019. Water that has touched the highly radioactive melted fuel debris has been cleaned up through water treatment machines and is stored in the tanks, but the high-tech treatment machines are able to remove most radionuclides except tritium. The plant currently sees an increase of contaminated water by 170 tons a day, Tepco says.

Releasing tritium-tainted water into the sea in a controlled manner is common practice at nuclear power plants around the world, and it was generally considered the most viable option as it could be done quickly and would cost the least.  The head of the Nuclear Regulation Authority, Toyoshi Fuketa, has long said that releasing the treated water into the sea is the most reasonable option, but people in Fukushima, especially fishermen, fear it will damage the region’s reputation.

Addressing those concerns, the government panel, launched in November 2016, has been looking for the best option in terms of guarding against reputational damage. Injecting it into the ground, discharging it as steam or hydrogen, or solidification followed by underground burial have all been on the table. Under the current plan, Tepco is set to increase the tank space to store 1.37 million tons of water a total, but estimates show that will only last until summer 2022.  But the more space it creates, the bigger the decommissioning headache becomes.

Excerpts from KAZUAKI NAGAT, Fukushima nuclear plant to run out of tanks to store tritium-laced water in three years, Tepco says, Japan Times, Aug. 9, 2019

How Nuclear Explosions Affect the Deep Ocean

Radioactive carbon released into the atmosphere from 20th-century nuclear bomb tests has reached the deepest parts of the ocean, new research finds.  A new study in AGU’s journal Geophysical Research Letters finds the first evidence of radioactive carbon from nuclear bomb tests in muscle tissues of crustaceans that inhabit Earth’s ocean trenches, including the Mariana Trench, home to the deepest spot in the ocean.

Mariana Deep Ocean Trench

Organisms at the ocean surface have incorporated this “bomb carbon” into the molecules that make up their bodies since the late 1950s. Crustaceans in deep ocean trenches are feeding on organic matter from these organisms when it falls to the ocean floor. The results show human pollution can quickly enter the food web and make its way to the deep ocean, according to the study’s authors.


According to researchers, water containing carbon-14 can take centuries to circulate throughout the ocean, but the food web drastically accelerated the process. “There’s a very strong interaction between the surface and the bottom, in terms of biologic systems, and human activities can affect the biosystems even down to 11,000 meters,” said Weidong Sun, a coauthor of the study, “so we need to be careful about our future behaviors.”

AGU Press Release, 8 May 2019

Nuclear Robots

Robots have been used in nuclear facilities for a long time.Scenarios such as maintenance tasks in nuclear facilities or even disasters like radioactive leaks or search and rescue operations have proven to be quite successful. We are talking about robotic  arms or remote operated vehicles with some end effectors built in to handle dangerous situations.”

1986: Chernobyl’s robot trouble–During the Chernobyl nuclear incident, the Soviet authorities in charge of cleaning up nuclear waste developed around 60 unique remote-controlled robots to spare human workers from radioactive exposure. The total cost of the clean-up operation was $2bn.  Designs included the STR-1 robot, which resembles a moon buggy. It was placed on the roof of the nuclear plant and used to clean upparts of the destroyed reactor. Another design for the purpose of debris cleaning was the Mobot, developed by Moscow State University. It was a smaller version of a loader used in construction, with a front-end bucket used to  scoop up debris.

The problem was that cleaning up nuclear waste required more skills than the robots could provide, eventually resulting in the authorities sending in soldiers to perform most of the decontamination works. Radiation was so high that each worker could only spend 40 seconds inside or near the facility; 31 died from exposure, while 237 suffered from acute radiation sickness.

2008: Cleaning up nuclear waste at Hanford Nuclear Reservation. The Hanford Nuclear Reservation in the US has been somewhat of a hub for nuclear waste innovation. This is because scientists, and their robot friends, are faced with the task of emptying nuclear and chemical waste tanks the size of around 150 basketball courts before the waste reaches the Columbia River. Exposure to the material would kill a human instantly.

