Tag Archives: Andreyeva Bay Russia

The Nuclear Reactors Buried in the Deep Sea

The Soviet Union used the waters east of Novaya Zemlya to dump reactors, spent nuclear fuel and solid radioactive waste from both the navy and the fleet of nuclear-powered civilian icebreakers. About 17,000 objects were dumped in the period from the late 1960s to the late 1980s. Most of the objects are metal containers with low- and medium level radioactive waste. The challenge today, though, are the reactors with high-level waste and spent uranium fuel, objects that will pose a serious threat to the marine environment for tens of thousands of years if nothing is done to secure them.

The reactors from the submarines K-11, K-19 and K-140, plus the entire submarine K-27 (in the Kara Sea) and spent uranium fuel from one of the old reactors of the Lenin-icebreaker have to be lifted and secured. Also, the submarine K-159 (in the Barents Sea) that sank north of Murmansk while being towed for decommissioning in 2003 have to be lifted from the seafloor, the experts conclude. A study report made for Rosatom and the European Commission has evaluated the costs of lifting all six objects, bringing them safely to a yard for decommissioning and securing the reactors for long-term storage. The estimated price-tag for all six will €278 millions, of which the K-159 is the most expensive with a cost of €57.5 millions. Unlike the submarines and reactors that are dumped in relatively shallow waters in the Kara Sea, the K-159 is at about 200 meters depth, and thus will be more difficult to lift.

Excerpts from Thomas Nilsen, Lifting Russia’s accident reactors from the Arctic seafloor will cost nearly €300 million, Mar. 8, 2020

Saving the Fisheries of Barents Sea from Nuclear Waste: the Andreeva Bay Case

A shipment of 14 containers with spent nuclear fuel from Andreeva Bay to Atomflot in Murmansk, Russia took place in December 2019 but it was paid by Norway.  Unloading the 40-years old spent uranium fuel elements from the rundown storage tanks and repacking them to transport containers came with a price-tag of 5 million kroner (€500 000), while the shipment from Andreeva Bay to Murmansk will cost additional 2,5 million kroner (€250 000).

The December 2019 shipment was the fourth that year, but the first one paid by Norway.  In Andreeva Bay, only 65 kilometers from the border to Norway, the Soviet navy packed away its lethal leftovers. Without too much thought for the costs of future clean up.  In Norway, like in Russia, the demand for action came out of fears for possible radioactive leakages that could have potentially negative impact on the important fisheries in the Barents Sea.  So far, isotopes contamination has only been discovered in the sediments in the near proximity off the shore and not further out in the bay.

Concerns of nuclear accidents and radioactive leakages are also why Norwegian authorities have granted hundres of millions kroner in aid to secure and clean up the site.  After 25 years of cooperation to improve the situation in Andreeva Bay, the Norwegian experts argue that direct financing of practical work is the best way to gain an insight into how Russia deals with the clean up.

By the end of Soviet times, in the late 1980s, a total of 22,000 spent nuclear fuel elements, equal to about 100 reactor cores from submarines, had accumulated at the run-down storage facilities. In addition came thousands of cubic meters of solid radioactive waste stored outdoor in rusty containers and hundreds of cubic meters of liquid radioactive waste in tanks.

The two first decades of international cooperation concentrated on improving the infrastructure. Buildings were erected to cover three concrete tanks holding the spent nuclear fuel, both to keep out rain and snow, but also to make sure the removal- and repacking work could take place in safe conditions.  The quay by the shore was rebuilt, a new special crane for lifting transport casks where put in place. Even a new on-purpose designed ship was built, paid by Italy.

In 2017, the first load of containers with spent nuclear fuel left Andreeva Bay towards Murmansk, from where it go by rail to Mayak, Russia’s reprocessing plant north of Chelyabinsk east of the Ural Mountains.  So far in 2019, three shipments paid by Russia and one shipment paid by Norway have left Andreeva Bay.  “25% of the original amount of spent nuclear fuel is now removed,” says Per-Einar Fiskebeck…

The remaining waste, tank 3A holds numerous rusty, partly destroyed steel pipes where concrete of poor quality was filled in the space between. Some of those fuel assemblies are stuck in the canisters, while some of the canisters are stuck in the cells.  This is high level nuclear waste with radiation levels close to the uranium fuel comparable to the melted fuel rods inside the ill-fated Chernobyl reactor. 

