Tag Archives: Fukushima radioactive waste

A Never-Ending Disaster: radioactive water at Fukushima

A Greenpeace report details how plans to discharge over 1 million tonnes of highly contaminated water into the Pacific Ocean was proposed by a Japanese government task force.  According to Greenpeace.

“The decision not to develop water processing technology that could remove radioactive tritium was motivated by short term cost cutting not protection of the Pacific ocean environment or the health and livelihoods of communities along the Fukushima coast,” said Kazue Suzuki, Energy Campaigner at Greenpeace Japan. “  The report concludes that the water crisis remains unresolved, and will be for the foreseeable future. The only viable option to protect the environment and the communities along the Fukushima coast being long term storage for the contaminated water.

The discharge option for water containing high levels of radioactive tritium was recommended as least cost by the Government’s Tritiated Water Task Force and promoted by Japan’s Nuclear Regulation Authority (NRA). The Task Force concluded in 2016 that “sea discharge would cost 3.4 billion yen (US$30 million) and take seven years and four months to complete. It concluded that this was cheapest and quickest of the five methods.” However, technical proposals for removing tritium were submitted to the same Government Task Force by multiple nuclear companies with estimated costs ranging from US$2-US$20 billion to US$50-US$180 billion depending on the technology used. These were dismissed as not viable but without detailed technical consideration.

TEPCO has claimed since 2013 that its ALPS technology would reduce radioactivity levels “to lower than the permissible level for discharge.” However, in September 2018 TEPCO admitted that the processing of over 800,000 tons of contaminated water in 1000 storage tanks, including strontium, had failed to remove radioactivity to below regulatory limits, including for strontium-90, a bone seeking radionuclide that causes cancer. TEPCO knew of the failure of the technology from 2013. The Greenpeace report details technical problems with the ALPS system.

The Fukushima Daiichi site, due its location, is subject to massive groundwater contamination which TEPCO has also failed to stop. Each week an additional 2-4000 tonnes of contaminated water is added to the storage tanks.

Excerpts from Technical failures increase risk of contaminated Fukushima water discharge into Pacific, Greenpeace Press Release,  Jan. 22, 2019

What to Do with Radioactive Pools

More than 60,000 tons of highly radioactive spent nuclear fuel is stored on the shores of four of the five Great Lakes at the Border between United States and Canada — in some cases, mere yards from the waterline — in still-growing stockpiles…It remains on the shorelines because there’s still nowhere else to put it…

The nuclear power industry and its federal regulator, the U.S. Nuclear Regulatory Commission, point to spent nuclear fuel’s safe on-site storage over decades. But the remote possibility of a worst-case scenario release — from a natural disaster, a major accident, or an act of terrorism — could cause unthinkable consequences for the Great Lakes region.   Scientific research has shown a radioactive cloud from a spent fuel pool fire would span hundreds of miles, and force the evacuation of millions of residents in Detroit, Chicago, Cleveland, Toronto or other population centers, depending on where the accident occurred and wind patterns.

For five years, Michigan residents, lawmakers, environmental groups and others around the Midwest have, loudly and nearly unanimously, opposed a planned Canadian underground repository for low-to-medium radioactive waste at Kincardine, Ontario, near the shores of Lake Huron. Meanwhile, spent nuclear fuel, vastly more radioactive, sits not far from the shores of  four Great Lakes — Michigan, Huron, Erie and Ontario — at 15 currently operating or former nuclear power plant sites on the U.S. side. In Michigan, that includes Fermi 2; the Donald C. Cook nuclear plant in Berrien County; the Palisades nuclear plant in Van Buren County, and the former Big Rock Point nuclear plant in Charlevoix County, which ceased operation in 1997 and where now only casks of spent nuclear fuel remain.

Neither the U.S. nor the Canadian government has constructed a central collection site for the spent nuclear fuel. It’s not just a problem in the Great Lakes region — more than 88,000 tons of spent nuclear fuel, an amount that is rising, is stored at 121 U.S. locations across 39 states.

Spent nuclear fuel isn’t only radioactive, it continues to generate heat. It requires storage in pools with circulating water for typically five years before it can be moved into so-called dry-cask storage — concrete-and-steel obelisks where spent fuel rods receive continued cooling by circulating air.In practice, however, because of the high costs associated with transferring waste from wet pools to dry casks, nuclear plants have kept decades worth of spent fuel in wet storage. Plant officials instead “re-rack” the pools, reconfiguring them to add more and more spent fuel, well beyond the capacities for which the pools were originally designed.

Only in recent years have nuclear plants stepped up the transition to dry cask storage because there’s no room left in the wet pools. Still, about two-thirds of on-site spent nuclear fuel remains in wet pools in the U.S….That’s a safety concern, critics contend. A catastrophe or act of terrorism that drains a spent fuel pool could cause rising temperatures that could eventually cause zirconium cladding — special brackets that hold the spent fuel rods in bundles — to catch fire.  Such a disaster could be worse than a meltdown in a nuclear reactor, as spent nuclear fuel is typically stored with nowhere near the fortified containment of a reactor core.