Luckily, Hanford has developed a few automated machines thatare specifically designed for different parts of the job. Take Foldtrack, for example, which can access the tanks through one-foot-wide pipes in the roof bysplitting into a string of pieces, and then rebuilding itself like a Transformer once inside. The remote-controlled robot uses a 3,000psi water cannon to blast nuclear sludge off the walls of the tank and pump it out. Upon completion, scientists are forced to leave the $500,000 robot in the tank due to the high levels of contamination.

Another robot, the Sand Mantis, looks like a fire hose on wheels. However, it comes packed with power, with the ability to blast tough toxic salts that build up in waste tanks with its 35,000psi water cannon. For comparison, a regular firehose has around 300psi of pressure. In order to support the huge power, the orifice of the hose is made of gems, such as sapphires, which can withstand the pressure….Finally, the Tandem Synthetic Aperture Focusing Technique,or Tank Crawler, locates cracks or corrosion in Hanford’s waste storage tanks using ultrasonic and electrical conductivity sensors.

2011: Fukushima—Previously designed robots failed to visually inspect the reactor, either breaking due to high radiation or by getting stuck in the confined spaces. That was until Toshiba’s senior scientist in its technology division, Kenji Matsuzaki, developed the Little Sunfish – an amphibious bread loaf-sized robot that could slip into the 5.5-inch reactor pipelines.

In 2017,  the Sellafield nuclear site in the UK, scientists have been working on methods to clean up the vast amounts of nuclear sludge from its First-Generation Magnox Storage Pond, as part of decommissioning efforts said to cost around £1.9bn each year. The size of two Olympic swimming pools, the storage pond contains large amounts of nuclear sludge from decaying fuel rods stored below the surface.  While robots have been designed to reach the depths of the pond and remove nuclear waste, none proved to be very successful, until Cthulhu– Collaborative Technology Hardened for Underwater and Littoral Hazardous Environment.  Cthulhu is a tracked robot that can move along the bottom ofthe storage pond, using whisker-like sensors and sonar to identify and retrieve the nuclear rods.

2018:  The South West Nuclear Hub at the University of Bristol inthe UK is collaborating with Sellafield to develop a nuclear waste robotic suit for humans, taking inspiration from the comic book hero Iron Man.

Excepts from Cherno-bots to Iron Man suits: the development of nuclear waste robotics,, Power-Technology. com, Dec. 4, 2018

Nuclear Priesthood: the future of nuclear waste

As  the world increasingly buries its nuclear waste, a growing number of experts are trying to come up with a way to warn future generations of what, exactly, will be lying under their feet.    Deciding where to create nuclear waste storage sites, demarcating them clearly and then writing it all down seems like the obvious solution. After all, mankind started writing down its history 5,500 years ago and the likelihood of us stopping to do so seems slim.   But the question then becomes: what should we write this crucial piece of information on?  Stone and paper deteriorate. USB sticks and servers do, too.  Some government entities, like ANDRA, the French National Agency in charge of managing radioactive waste, have started to record their archive on permanent paper.  Also known as acid-free paper due to its composition, it can remain chemically and physically stable for a long period of time — unlike traditional paper, which starts to yellow and decay over time when exposed to light or heat.

The agency has also built sapphire discs, made out of sapphire and etched with platinum on one side. These can contain up to 40,000 pages of pictures and text and could, theoretically, last for some two million years.   Language, after all, is a living, changing entity. That’s why it took us decades to decode Egyptian hieroglyphs and why you might have gotten a headache reading Shakespeare’s Old English masterpieces in class. So who’s to say that French scientists 1,000 years from now will be able to understand la langue de Moliere’s current form?  The OECD’s Nuclear Energy Agency (NEA) has since created a working group whose task it is to set the best practices on Radioactive Waste Repository Metadata Management so that all the information is not only stored properly but is also easily accessible as national nuclear waste programmes evolve…

In a report, the researchers led by Thomas Sebeok of the University of Indiana recommended the creation of a nuclear priesthood, inspired by the Catholic Church, which would relay information down the generations through “a mixture of iconic, indexical and symbolic elements” and “a high degree of redundancy of messages.”..