Another groundbreaking milestone in the clean up work took place earlier this fall when the retrieval of six abandoned, highly radioactive spent nuclear fuel assemblies from the bottom of Building No. 5 were successfully completed.  Building No. 5 is a former pool storage, where several elements fell to the floor following a water-leakages in 1982. Traces of uranium and other radionuclides remained in the sludge at the bottom of the pool.

Thomas Nilsen,Norway helps pay for transporting old Russian navy nuclear waste, Barents Observer, Dec. 20, 2019

How to Shh! a Nuclear Accident: the explosion of a nuclear-powered cruise missile on August 8, 2019, Russia

Two days after the explosion of a suspected nuclear-powered cruise missile undergoing testing on Aug. 8, 2010 near Nyonoksa Russia, two monitoring stations nearest the site of the accident stopped transmitting data, Lassina Zerbo, who heads the Comprehensive Nuclear Test Ban Treaty Organization, told The Wall Street Journal.  The Russian monitoring stations, called Dubna and Kirov after the places where they are located, were contacted immediately about the data disruptionl, and Russian officials responded that they were experiencing “communication & network issues.”

The missile test, on a platform in Dvinsk Bay on the White Sea in northwest Russia, has been the subject of considerable speculation. President Trump has said it involved an advanced nuclear-powered cruise missile, which has been dubbed Skyfall by the North Atlantic Treaty Organization, and which Russia calls Burevestnik.

The manned monitoring stations are part of an international network of hundreds of stations set up to verify compliance with the Comprehensive Nuclear Test Ban Treaty, which prohibits nuclear weapons tests globally. Participating nations are responsible for running the stations…The stations are designed to monitor everything from seismic shifts to sound waves for signs of nuclear activity. The two stations that went silent in Russia are designed to measure radioactive particles in the atmosphere…Arms-control experts said the monitoring problem appears to be a Russian effort to conceal information about the accident and not an effort to hide evidence of a prohibited nuclear weapons test.

Excerpts from Russian Nuclear Monitoring Stations Went Silent After Missile Blast, WSJ, Aug. 19, 2019

The 2017 Nuclear Cloud: Unreported Nuclear Accidents

The probable culprit behind a mysterious cloud of radioactive particles detected floating above much of Europe in 2017 appears to have been identified. The radiation spike – in the form of an extremely high airborne concentration of the radioactive isotope ruthenium–106 – was detected by scientists in October 2017, but the source of the dramatic radiation surge (almost 1,000 times normal levels) was never definitively confirmed.  At the time, many speculated that nuclear facilities in Russia were responsiblefor what was perceived as an accidental ruthenium–106 release – despite denials at the time by Russian authorities.

Now new research looks to back up the Russian origin hypothesis, according to an international team of almost 70 scientists led by radionuclides researcher Olivier Masson from the Institut de radioprotection et de sûreté nucléaire (IRSN) in France.  “Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation),” the researchers explain in their new paper.

In what they claim is the most comprehensive assessment of the incident to date, Masson and his team analysed over 1,300 readings taken of the radioactive cloud, recorded by 176 measuring stations in almost 30 countries.  While the airborne radioactive matter released was not harmful to human health, it nonetheless constituted the most serious release of radioactive material since the Fukushima accident in 2011 – with maximum values of 176 millibecquerels of the isotope per cubic metre of air.

Shortly after the release, Russian officials suggested the radiation surge might have been due to a crashing satellite, with the isotope being released from the battery of a spacecraft re-entering Earth’s atmosphere.  “The measurements indicate the largest singular release of radioactivity from a civilian reprocessing plant,” says one of the researchers, radioecologist Georg Steinhauser from the University of Hanover.  Specifically, the new evidence – based on modelling of air mass movements around the time of the accident – indicates Russia’s Mayak nuclear complex in the southern Urals “should be considered as a likely candidate for the release”, the researchers conclude…

If the researchers’ modelling is correct, the accident occurred sometime in late September 2017, on either the 25th or 26th of the month – almost exactly 60 years to the day after one of the worst nuclear accidents in history at the same site: the Kyshtym disaster, ranked as the third most serious nuclear accident ever on the International Nuclear Event Scale.

Excerpts frorm  PETER DOCKRILL,  Mysterious Radioactive Cloud That Blanketed Europe Traced to Russian Nuclear Facility, Science Alert, July 30, 2019

The Nuclear Waste Dumps in the Arctic

Source: Nuclear Waste In the Arctic, RadioFreeEurope/RadioLiberty, July 12, 2109

Floating Nuclear Graveyard Rests

Russia: The Lepse service vessel, Russia’s waterborne atomic graveyard, has inched a step closer to complete dismantlement as officials say they will begin extracting nuclear fuel rods from its irradiated holds in September 2018 — a long awaited development involving robotic technology, thousands of technicians and a small city of radiation shelters surrounding the vessel’s hull.

