Tag Archives: nuclear submarines

The Most Nuclearized Waters on the Planet: Arctic

Northern Norway saw a record number of 12 visiting NATO nuclear-powered submarines in 2018. The subs are in for supplies or crew change before continuing the cat-and-mouse hunt for Russian submarines sailing out in the strategically important waters between Norway, Iceland and Greenland.  It was here, in international waters outside Senja in Troms, the Russian Echo-II class submarine K-192 suffered a severe reactor coolant accident 30 years ago, on June 26th 1989. Radioactive iodine was leaking with the reactor-steam while the vessel was towed around the coast of northernmost Norway to the navy homeport at the Kola Peninsula.

Fearing similar accidents could happen again, Norway is pushing for international awareness to..A dedicated group, named ARCSAFE, was established under the Arctic Council in 2015 aimed at sharing knowledge and experiences between national radiation authorities and other rescue services.“Norway has suggested to form an expert group, where one of the tasks could be to look into a possible Arctic Council agreement for radiation emergencies, like already exists for oil spill and search- and rescue cooperation,” says Øyvind Aas-Hansen.

Meanwhile, international experts on radiation monitoring teamed up with industry developers looking at the potential for using unmanned aerial vehicles (UAVs) in the Arctic. …Some environments are too risky for humans to survey and collect data. A nuclear accident site is one such spot, also if it happens at sea. UAVs, better known as drones, could carry a geiger counter, camera or other tools in the air over hazardous objects like a submarine on fire. From safe distance, emergency response units could then be better prepared before boarding or sailing close-up.

The Barents Observer has recently published an overview  listing the increasing number of reactors in the Russian Arctic.  According to the list there are 39 nuclear-powered vessels or installations in the Russian Arctic today with a total of 62 reactors. This includes 31 submarines, one surface warship, five icebreakers, two onshore and one floating nuclear power plants.  Looking 15 years ahead, the number of ships, including submarines, and installations powered by reactors is estimated to increase to 74 with a total of 94 reactors, maybe as many as 114. Additional to new icebreakers and submarines already under construction, Russia is brushing dust of older Soviet ideas of utilizing nuclear-power for different kind of Arctic shelf industrial developments, like oil- and gas exploration, mining and research.  “By 2035, the Russian Arctic will be the most nuclearized waters on the planet,” the paper reads.

Other plans to use nuclear reactors in the Russian Arctic in the years to come include many first-of-a-kind technologies like sea-floor power reactors for gas exploration, civilian submarines for seismic surveys and cargo transportation, small-power reactors on ice-strengthen platforms.

In the military sphere, the Arctic could be used as testing sites for both Russia’s new nuclear-powered cruise-missile and nuclear-powered underwater weapons drone. Both weapons were displayed by President Vladimir Putin when he bragged about new nuclear weapons systems in his annual speech to the Federation Council last year.

For Norway and Russia, a nuclear accident in the Barents Sea could be disastrous for sales of seafood. The two countries export of cod and other spices is worth billions of Euros annually.

Excerpts from Arctic countries step up nuclear accident preparedness, Barents Observer, June 30, 2019.

Nuclear Submarines on Fire (2)

Vladimir Putin has confirmed  on July 4, 2019  that the top-secret submarine that suffered a deadly fire was nuclear-powered, but Russia’s defence minister said the nuclear unit had been sealed off and was in “working order.”  The incident, which left 14 Russian sailors dead,  The Russian government has been slow to reveal information about the incident because the submersible, thought to be a deep-diving vessel used for research and reconnaissance, is among Russia’s most secret military projects.  The fire aboard the “Losharik” AS-31 submersible began in the battery compartment and spread through the vessel…The vessel is thought to be made of a series of orb-like compartments, which increase the submersible’s resilience and allow it to dive to the ocean floor. Once there, it can perform topographical research and participate in rescue missions. It may even be able to tap and sever communications cables on the seabed.

Officials claim the submariners sealed themselves in one of the compartments to battle the blaze and toxic fumes…A Norwegian official told Reuters there had been no “formal communication” from Russia about an incident aboard a nuclear-powered vessel, but “we would have been happy to have been informed of such incidents”….Accidents aboard submarines invariably evoke comparisons to Putin’s clumsy handling of the sinking of the Kursk nuclear submarine in 2000, which left 118 dead and families desperate for information about their loved ones.