The problem with art, explained Peter Galison, professor of the History of Science and of Physics at Harvard University and author of the Containment documentary, is that if a message is too artistic, then it might not be properly understood as different people may have different interpretations of it….For instance, you know for sure what the skull pictogram means. If you’re thinking death, you’re right. Yet this symbol, Blanquer said, “comes from alchemists.”  “The skull represents Adam and the crossing bones the promise of resurrection,” he revealed. So in the span of just a few centuries this particular pictogram has evolved from meaning resurrection to meaning death.

As waste can be buried either near or deep under the surface, the signal should be seen both above but also under the ground. The researchers employed by the US Department of Energy in the mid-1980s (who came up with the nuclear priesthood, remember!), had also envisioned different monuments to get the point across: fields of pikes, threatening statues of thunderbolts, or enormous blocs of granite positioned into a tight grid….
The Finnish project of Onkalo took the problem completely differently: what if we came up with a way that would allow us to simply not tell future generations?  Its solution? Digging a deep geological repository for spent nuclear fuel.  “The entire concept of Posiva (the company which manages the project), is that 100 to 120 years after it’s been closed, the site will not be signalled. The 500 meters to the storage site in the geological layer will be filled with rock and the entire thing will be isolated and invisible in the natural landscape.”

Excerpts from What will a nuclear waste warning look like in 100,000 years’ time?, Euronews, Nov. 16, 2018

How to Survive a Nuclear Explosion

Nukemap is a tool that lets you detonate nuclear weapons over an interactive map of the world.  The app was created by a historian to help people better understand the effects of nuclear explosions.  A new version shows how various types of radioactive fallout shelters might protect you from exposure.  Nukemap’s goal is help users understand both the horror of nuclear attacks and their potential survivability.

As an example, suppose a 150-kiloton bomb detonates in New York City (near the ground).  This yield, in kilotons of TNT, would be about 10 times that of the bomb dropped on Hiroshima. So Nukemap predicts that dangerous fallout from such a cataclysm could spread deep into Connecticut and douse Stamford….In this example blast, a person out in the open at Scalzi Park in Stamford, Connecticut, might get 116 rads of radiation exposure over five hours. Nukemap describes this as “sickness inducing,” since it’d be enough to weaken the body’s immune system (among other effects).  Meanwhile, if that Connecticut resident were to huddle in the basement of a nearby three-story brick building for 72 hours, they’d see only 8 rads — roughly equivalent to the dosage astronauts getafter living aboard the International Space Station for 6 months.

Exceprts from This simulator shows what a nuclear explosion would do to your town — and it just got a scary (yet helpful) new feature, Business Insider, Oct. 31, 2018

What to Do with Radioactive Pools

More than 60,000 tons of highly radioactive spent nuclear fuel is stored on the shores of four of the five Great Lakes at the Border between United States and Canada — in some cases, mere yards from the waterline — in still-growing stockpiles…It remains on the shorelines because there’s still nowhere else to put it…

The nuclear power industry and its federal regulator, the U.S. Nuclear Regulatory Commission, point to spent nuclear fuel’s safe on-site storage over decades. But the remote possibility of a worst-case scenario release — from a natural disaster, a major accident, or an act of terrorism — could cause unthinkable consequences for the Great Lakes region.   Scientific research has shown a radioactive cloud from a spent fuel pool fire would span hundreds of miles, and force the evacuation of millions of residents in Detroit, Chicago, Cleveland, Toronto or other population centers, depending on where the accident occurred and wind patterns.

For five years, Michigan residents, lawmakers, environmental groups and others around the Midwest have, loudly and nearly unanimously, opposed a planned Canadian underground repository for low-to-medium radioactive waste at Kincardine, Ontario, near the shores of Lake Huron. Meanwhile, spent nuclear fuel, vastly more radioactive, sits not far from the shores of  four Great Lakes — Michigan, Huron, Erie and Ontario — at 15 currently operating or former nuclear power plant sites on the U.S. side. In Michigan, that includes Fermi 2; the Donald C. Cook nuclear plant in Berrien County; the Palisades nuclear plant in Van Buren County, and the former Big Rock Point nuclear plant in Charlevoix County, which ceased operation in 1997 and where now only casks of spent nuclear fuel remain.