The vessel, which technicians are carefully pulling apart at the Nerpa Shipyard near Murmansk, was used to refuel Russia’s nuclear icebreakers at sea – a job that eventually turned it into one of the world’s most dangerous radioactive hazards. Since its retirement, it has become a flagstone in Northwest Russia’s legacy of Cold War nuclear waste.

Removing spent fuel from the vessel ­– including the extraction of several damaged assemblies ­– is among the most complex nuclear cleanup operations Russia has ever undertaken. When it’s completed in 2020, it will be a decades-long culmination of high-tech preparation paid for by marshaling millions of dollars from nearly a dozen western countries, (the European Bank of Reconstruction and Development) often in the face of trying political circumstances.

The new phase in the Lepse dismantlement also marks another step toward cleaning up naval and civilian nuclear debris in Northwest Russia. Almost exactly a year ago, the first containers of spent nuclear fuel that accrued over fifty years at Andreyeva Bay were hauled away for storage. Both are projects that Bellona has long advocated for.

During its career, the Lepse amassed 639 spent nuclear fuel assemblies in its holds, many from refueling the Lenin, the flagship Soviet icebreaker, between 1965 and 1967. The bulk of those fuel rods are damaged, and defy removal by conventional means.

Excerpts from Charles Digges, Anna Kireeva,  Russia to start breaking down one of its most radioactive ships next month, Bellona. org, Aug. 1, 2018

Spent Nuclear Fuel at Andreyeva Bay

Nuclear specialists say Andreyeva Bay contains the largest reserves of spent nuclear fuel in the world, in fragile conditions that have disturbed the international community for years During the Cold War period, nuclear submarines were refuelled at sea, and the spent nuclear fuel was then shipped to Andreyeva Bay, where it was placed in a special storage facility to cool off before being transported to a reprocessing plant at Mayak, in the Urals. But in the early 1980s, leaks sprung up in the storage system, causing high levels of radioactive contamination.

The facility at Andreyeva Bay was one of many top-secret installations in the Soviet Arctic. This is partly because Russia has a working nuclear submarine base on the other side of the bay at Zaozyorsk….[W]estern nations who see Moscow as a military threat are helping to fund the clean-up of the mess the Soviet military left behind. 13 countries have provided €165m in funding since 2003 for nuclear decommissioning in Russia’s north-west. There have also been a number of bilateral projects, with Britain, Norway and other countries funding a long project to help clean up Andreyeva Bay.

The Norwegian foreign minister….said the funding for the projectd was committed nearly two decades ago, when Russia was in no economic state to deal with the problems alone. He also pointed out that the Andreyeva Bay facility is only about 40 miles from the Norwegian border, making the decommissioning issue one in which Norway has long taken a strong interest.  “Nuclear challenges recognise no borders, and it is in our common interest to deal with nuclear waste now rather leaving the problems to future generations,” said the Norwegian foreign minister…

A suite of new buildings has been constructed around the area where the spent nuclear fuel caskets are kept, replacing the decaying structures that stood there previously. Work to load canisters into the giant protective casks can now be done using specially commissioned machinery.

The Rossita, a ship constructed for the task, will take the huge fuel casks to Murmansk, where they will be put on fortified trains which will proceed under armed guard on the long journey from the Arctic to the Mayak reprocessing site. At the Mayak facility, the spent fuel will be recycled and the Russians say they will turn it into fuel to be used in civilian nuclear reactors.

Specialists at the plant estimate it could take 10 years to remove all the fuel. About half of the caskets have some kind of surface damage to their containers and will be dealt with after the non-problematic batches have been removed.

