Tag Archives: Comprehensive Nuclear Test Ban Treaty (CTBT)

Who’s Not Giving a Damn about Nuclear Fallout

On May 1st 1962, French officials in Algeria told Algerians to leave their homes in the southern city of Tamanrasset. It was just a precaution. France was about to detonate an atom bomb, known as Beryl, in the desert some 150km away. The blast would be contained underground. Two French ministers were there to witness the test. But things did not go as planned. The underground shaft at the blast site was not properly sealed. The mountain (Taourirt Tan Afella) above the site cracked and black smoke spread everywhere. The ministers (and everyone else nearby) ran as radioactive particles leaked into the air. Nevertheless, in the months and years after, locals would go to the area to recover scrap metal from the blast for use in their homes.

France carried out 17 nuclear tests in Algeria between 1960 and 1966. Many took place after Algeria’s independence from France in 1962, under an agreement between the two countries. There are no good data on the effects of the explosions on public health and the environment, but locals note that some people living near the test sites have suffered cancers and birth defects typically caused by radiation. The sites, say activists, are still contaminated.

Taourirt is a group dedicated to identifying the location of nuclear waste left by France. All that exists in the public domain is an inventory of the contaminated materials buried somewhere in the desert. (The known test sites are poorly secured by the Algerian government.) Others are pressing France to clean up the sites and compensate victims. There has been some progress in this direction, but not enough, say activists.

In 2010 the French parliament passed the Morin law, which is meant to compensate those with health problems resulting from exposure to the nuclear tests. (France carried out nearly 200 tests in French Polynesia, too.) But the law only pertains to certain illnesses and requires claimants to show they were living near the tests when they took place. This is difficult enough for Algerians who worked for the French armed forces: few had formal contracts. It is almost impossible for anyone else. Only a small fraction of the claims filed have come from Algeria.

Excerpts from Algeria and France: Lingering Fallout, Economist, June 26, 2021

The Cracks on the Nuclear Runit Tomb

Excerpts from the US Department of Energy Report on the Nuclear Runit Dome

The Runit Dome is a containment structure on Runit Island, located on Enewetak Atoll.  Enewetak Atoll is a former U.S. atmospheric nuclear weapons test site located approximately 2,300 miles west of Hawaii in the northwest Pacific Ocean. The Runit Dome,  which was built in the late 1970s, contains over 100,000 cubic yards of contaminated soil and  debris [from the US nuclear weapons testing] that were encapsulated in concrete inside an unlined nuclear test crater, the Cactus Crater, on the north end of Runit Island. The site has remained a concern to the people of Enewetak. 

The Runit Dome is not in any immediate danger of collapse or failure, and the exterior concrete covering the containment structure is still serving its intended purpose, effectively reducing the natural erosion of the waste pile below by wind and water. Visual surveys of the exterior  concrete of the Cactus Crater containment structure have revealed the presence of cracks and spalls in the concrete cap. However, these cracks and spalls in the exterior concrete cap do not form sites for external or internal radiation exposure that impact or endanger human health or
the environment, or wildlife.

DOE has performed preventative maintenance on exterior surfaces of the containment structure, which will aid in the determination of any changes that
may occur in the condition of the concrete in the future. Any concerns about the imminent failure or collapse of the structure are unfounded.

The main safety concern to humans associated with leakage of radioactive waste from the Cactus Crater containment structure is the uptake of fallout radioactivity in marine foods. There are no data to suggest that the Cactus Crater containment structure, or more specifically, the radioactive material encapsulated in Cactus Crater, is currently having a measurable adverse effect on the surrounding environment or on the health of the people of Enewetak. However, DOE is in the process of establishing a groundwater radiochemical analysis program that is designed to provide scientifically substantiated data that can be used to determine what, if any, effects the dome contents are having, or will have, on the surrounding environment now
and in the future.

Long-term trends in the concentration of Pu in lagoon waters derived from retrospective analysis of a coral core collected off Runit Island show levels of Pu in lagoon waters are systematically decreasing. These data provide compelling evidence that the construction of the Runit Dome has had, and continues to have, a negligible impact on the wider marine environment….

The Cactus Crater containment structure remains vulnerable to wave driven over wash and flooding caused by storm surge and potential effects of sea level rise… It is
anticipated that any measured or modeled effects of storm events may help provide a better understanding of the long-term consequences of sea-level rise on mass-transport of dome derived radionuclides.

Sniffing the Earth for Nuclear Exposions

Australia’s infrasound station “IS03” in Davis Base, Antarctica, is one of nearly 300 certified stations of the Comprehensive Nuclear Test Ban Treaty (CTBT) Organization monitoring system, feeling and sniffing the Earth for any signs of a nuclear explosion. The global system will comprise 337 facilities when complete.  “The monitoring stations in Australia cover a large expanse of the Southern hemisphere. They are strategically positioned to contribute significantly to the International Monitoring System (IMS) detection and location capability. All six nuclear tests by North Korea were clearly detected by Australia’s IMS seismic stations,” Zerbo said.

“Australia ranks third among countries hosting the largest number of monitoring facilities.  It covers all four technologies used for nuclear test detection. Some of the stations are located in particularly remote and inaccessible areas of the Earth, such as Antarctica. This has been a 20 year-long joint effort by CTBTO and Australia and is truly an extraordinary achievement,” Zerbo said.

The CTBTO’s global monitoring network captures four types of data: vibrations through the ground and in water – seismic and hydroacoustic; sound beyond the range of the human ear and detection of radioactive particles – infrasound and radionuclide.

The network guards against violations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) banning nuclear explosions by everyone, everywhere: in the atmosphere, underwater and underground.  The global network detects nuclear tests with high reliability. For example, on 3 September 2017, over 100 stations in the network detected and alerted Member States to North Korea’s last announced nuclear test.

Excerpts from Comprehensive Nuclear Test  Ban Treaty Organization (CTBTO), Australia Completes Its Monitoring Stations in the Global Network to Detect Nuclear Tests, Nov 18, 2018, 15:45 ET