Excerpt Putin confirms fire-hit Russian submarine was nuclear-powerered, Guardian, July 4, 2019

How to Hide Nuclear Bombs in the Ocean: Nuclear Submarines

The INS Arihant’s India’s nuclear submarine inaugural voyage in November 2018 was a triumphal step forward in India’s long, often tortuous quest to deploy atomic weapons at sea…  Hiding missiles in the ocean solves these problems, giving India more confidence that its forces could survive a nuclear attack from China or Pakistan, and hit back.But managing such weapons is not easy. One difficulty is ensuring that a submarine can receive orders without giving away its location. India has been building low-frequency radio stations, which use large antennas to propel signals underwater, for this purpose. Yet these are also vulnerable to attack, which is why some nuclear-armed states use airborne transmitters as well.

A second hitch is that the k-15 missiles aboard the Arihant can only fly a puny 750km, which means that the submarine would have to park itself dangerously close to China’s coastline to have a hope of striking big cities. Longer-range missiles, which could be fired from the safety of Indian waters, are in the works. But bigger missiles, and more of them, necessitate a bigger hull. That, in turn, requires that the nuclear-powered subs be fitted with bigger reactors—a fiendish technical challenge.

A third problem is keeping the Arihant safe. Nuclear submarines can only do their job if they can slip silently out of port and into the oceans. They are typically chaperoned by leaner attack submarines. But admirals complain that the navy, whose share of the defence budget has dwindled to 15%, has just 13 of these. The delivery of new French attack subs has been delayed.

Meanwhile India’s nuclear arsenal is swelling. A recent report by the Bulletin of the Atomic Scientists, a research organisation, estimates that it has 130-140 nuclear warheads, with enough fissile material for 60-70 more. The stockpile, though smaller than Pakistan’s and half the size of China’s, has roughly doubled since 2010. Many of the new warheads will go to sea. A second nuclear submarine, the Arighant, is nearing completion, and a third is in the works.

India’s Nuclear Submarines, Economist,  Nov. 17, 2018, at 44

Fixing the Holes of Nuclear Security

The Trump administration’s decision to withdraw from the Intermediate-Range Nuclear Forces (INF) Treaty…is the most recent upset in a series of escalating tensions between the two superpowers. ..

Today, a new framework is needed to tackle risks posed by nuclear material in transit, to track small quantities of fissile material used in testing equipment, and to address the approximately 150 metric tons of weapons-grade uranium fuel designated for use in naval propulsion.  Nuclear material security in the naval sector represents an increasingly salient issue for all states—particularly as a number of governments announce plans to develop nuclear navies or face pressure to do so. Tony Abbott, a former prime minister of Australia, argues that a nuclear naval program is necessary to address the future security challenges in his country’s part of the world. South Korea has a similarly renewed interest in a nuclear navy. In the Middle East, Iran is purported to be planning a reactor for nuclear propulsion and in South America, Brazil has had an active program to develop nuclear-powered attack submarines for more than a decade. Beyond the planning phase, India recently commissioned its first nuclear submarine, the INS Arihant, using a Russian design…

There are a number of potential institutional configurations for plugging the holes in the nuclear security system. One approach might involve further bolstering the cooperative measures included in the Convention on the Physical Protection of Nuclear Material—the only legally binding document that outlines government obligations to protect nuclear facilities and nuclear material in transit. Another proposal calls for a so-called Supplemental Protocol within an IAEA-supported and state-sponsored committee process. The benefit of both of these approaches is that their implementation would use the IAEA’s institutional framework (relying on expertise and legal precedence emanating from the existing safeguards regime) rather than starting from scratch. A third approach may involve using the Global Initiative to Combat Nuclear Terrorism as a diplomatic vehicle to pioneer an international materials accountancy system similar to those that national governments use to keep track of their fissile material.

Excerpts from Andrew W. Reddie, Bethany L. Goldblum, Why the security of nuclear materials should be focus of US-Russia nuclear relations, Bulletin of Atomic Scientists, Nov. 13, 2018

Under-Sea Nuclear Deterrence: China

China for decades has struggled to develop nuclear ballistic-missile submarines . The country finally might be on the cusp of deploying reliable boomers.  An effective Chinese ballistic-missile submarine fleet over the long term could have a stabilizing influence on the world’s nuclear balance. But in the short term, it might heighten tensions. Especially if Beijing lets popular fervor drive its build-up.n n That’s the surprising conclusion of a new report from Tong Zhao. …Beijing began developing boomers as far back as 1958. It wasn’t until the late 1980s that the country completed its first boat….A Type 094 apparently conducted China’s first undersea deterrence patrol in 2015. “China has obtained, for the first time, a demonstrably operational underwater nuclear capability. This represents the start of a new era for China’s sea-based nuclear forces.”  As of late 2018 there are four Type 094s in service. Beijing has not publicly released a detailed plan for its SSBN fleet expansion, but the U.S. military expects China to build between five and eight of the vessels, in total, according to Tong and various military reports and statements.