Neither the U.S. nor the Canadian government has constructed a central collection site for the spent nuclear fuel. It’s not just a problem in the Great Lakes region — more than 88,000 tons of spent nuclear fuel, an amount that is rising, is stored at 121 U.S. locations across 39 states.

Spent nuclear fuel isn’t only radioactive, it continues to generate heat. It requires storage in pools with circulating water for typically five years before it can be moved into so-called dry-cask storage — concrete-and-steel obelisks where spent fuel rods receive continued cooling by circulating air.In practice, however, because of the high costs associated with transferring waste from wet pools to dry casks, nuclear plants have kept decades worth of spent fuel in wet storage. Plant officials instead “re-rack” the pools, reconfiguring them to add more and more spent fuel, well beyond the capacities for which the pools were originally designed.

Only in recent years have nuclear plants stepped up the transition to dry cask storage because there’s no room left in the wet pools. Still, about two-thirds of on-site spent nuclear fuel remains in wet pools in the U.S….That’s a safety concern, critics contend. A catastrophe or act of terrorism that drains a spent fuel pool could cause rising temperatures that could eventually cause zirconium cladding — special brackets that hold the spent fuel rods in bundles — to catch fire.  Such a disaster could be worse than a meltdown in a nuclear reactor, as spent nuclear fuel is typically stored with nowhere near the fortified containment of a reactor core.

At Fukushima…what almost happened — at the plant’s Unit 4 spent-fuel pool that gives nuclear watchdogs nightmares.  A hydrogen explosion four days into the disaster left the building housing the Unit 4 spent-fuel pool in ruins. The pool was seven stories up in a crumbling, inaccessible building.  It “was so radioactive, you couldn’t put people up there,” von Hippel said. “For about a month after Fukushima, people didn’t know how much water was in the pool. They were shooting water up there haphazardly with a hose, trying to drop it by helicopter.”  Two weeks after the earthquake and tsunami, the Japanese Atomic Energy Commission secretly conducted a worst-case scenario study of the ongoing disaster. The biggest fear that emerged: that a self-sustaining fire would start in the Unit 4 spent fuel pool, spreading to the nearby, damaged reactors. That, they found, would release radiation requiring evacuations as far away as 150 miles, to the outskirts of Tokyo and its more than 13.4 million residents. “That was the devil’s scenario that was on my mind,” Chief Cabinet Secretary Yukio Edano said during a special commission’s 2014 investigation of the accident.“Common sense dictated that, if that came to pass, then it was the end of Tokyo.”   What kept the spent fuel rods covered with water in Unit 4 was a miraculous twist of fate: The explosion had jarred open a gate that typically separated the Unit 4 spent fuel pool from an adjacent reactor pool.  “Leakage through the gate seals was essential for keeping the fuel in the Unit 4 pool covered with water,” a 2016 report on the Fukushima accident by the U.S. National Academies of Sciences, Engineering and Medicine concluded. “Had there been no water in the reactor well, there could well have been severe damage to the stored fuel and substantial releases of radioactive material to the environment.”

The U.S. nuclear industry sees Fukushima differently — in some ways as a success story.  “At Fukushima, you not only had a tsunami, you blew up the buildings … and you still did not drain the pool,” said Rod McCullum, senior director for fuel and decommissioning at the Nuclear Energy Institute, the trade association for nuclear utilities in the U.S.  “Those pools and those casks withstood explosions and earthquakes and tsunamis, all on the same day.”  A scenario where a fire can occur by the draining of water from a spent-fuel pool “has never been demonstrated,” McCullum said. He noted safety measures added in the U.S. since Fukushima include the ability to provide extra pumps and water supplies, in minutes or hours, should a spent fuel pool become breached and lose water — even if the disaster required that the resources be brought in by air from farther away….

