Category Archives: nuclear weapons

How to Change the World: Take Seeds to Space and Irradiate them with Cosmic Rays

With 19% of the world’s population but only 7% of its arable land, China is in a bind: how to feed its growing and increasingly affluent population while protecting its natural resources. The country’s agricultural scientists have made growing use of nuclear and isotopic techniques in crop production over the last decades. In cooperation with the IAEA and the Food and Agriculture Organization of the United Nations (FAO), they are now helping experts from Asia and beyond in the development of new crop varieties, using irradiation.

While in many countries, nuclear research in agriculture is carried out by nuclear agencies that work independently from the country’s agriculture research establishment, in China the use of nuclear techniques in agriculture is integrated into the work of the Chinese Academy of Agricultural Sciences (CAAS) and provincial academies of agricultural sciences. This ensures that the findings are put to use immediately.

And indeed, the second most widely used wheat mutant variety in China, Luyuan 502, was developed by CAAS’s Institute of Crop Sciences and the Institute of Shandong Academy of Agricultural Sciences, using space-induced mutation breeding. It has a yield that is 11% higher than the traditional variety and is also more tolerant to drought and main diseases.  It has been planted on over 3.6 million hectares – almost as large as Switzerland. It is one of 11 wheat varieties developed for improved salt and drought tolerance, grain quality and yield.

Through close cooperation with the IAEA and FAO, China has released over 1,000 mutant crop varieties in the past 60 years, and varieties developed in China account for a fourth of mutants listed currently in the IAEA/FAO’s database of mutant varieties produced worldwide.

The Institute uses heavy ion beam accelerators, cosmic rays and gamma rays along with chemicals to induce mutations in a wide variety of crops, including wheat, rice, maize, soybean and vegetables….Indonesia’s nuclear agency, BATAN, and CAAS are looking for ways to collaborate on plant mutation breeding

Space-induced mutation breeding
 
Irradiation causes mutation, which generates random genetic variations, resulting in mutant plants with new and useful traits. Mutation breeding does not involve gene transformation, but rather uses a plant’s own genetic components and mimics the natural process of spontaneous mutation, the motor of evolution. By using radiation, scientists can significantly shorten the time it takes to breed new and improved plant varieties.

Space-induced mutation breeding, also called space mutagenesis, involves taking the seeds to space, where cosmic rays are stronger, and these rays are used to induce mutation.  Satellites, space shuttles and high-altitude balloons are used to carry out the experiments. One advantage of this method is that the risk of damaging the plants are lower than when using gamma irradiation on earth.

Excerpts from How Nuclear Techniques Help Feed China, IAEA, Apr. 4, 2019

The Rolls Royce Nuclear Reactor

Small modular nuclear  reactors (SMRs) are relatively small and flexible: they have a power capacity of up to 300 MW(e) and their output can fluctuate in line with demand. This makes them particularly attractive for remote regions with less developed grids, but also for use as a complement to renewables and for non-electric applications of nuclear power. SMRs can be manufactured and then shipped and installed on site, so they are expected to be more affordable to build.

The Rolls Royce SMR is small enough to be transported by truck.

Globally, there are about 50 SMR designs and concepts at different stages of development. Three SMR plants are in advanced stages of construction or commissioning in Argentina, China and Russia, which are all scheduled to start operation between 2019 and 2022…Some SMR designs have features that could reduce the tasks associated with spent fuel management. Power plants based on these designs require less frequent refuelling, every 3 to 7 years, in comparison to between 1 and 2 years for conventional plants, and some are even designed to operate for up to 30 years without refuelling. Nevertheless, even in such cases, there will be some spent fuel left, which will have to be properly managed.

Excerpts from Small Modular Reactors: A Challenge for Spent Fuel Management? IAEA News, Aug. 8, 2019

Anti-Nuclear Protests in India

Agitations against the Kudankulam nuclear plant broke out in June 2019.  Villages around the contentious reactors moved a resolution to put a stop to the government’s plans to construct an Away From Reactor (AFR) facility on the premises of the nuclear power plant.  The AFR is a storage unit meant to store spent fuel generated at the two nuclear plants in Kudankulam… While resolutions passed at four villages –  Kavalkinar, Vadakankulam, Perumanal  and Kudankulam  were recorded by district authorities, a similar move in the village of Vijayapathi was stopped. The decision led to protests in the village and was forcefully dispersed by the police. …

A public hearing regarding the AFR scheduled for July 10, 2019 was recently postponed indefinitely. A look at the circular shows that only two villages were invited – Kudankulam and Vijayapathi. Activists allege that this was an intentional attempt to shut down dissent against the proposed facility. 

The resolutions included – opposition to collection of nuclear waste in Kudankulam, demand to stop construction of an AFR facility and demand to permanently shut down the plant. Opposition parties and activists had urged the Centre to come out with a detailed plan for setting up a permanent deep geological repository and drop the plan of a proposed Away From Reactor facility.   “This entire exercise is meant to create storage for spent fuel and an AFR is only a temporary solution till the government finds land to build a deep geological repository,” explains Sundarrajan. “But across the country, no state is ready to risk giving land for permanent disposal of nuclear waste. So, residents fear that this will used as an excuse by the government to make the AFR a permanent storage space.”