Excerpts from Russia begins cleaning up the Soviets’ top-secret nuclear waste dump, Guardian, July 2, 2017

Nuclear Waste Russia: Andreyeva Bay

Andreyeva Bay, the former naval technical base come solid radioactive waste storage facility has undergone many improvements, but problems also remain. Andreyeva Bay is one of the hottest radioactive spots in Northwest Russia and work deadlines are hard to meet.  Founded in between 1960 and 1964, Andreyeva Bay’s task was to remove, store and ship for reprocessing at the Ural Mountains Mayak Chemical Combine spent nuclear fuel from nuclear submarines. After a 1982 accident in the spent nuclear fuel storage, Russia Ministery of Defense decided to reconstruct the facility. But the turbulent political and economic conditions of the 1980s and 1990s scuttled the plans. Andreyeva Bay was assigned to Minatom, Rosatom’s precursor, in 2000.  The beleaguered facility, which is nearby the Norwegian border is of special concern to Oslo. Norway’s Deputy Ambassador in Moscow, Bård Svendsen, noted that the two countries had cooperated on solving the Andreyeva bay issue for many years.  “Over these years, much has been done and much remains to be done,” said Svendsen. “Norwegian authorities will continue this work, which costs some €10 million euro a year.”  According to Rosatom’s deputy head of Department for Project Implementation and Nuclear and Radiaiton Safety, Anatoly Grigorieyev, the last 10 years have seen the installation of constant radiation monitoring and significant improvements in the conditions in which radioactive waste and spent nuclear fuel is stored.  A new installation for working with spent nuclear fuel is expected to be installed at Andreyeva Bay in 2014, and by 2015 the fuel is slated for removal – the same year a facility for handling radioactive waste should be installed, he said in remarks reported by Regnum news agency.  “The work we have planned will allow for the territory to be brought up to suitable conditions within 10-15 years,” said Grigorieyev.

Vladimir Romanov, deputy director of the Federal Medical and Biological Agency, said that studies conducted by his institute confirm that the radiological conditions at Andreyeva Bay and at Gremikha – the second onshore storage site at the Kola Peninsula for spent nuclear fuel from submarines – are indeed on the mend…. According to Valery Panteleyev, head of SevRAO, the Northwest Russian firm responsible for dealing with radioactive waste Some 846 spent fuel assemblies have been taken from storage at the former naval based to the Mayak Chemical Combine for reprocessing thanks to infrastructure built for fuel unloading purposes.  Panteleyev said Gremikha still currently is home to used removable parts from liquid metal cooled reactors submarine reactors, spent fuel assemblies, a reactor from an Alpha class submarine and more than 1000 cubic meters of solid radioactive waste.  Panteleyev said that by the end of 2012, all standard and non-standard fuel will have been sent to Mayak from Gremikha. He said that between 2012 and 2020 the removable parts of the liquid metal cooled reactors would also be gone, and that during the period between 2012 and 2014, 4000 cubic meters of solid radioactive waste would also be removed to long term storage at Saida Bay.  If all goes according to schedule, the Gremikha site will be rehabilitated by 2025.

Rosatom also presented detailed reports on an international project to build long-term storage for reactor compartments at the Saida Bay storage site for aged submarine reactors.  Panteleyev said none of the achievements at either Saida Bay or Gremikha would have been possible without international help.  The projects are being completed with funding from Germany, Italy, France, Norway, Sweden, Great Britain and the EBRD.  “These countries are investing in the creation of infrastructure for handling radioactive waste and spent nuclear fuel, dismantlement of nuclear vessels of the atomic fleet and in the infrastructure for the safe storage or reactor compartments,” said Panteleyev….

Another item of special concern at the Bellona/Rosatom seminar was the disposition of the floating spent nuclear fuel vessel, the Lepse. A former technical support vessel, taken out of service in 1988 the Lepse presents the biggest nuclear and radiation risk of all retired nuclear service ships in Russia. The Lepse’s spent nuclear fuel storage holds – in casks and caissons – 639 spent fuel assemblies, a significant portion of which are severely damaged.  Extraction of these spent fuel assemblies presents special radiological risks and technical innovation. The vessel is currently moored at Atomflot in Murmansk, the base of Russia’s nuclear icebreaker fleet.  Mikhail Repin, group director for the Russian Federal State Unitary Enterprise the Federal Center for Nuclear and Radiation Safety, said work on the Lepse is divided into three categories: transfer of the vessel to the ship repair yard Nerpa in the Murmansk Region, fixing it to an assembly based, removing the spent fuel and dividing into blocks. The work is expected to be complete by 2012.  But the barriers to enacting this project, however, remain largely bureaucratic.  “One gets the impression that international and Russian bureaucrats are capable of muddling any project, as shown by the experience with the Lepse,” said Bellona’s Niktin. The project of dismantling the Lepse have remained on paper since 1995.  The Lepse was built in 1930, and the vessel has been afloat for 75 years, said Repin… The equipment necessary for removing the spent fuel assemblies must be fabricated for specifically this project. The equipment must first ensure the safety of the workers, meaning the work will have to be done essentially remotely to ensure minimum exposure.