The U.S. military has responded to the China’s new boomers by boosting its own anti-submarine capabilities. “Between Chinese efforts to create a credible sea-based nuclear deterrent and U.S. endeavors to strengthen anti-submarine countermeasures, tensions are brewing under the surface of the South China Sea and the broader Pacific Ocean,” Tong explains.

Exceprts from David Axe China Is Building More Submarines That Carry Nuclear Weapons. And It Could Be a Good Thing, The National Interest, Oct. 27, 2018

Underwater Nuclear Wrecks

Russian scientists have said that radioactive waste sunk in the Arctic by the Soviet Navy has not leaked any contamination….  Data on the scuttled cargoes –– which includes several thousand containers of radioactive waste, as well as an entire nuclear submarine –– come from a month-and-a-half-long expedition in the Kara Sea conducted by the Russian Academy of Sciences Institute of Oceanology.  Mikhail Flint, the institute’s head, told reporters last week that scientists on the expedition had managed to significantly improve their maps of where the sunken waste lies, especially in the area of the Novaya Zemlya archipelago, a former Soviet nuclear bomb testing site.  From Novaya Zemlya’s craggy coast, the expedition conducted additional research mapping radioactive hazards in the White Sea, and then progressed to the Laptev Sea some 2000 nautical miles to the east.

Since the first decades of the 2000s, these mapping and measuring expeditions have taken place on an annual basis. Environmentalists fear the waste could eventually rupture and spoil thousands of square kilometers of fertile Arctic fishing grounds.

Beginning in 1955 and continuing until the early 1990s, the Russian Navy dumped enormous amounts of irradiated debris — and it one case an entire nuclear submarine — into the waters of the Arctic. It was not, however, until 2011 that the Russian government admitted this on an international level.  That year, Moscow shared with Norwegian nuclear officials the full scope of the problem. The list of sunken objects was far more than had initially been thought, and included 17,000 containers of radioactive waste; 19 ships containing radioactive waste; 14 nuclear reactors, including five that still contain spent nuclear fuel; the K-27 nuclear submarine with its two reactors loaded with nuclear fuel, and 735 other pieces of radioactively contaminated heavy machinery.

Exceprts from  Charles Digges ussian officials update maps of radioactive debris sunk in Arctic, Bellona, Oct. 15, 2018.

The Nuclear Supply Chain

The report from the Energy Futures Initiative released on August 15, 2017 by former Energy Secretary Ernest Moniz calls for greater federal investment in the US huclear-power industry. The report calls for expanded government loan guarantees, tax incentives and research on nuclear technology.

Nuclear power makes up about 20 percent of U.S. electricity generation, but the industry has been struggling.  Five nuclear plants, with a combined capacity of 5 gigawatts, have closed early since 2013, and an additional six plants are scheduled to shutter early over the next nine years. Of the two new nuclear plants under construction in the U.S., one was halted by Scana Corp. in July 2017 and backers of the other, Southern Co.’s Vogtle plant in Georgia, are seeking additional aid from the federal government.

Westinghouse Electric Co., the nuclear technology pioneer that is part of Toshiba Corp., went bankrupt in March, after it hit delays with its AP1000 reactors at each of those plants. After it declared bankruptcy, Westinghouse — whose technology is used in more than half the world’s nuclear power plants — said it shifted its focus from building reactors to helping dismantle them.

The U.S. needs companies and engineers that can both build and run nuclear enterprises…. The U.S. Navy’s reactors require supplies and qualified engineers, and American nuclear scientists fill vital national security roles, it said.  Companies, such as BWX Technologies Inc. of Lynchburg, Virginia manufacture nuclear components for both the commercial nuclear industry and naval reactors. If the commercial business collapses, that may mean one less company able to process highly enriched uranium, according to the report.

“A shrinking commercial enterprise will have long term spillover effects on the Navy supply chain, including by lessened enthusiasm among American citizens to pursue nuclear technology careers,” according to the report.

In addition to extending a tax credit for new nuclear power and the Energy Department’s loan guarantee program, the report says the federal government could also direct the Federal Energy Regulatory Commission to “place a greater emphasis on the national security importance of nuclear power and its associated supply chain.”

Excerpts from Moniz: Nuclear Power’s Woes Imperil US National Security, Bloomberg, Aug. 15, 2017