Because nuclear power is much more widely used in Canada — the province of Ontario alone has 20 nuclear reactors at three plants — it also generates much more nuclear waste.  In Ontario, nearly 52,000 tons of spent nuclear fuel is stored on-site at nuclear plants along Lakes Huron and Ontario.“There’s a huge amount of high-level, radioactive waste stored right along the water,” said Edwards, the president of the nonprofit Canadian Coalition for Nuclear Responsibility  Like the U.S., Canada is seeking a long-term storage solution that will involve a central underground repository. Unlike the U.S., the Canadian government is seeking willing hosts, promising jobs and economic activity. …Even if a central repository is one day approved, another complication arises — how to get two generations of the most dangerous industrial waste man has ever created from sites all over the country to one point….

Germany, in the 1980s, tried using an abandoned salt and potash mine to store barrels of nuclear waste over 30 years, the Asse II mine.  It’s now prompting a cleanup that may take 30 years and cost nearly $12 billion U.S. dollars. The government has disputed the contention of workers at the mine that they were exposed to excessive levels of radiation, causing an unusual number of cancers….Nuclear power is projected to drop as a percentage of the world’s power generation mix from 10 percent in 2017 to just 5.6 percent by 2050, a report issued by the International Atomic Energy Agency this summer found…

If central repository solutions aren’t found, within years, the re-licensing of some early dry-cask storage facilities will come into play, as they meet a lifespan they were never expected to reach. “The age of nuclear power is winding down, but the age of nuclear waste is just beginning,” Edwards said.

Excerpts from Keith Matheny, 60,000 tons of dangerous radioactive waste sits on Great Lakes shores, Detroit Free Press, Oct. 19, 2018

The Class Actions of Fukushima Fefugees

Negligence by the Japanese government and Tokyo Electric Power Co. caused the triple meltdowns at the Fukushima Daiichi nuclear power plant, a court ruled on October 10, 2017 in the biggest class-action suit related to the March 2011 accident.

The Fukushima District Court ordered the government and Tepco to pay a total of Yen 498 million ($4.4 million) plus delinquency charges to 2,907 people who fled the radiation that was released into the air and water after a tsunami flooded the power plant, knocking out the power to the vital cooling system. It was the second time a court found the government responsible for failing to prepare adequately for the likelihood of a large tsunami wave hitting the plant.

If Japan’s government had ordered Tepco to make sure the plant was ready to withstand a tsunami wave of 15.7 meters (51.5 feet), Tepco would have made sure critical instruments were waterproof, Tuesday’s ruling said.”The accident, triggered by total loss of power, could have been avoided, ” Judge Hideki Kanazawa said.

The compensation represents a small fraction of the damages the residents had sought. They also wanted compensation for every month that radiation levels stay above normal, but the court rejected that claim. Still, with some 30 class-action lawsuits so far brought by more than 10,000 affected residents. The October 11, 2017 ruling is a sign additional compensation costs could weigh on both the government and Tepco for years to come.  Tepco has so far paid more than Yen7.6 trillion ($67 billion) in compensation to residents affected by the accident, and has been struggling to clean up the reactors — a daunting technological task that could take decades.

As of September 2017, nearly 55,000 Fukushima residents are registered as evacuees, meaning they can’t return home and haven’t settled permanently elsewhere.

The plaintiffs argued the government and Tepco failed to give adequate attention to studies that said a major tsunami could occur in the area of the plant. One 2002 study by the government’s Earthquake Research Promotion Unit said there was a 20% chance of a magnitude 8 tsunami-triggering earthquake in the area off Fukushima within 30 years. Another study by Tepco’s senior safety engineer in 2007 found there was about a 10% chance that a tsunami could breach Fukushima Daiichi’s defenses within 50 years.

The defendants said the scientific basis for such predictions was unclear, and even if the calculations were correct, the chance was too low to require immediate steps in response. The government said it wasn’t until after the accident that it gained the ability to force Tepco to take anti-flooding measures. Both argued the compensation already being paid to displaced people was adequate.

On March 11, 2011, a tsunami triggered by an earthquake flooded the Fukushima Daiichi plant, knocking out auxiliary power sources that were supposed to keep the reactors’ cooling systems running. Three reactors melted down.