At Fukushima…what almost happened — at the plant’s Unit 4 spent-fuel pool that gives nuclear watchdogs nightmares.  A hydrogen explosion four days into the disaster left the building housing the Unit 4 spent-fuel pool in ruins. The pool was seven stories up in a crumbling, inaccessible building.  It “was so radioactive, you couldn’t put people up there,” von Hippel said. “For about a month after Fukushima, people didn’t know how much water was in the pool. They were shooting water up there haphazardly with a hose, trying to drop it by helicopter.”  Two weeks after the earthquake and tsunami, the Japanese Atomic Energy Commission secretly conducted a worst-case scenario study of the ongoing disaster. The biggest fear that emerged: that a self-sustaining fire would start in the Unit 4 spent fuel pool, spreading to the nearby, damaged reactors. That, they found, would release radiation requiring evacuations as far away as 150 miles, to the outskirts of Tokyo and its more than 13.4 million residents. “That was the devil’s scenario that was on my mind,” Chief Cabinet Secretary Yukio Edano said during a special commission’s 2014 investigation of the accident.“Common sense dictated that, if that came to pass, then it was the end of Tokyo.”   What kept the spent fuel rods covered with water in Unit 4 was a miraculous twist of fate: The explosion had jarred open a gate that typically separated the Unit 4 spent fuel pool from an adjacent reactor pool.  “Leakage through the gate seals was essential for keeping the fuel in the Unit 4 pool covered with water,” a 2016 report on the Fukushima accident by the U.S. National Academies of Sciences, Engineering and Medicine concluded. “Had there been no water in the reactor well, there could well have been severe damage to the stored fuel and substantial releases of radioactive material to the environment.”

The U.S. nuclear industry sees Fukushima differently — in some ways as a success story.  “At Fukushima, you not only had a tsunami, you blew up the buildings … and you still did not drain the pool,” said Rod McCullum, senior director for fuel and decommissioning at the Nuclear Energy Institute, the trade association for nuclear utilities in the U.S.  “Those pools and those casks withstood explosions and earthquakes and tsunamis, all on the same day.”  A scenario where a fire can occur by the draining of water from a spent-fuel pool “has never been demonstrated,” McCullum said. He noted safety measures added in the U.S. since Fukushima include the ability to provide extra pumps and water supplies, in minutes or hours, should a spent fuel pool become breached and lose water — even if the disaster required that the resources be brought in by air from farther away….

Because nuclear power is much more widely used in Canada — the province of Ontario alone has 20 nuclear reactors at three plants — it also generates much more nuclear waste.  In Ontario, nearly 52,000 tons of spent nuclear fuel is stored on-site at nuclear plants along Lakes Huron and Ontario.“There’s a huge amount of high-level, radioactive waste stored right along the water,” said Edwards, the president of the nonprofit Canadian Coalition for Nuclear Responsibility  Like the U.S., Canada is seeking a long-term storage solution that will involve a central underground repository. Unlike the U.S., the Canadian government is seeking willing hosts, promising jobs and economic activity. …Even if a central repository is one day approved, another complication arises — how to get two generations of the most dangerous industrial waste man has ever created from sites all over the country to one point….

Germany, in the 1980s, tried using an abandoned salt and potash mine to store barrels of nuclear waste over 30 years, the Asse II mine.  It’s now prompting a cleanup that may take 30 years and cost nearly $12 billion U.S. dollars. The government has disputed the contention of workers at the mine that they were exposed to excessive levels of radiation, causing an unusual number of cancers….Nuclear power is projected to drop as a percentage of the world’s power generation mix from 10 percent in 2017 to just 5.6 percent by 2050, a report issued by the International Atomic Energy Agency this summer found…

If central repository solutions aren’t found, within years, the re-licensing of some early dry-cask storage facilities will come into play, as they meet a lifespan they were never expected to reach. “The age of nuclear power is winding down, but the age of nuclear waste is just beginning,” Edwards said.

Excerpts from Keith Matheny, 60,000 tons of dangerous radioactive waste sits on Great Lakes shores, Detroit Free Press, Oct. 19, 2018

The Burial: nuclear waste of Fukushima

The Japanese government on November 17, 2017 began the disposal of low-level radioactive waste generated by the 2011 Fukushima nuclear disaster, more than six years after the crisis triggered by the devastating earthquake and tsunami.

A disposal site in Fukushima Prefecture accepted the first shipment of the waste, which contains radioactive cesium exceeding 8,000 becquerels and up to 100,000 becquerels per kilogram, and includes rice straw, sludge and ash from waste incineration.

The Environment Ministry is in charge of the disposal of the waste, amounting to about 200,000 tons in 11 prefectures across the country as of the end of September 2017, Most of the waste, 170,000 tons, is in the prefecture hosting the crippled Fukushima Daiichi nuclear power plant.

Under the ministry’s policy, the waste is to be disposed of in each prefecture. However, Fukushima is the only prefecture where its disposal has started, while the other prefectures have met with opposition from local residents. In Fukushima, it will take six years to finish bringing the waste that has been stored in the prefecture into the disposal site, the ministry said.