Excerpts from Priyanka Thirumurthy , Protests break out in TN village over proposed facility in Kudankulam nuclear plant, the newsminute.com, June 29, 2019

How to Detect Nuclear Terrorism in Big Cities

According to DARPA, terrorist attacks involving the use of proliferated radiological and special nuclear materials pose a potential threat to U.S. citizens and servicemembers. Early detection of such materials and devices made from them is a critical part of the U.S. strategy to prevent attacks. Lower-cost and more sensitive detectors, along with innovative deployment strategies, could significantly enhance detection and deterrence of attack.

The SIGMA program aims to revolutionize detection and deterrent capabilities for countering nuclear terrorism. A key component of SIGMA thus involves developing novel approaches to achieve low-cost, high-efficiency, packaged radiation detectors with spectroscopic gamma and neutron sensing capability. The program will seek to leverage existing infrastructure to help enable these next-generation detectors and their deployment in order to demonstrate game-changing detection and deterrent systems.

The Defense Advanced Research Projects Agency fielded a sensor network to trace radioactive and nuclear materials during the Indianapolis 500 event on June 30, 2019

The Most Nuclearized Waters on the Planet: Arctic

Northern Norway saw a record number of 12 visiting NATO nuclear-powered submarines in 2018. The subs are in for supplies or crew change before continuing the cat-and-mouse hunt for Russian submarines sailing out in the strategically important waters between Norway, Iceland and Greenland.  It was here, in international waters outside Senja in Troms, the Russian Echo-II class submarine K-192 suffered a severe reactor coolant accident 30 years ago, on June 26th 1989. Radioactive iodine was leaking with the reactor-steam while the vessel was towed around the coast of northernmost Norway to the navy homeport at the Kola Peninsula.

Fearing similar accidents could happen again, Norway is pushing for international awareness to..A dedicated group, named ARCSAFE, was established under the Arctic Council in 2015 aimed at sharing knowledge and experiences between national radiation authorities and other rescue services.“Norway has suggested to form an expert group, where one of the tasks could be to look into a possible Arctic Council agreement for radiation emergencies, like already exists for oil spill and search- and rescue cooperation,” says Øyvind Aas-Hansen.

Meanwhile, international experts on radiation monitoring teamed up with industry developers looking at the potential for using unmanned aerial vehicles (UAVs) in the Arctic. …Some environments are too risky for humans to survey and collect data. A nuclear accident site is one such spot, also if it happens at sea. UAVs, better known as drones, could carry a geiger counter, camera or other tools in the air over hazardous objects like a submarine on fire. From safe distance, emergency response units could then be better prepared before boarding or sailing close-up.

The Barents Observer has recently published an overview  listing the increasing number of reactors in the Russian Arctic.  According to the list there are 39 nuclear-powered vessels or installations in the Russian Arctic today with a total of 62 reactors. This includes 31 submarines, one surface warship, five icebreakers, two onshore and one floating nuclear power plants.  Looking 15 years ahead, the number of ships, including submarines, and installations powered by reactors is estimated to increase to 74 with a total of 94 reactors, maybe as many as 114. Additional to new icebreakers and submarines already under construction, Russia is brushing dust of older Soviet ideas of utilizing nuclear-power for different kind of Arctic shelf industrial developments, like oil- and gas exploration, mining and research.  “By 2035, the Russian Arctic will be the most nuclearized waters on the planet,” the paper reads.

Other plans to use nuclear reactors in the Russian Arctic in the years to come include many first-of-a-kind technologies like sea-floor power reactors for gas exploration, civilian submarines for seismic surveys and cargo transportation, small-power reactors on ice-strengthen platforms.

In the military sphere, the Arctic could be used as testing sites for both Russia’s new nuclear-powered cruise-missile and nuclear-powered underwater weapons drone. Both weapons were displayed by President Vladimir Putin when he bragged about new nuclear weapons systems in his annual speech to the Federation Council last year.

For Norway and Russia, a nuclear accident in the Barents Sea could be disastrous for sales of seafood. The two countries export of cod and other spices is worth billions of Euros annually.

Excerpts from Arctic countries step up nuclear accident preparedness, Barents Observer, June 30, 2019.

The Nuclear Waste Dumps in the Arctic

Source: Nuclear Waste In the Arctic, RadioFreeEurope/RadioLiberty, July 12, 2109

Forget Nevada! How America Buries its Nuclear Waste 1999-2019

Just before midnight on June 27, 2019, the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico received its 12,500th transuranic (TRU) waste shipment since operations began there in 1999.

Nuclear Waste heading to WIPP from Idaho

The shipment originated from the EM program at Idaho National Laboratory, which has sent WIPP the most TRU waste shipments — 6,500 and counting — of all Departement of Energy (DOE) generator sites over the past 20 years…

Idaoho National Laboratory Nuclear Waste Management

WIPP drivers have safely traveled over 14.9 million loaded miles, transporting more than 178,500 waste containers for permanent disposal 2,150 feet underground.

Excerpts from WIPP Reaches 12,500-Shipment Milestone, Press Release US Department of Energy, July 2, 2019