Excerpts from Redress Ordered In Fukushima Case, Wall Street Journal, Oct. 11, 2017

Nuclear Accidents of the Future

Three major atomic accidents [Three Mile Island US 1979, Chernobyl USSR 1986, Fukushima Japan 2011] in 35 years are forcing the world’s nuclear industry to stop imagining it can prevent more catastrophes and to focus instead on how to contain them.  As countries such as China and India embrace atomic power even after the Fukushima reactor meltdowns in 2011 caused mass evacuations because of radiation fallout, scientists warn the next nuclear accident is waiting to happen and could be in a country with little experience to deal with it.

“The cold truth is that, no matter what you do on the technological improvements side, accidents will occur — somewhere, someplace,” said Joonhong Ahn, a professor at the Department of Nuclear Engineering of University of California, Berkeley. The consequences of radiation release, contamination and evacuation of people is “clear and obvious,” Ahn said. That means governments and citizens should be prepared, not just nuclear utilities, he said.

While atomic power has fallen from favor in some western European countries since the Fukushima accident — Germany, for example, is shutting all of its nuclear plants — it’s gaining more traction in Asia as an alternative to coal. China has 28 reactors under construction, while Russia, India, and South Korea are building 21 more, according to the World Nuclear Association. Of the 176 reactors planned, 86 are in nations that had no nuclear plants 20 years ago, WNA data show…

The problem is that the causes of the three events followed no pattern, and the inability to immediately contain them escalated the episodes into global disasters with huge economic, environmental and political consequences. Even if no deaths have yet been officially linked to Fukushima radiation, for example, cleanup costs have soared to an estimated $196 billion and could take more than four decades to complete.

If nuclear is to remain a part of the world’s energy supply, the industry must come up with solutions to make sure contamination — and all other consequences — do not spread beyond station grounds, Gregory Jaczko, ex-chairman of the U.S. Nuclear Regulatory Commission, said in an interview in Tokyo….

Since the introduction of nuclear stations in the 1950s, the industry has focused safety efforts on design and planning. Research and innovation has looked at back-up systems, passive technology that would react even if no human operator did, and strengthened materials used in construction of atomic stations….

The official toll from the reactor explosion at Chernobyl was put at 31 deaths. Radiation clean-up work, however, involved about 600,000 people, while 200,000 locals had to be relocated.  The accident contaminated 150,000 kilometers of land and according to the last Soviet leader Mikhail Gorbachev it was a factor in bringing about the collapse of the Soviet Union in 1991.

In Japan, the meltdown of three Fukushima reactors helped unseat premier Naoto Kan and forced the evacuation of about 160,000 people, destroying local fishing, farming and tourism industries along the way. It also brought tens of thousands of anti-nuclear protesters out onto the streets in the country’s biggest demonstrations since the 1960s. Tokyo Electric Power Co., the plant operator and once the world’s biggest non-state power producer, would have been bankrupted by the Fukushima accident but for billions of dollars in government aid…

Building a plant that would contain an accident within the facility boils down to cold cash, he said.  The review calls for new reactor designs to make a major release of radioactive fallout outside the station site “practically impossible,” the IAEA said. The standard would be “crucial for public acceptance and for the sustainability of nuclear energy.” Specialists on the review met for the first time in March and no conclusions are yet available, IAEA spokesman Greg Webb said by e-mail.

The problem with an engineering solution, an ever better reactor design or grander safety systems, is that based on the premise that all technology is fallible those defense systems can also fail, Berkley’s Ahn said.  “This is an endless cycle,” Ahn said. “Whatever is your technology, however it is developed, we always have residual risk.”  When the next nuclear accident occurs the world needs to have better knowledge of how to limit the spread of radiation and do the clean-up, including removing radiation from the soil, water and having an efficient evacuation drill for the population in danger zones, Ahn said. We also need more understanding of the impact of low-dose radiation on organisms, he said.  “This is about recovery from an accident, not preventing an accident,” Ahn said. “It’s completely different. And I think this concept is very necessary for the future of nuclear utilization.”

Excerpts from Yuriy Humber, World Needs to Get Ready for the Next Nuclear Plant Accident, Bloomberg, Apr. 4, 2014