Excerpt from National Disposal of low-level radioactive waste from Fukushima nuclear disaster begins, Japan Times, Nov. 18, 2017

Fukushima Waste or Trash?

The Chiba Municipal Government of Japan  on June 28, 2016  filed for Environment Ministry approval to lift the radioactive designation for waste stored in the city that was contaminated by the Fukushima reactor meltdowns five years ago.  This marked the first application in Japan seeking to lift the radioactive designation for waste tainted by the 2011 meltdowns at Tokyo Electric Power Company Holdings Inc.’s Fukushima No. 1 nuclear power plant.  The move came after the city found that levels of radioactive materials in the designated waste are lower than the national designation standards of over 8,000 becquerels per kilogram.

At present, designated radioactive waste generated by the nuclear disaster is stored in 12 prefectures in eastern Japan, including Tokyo.

In Chiba, 7.7 tons of designated waste is currently stored at a waste disposal center.The lifting of the designation will allow the city to dispose of the waste the same way as general waste…

Excerpt from Chiba wants radioactive designation lifted from Fukushima-contaminated waste, The Japan Times, June 29, 2016

Land for Nuclear Waste – Fukushima

The March 11, 2011 earthquake and subsequent tsunami tore through coastal towns in northern Japan and set off meltdowns at Tokyo Electric Power’s Fukushima Daiichi plant, which sits partly in Okuma.  Japan has since allocated more than $15 billion to an unprecedented project to lower radiation in towns around the plant, such as Okuma. Every day across Fukushima prefecture, teams of workers blast roads with water, scrub down houses, cut branches and scrape contaminated soil off farmland.  That irradiated trash now sits in blue and black plastic sacks across Fukushima, piled up in abandoned rice paddies, parking lots and even residents’ backyards.  Japan plans to build a more permanent storage facility over the coming years in Okuma and Futaba, another now-abandoned town close to the Fukushima nuclear plant – over the opposition of some local residents.

“This land has our blood and sweat running through it and I can’t just let go of it like that,” said Koji Monma, 60, an Okuma resident who heads a local landowners’ group.  Fukushima’s governor agreed to take the waste facility after Tokyo said it would provide $2.5 billion in subsidies, and promised to take the waste out of the prefecture after 30 years. Mayors of Futaba and Okuma have since agreed to host the 16 square km (6.2 square mile) facility – about five times the size of New York’s Central Park – which will wrap around the Fukushima plant and house multiple incinerators.

Some 2,300 residents who own plots of land in Futaba and Okuma which the government needs for the waste plant face what many describe as an impossible choice...Distrust of government promises runs deep among residents here. …

The ministry has hired around 140 real estate representatives to negotiate land sales with individual owners.

Excerpts from BY MARI SAITO, Fukushima residents torn over nuclear waste storage plan, Reuters, Mar. 9, 2014

Radioactive Water: Fukushima Leaks to Pacific

Sensors at the Fukushima nuclear plant have detected a fresh leak of highly radioactive water to the sea, the plant’s operator announced on Feb. 22, 2015, highlighting difficulties in decommissioning the plant.  Tokyo Electric Power Co (Tepco) said the sensors, which were rigged to a gutter that pours rain and ground water at the Fukushima Daiichi plant to a nearby bay, detected contamination levels up to 70 times greater than the already-high radioactive status seen at the plant campus.  Tepco said its inspections of tanks storing nuclear waste water did not find any additional abnormalities, but it shut the gutter to prevent radioactive water from going into the Pacific Ocean.

Fresh leak detected at Fukushima N-plant, Agency France, Presse, Feb. 23, 2015

Fukushima Mess – Radioactive Water

The [Japanese] government picked three overseas companies to participate in a subsidized project to determine the best available technology for separating radioactive tritium from the toxic water building up at the Fukushima No. 1 nuclear plant.  Tokyo Electric Power Co. is currently test-running a system it says is capable of removing 62 types of radioactive substances from the contaminated water, but not tritium.  Thus tritium-laced water is expected to accumulate at the plant in the absence of any method to remove the isotope.

The three firms chosen from 29 applicants are U.S. firm Kurion Inc., which offers technologies to treat nuclear and hazardous waste; GE Hitachi Nuclear Energy Canada Inc., a joint venture of Hitachi Ltd. and U.S. firm General Electric Co.; and Federal State Unitary Enterprise RosRAO, a Russian radioactive waste management firm.

The government will provide up to ¥1 billion for each examination of the technologies and running costs, and consider whether any of them can be applied to treat the water at Fukushima No. 1, the industry ministry said.  The three companies are to conclude their experiments by the end of March 2016, a ministry official said.  The official cautioned there is no guarantee that any of the technologies will be put to practical use.

Three firms picked to help tackle toxic water at Fukushima No. 1, Japan Times, Aug. 26, 2014

In January 2014 it was made public that a total of 875 terabecquerels (2.45 g) of tritium are on the site of Fukushima Daiichi,and the amount of tritium contained in the contaminated water is increasing by approximately 230 terabecquerel (0.64 g) per year. According to a report by Tepco “Tritium could be separated theoretically, but there is no practical separation technology on an industrial scale.”  See Wikipedia