Tag Archives: underwater robotic systems

The Act of Successful Sabotage: cables and pipelines

On October 12, 2022 Vladimir Putin, Russia’s president, gave an ominous warning. Energy infrastructure around the world was now “at risk”, he said. Mr Putin’s warning came a month after explosions tore through Nord Stream 1 and 2, a pair of gas pipelines running from Russia to Europe under the Baltic Sea. The pipes were not in use at the time. But the ruptures left plumes of methane bubbling to the surface for days…

Subsea pipelines and cables have proliferated since the first one was laid, in 1850…There are more than 530 active or planned submarine telecoms cables around the world. Spanning over 1.3m kilometers they carry 95% of the world’s internet traffic. In November 2021, cables serving underwater acoustic sensors off the coast of northern Norway—an area frequented by Russian submarines—were cut.

Western officials say that a particular source of concern is Russia’s Main Directorate of Deep-Sea Research, known by its Russian acronym GUGI. It has a variety of spy ships and specialist submarines—most notably the Belgorod, the world’s biggest submarine, commissioned in July 2022—which can work in unusually deep water. They can deploy divers, mini-submarines or underwater drones, which could be used to cut cables. 

Cable chicanery, though, is not a Russian invention. One of Britain’s first acts during the first world war was to tear up German telecoms cables laid across the Atlantic. Germany responded with attacks on Allied cables in the Pacific and Indian Oceans.

More recently, espionage has been the order of the day..I.n 2013 Edward Snowden, a contractor for the National Security Agency (NSA), America’s signals intelligence agency, revealed an Anglo-American project had tapped at least 200 fiber-optic cables around the world. Yet the seabed is not amenable to control. A paper published in 2021 noted that Estonia and other Baltic states had only a limited grasp of what was going on under the Baltic because of quirks of hydrology, scarce surveillance platforms and limited information-sharing between countries. It concluded, perhaps presciently: “It would be difficult to prevent Russian [drones] deployed in international waters from damaging critical undersea infrastructure.”…

The first step in a sabotage mission is finding the target. With big, heavy pipelines, which are typically made from concrete-lined metal sections, that is relatively easy. Older communication cables, being smaller and lighter, can shift with the currents. Newer ones are often buried, It is also increasingly possible for operators to detect tampering, through  “distributed fiber-optic sensing”, which can detect vibrations in the cable or changes in its temperature. But that will not reveal whether the problem is a geological event or an inquisitive drone—or which country might have sent it. Underwater attribution is slow and difficult.

Determined attackers, in other words, are likely to get through. The effects of a successful attack will differ. Pipelines and subsea electricity cables are few in number. If one is blown up, gas, oil or electricity cannot easily be rerouted through another. Communication cables are different. The internet was designed to allow data to flow through alternative paths if one is blocked. And at least when it comes to connections between big countries, plenty of alternatives exist. At least 18 communication cables link America and Europe…There is significant redundancy on these routes. But  “There’s no collective institution that records all the incidents that are going on, and what is behind them—we don’t have any statistics behind it.” according to  Elisabeth Braw of the American Enterprise Institute.

Excerpts from Sabotage at Sea: Underwater Infrastructure, Economist, Oct. 22, 2022

Who Owns the Real Information System

In January 2022, the head of the UK’s armed forces has warned that Russia submarine activity is threatening underwater cables that are crucial to communication systems around the world. Admiral Sir Tony Radakin said undersea cables that transmit internet data are ‘the world’s real information system,’ and added that any attempt to damage then could be considered an act of war.

The internet seems like a post- physical environment where things like viral posts, virtual goods and metaverse concerts just sort of happen. But creating that illusion requires a truly gargantuan—and quickly-growing—web of physical connections. Fiber-optic cable, which carries 95% of the world’s international internet traffic, links up pretty much all of the world’s data centers…

Where those fiber-optic connections link up countries across the oceans, they consist almost entirely of cables running underwater—some 1.3 million kilometers (or more than 800,000 miles) of bundled glass threads that make up the actual, physical international internet. And until recently, the overwhelming majority of the undersea fiber-optic cable being installed was controlled and used by telecommunications companies and governments. Today, that’s no longer the case.

In less than a decade, four tech giants— Microsoft, Google parent Alphabet, Meta (formerly Facebook ) and Amazon —have become by far the dominant users of undersea-cable capacity. Before 2012, the share of the world’s undersea fiber-optic capacity being used by those companies was less than 10%. Today, that figure is about 66%.  In the next three years, they are on track to become primary financiers and owners of the web of undersea internet cables connecting the richest and most bandwidth-hungry countries on the shores of both the Atlantic and the Pacific.

By 2024, the four are projected to collectively have an ownership stake in more than 30 long-distance undersea cables, each up to thousands of miles long, connecting every continent on the globe save Antarctica. In 2010, these companies had an ownership stake in only one such cable—the Unity cable partly owned by Google, connecting Japan and the U.S. Traditional telecom companies have responded with suspicion and even hostility to tech companies’ increasingly rapacious demand for the world’s bandwidth. Industry analysts have raised concerns about whether we want the world’s most powerful providers of internet services and marketplaces to also own the infrastructure on which they are all delivered. This concern is understandable. Imagine if Amazon owned the roads on which it delivers packages.

But the involvement of these companies in the cable-laying industry also has driven down the cost of transmitting data across oceans for everyone, even their competitors….Undersea cables can cost hundreds of millions of dollars each. Installing and maintaining them requires a small fleet of ships, from surveying vessels to specialized cable-laying ships that deploy all manner of rugged undersea technology to bury cables beneath the seabed. At times they must lay the relatively fragile cable—at some points as thin as a garden hose—at depths of up to 4 miles.

All of this must be done while maintaining the right amount of tension in the cables, and avoiding hazards as varied as undersea mountains, oil-and-gas pipelines, high-voltage transmission lines for offshore wind farms, and even shipwrecks and unexploded bombs…In the past, trans-oceanic cable-laying often required the resources of governments and their national telecom companies. That’s all but pocket change to today’s tech titans. Combined, Microsoft, Alphabet, Meta and Amazon poured more than $90 billion into capital expenditures in 2020 alone…

Most of these Big Tech-funded cables are collaborations among rivals. The Marea cable, for example, which stretches approximately 4,100 miles between Virginia Beach in the U.S. and Bilbao, Spain, was completed in 2017 and is partly owned by Microsoft, Meta and Telxius, a subsidiary of Telefónica, the Spanish telecom.  Sharing bandwidth among competitors helps ensure that each company has capacity on more cables, redundancy that is essential for keeping the world’s internet humming when a cable is severed or damaged. That happens around 200 times a year, according to the International Cable Protection Committee, a nonprofit group. 

There is an exception to big tech companies collaborating with rivals on the underwater infrastructure of the internet. Google, alone among big tech companies, is already the sole owner of three different undersea cables

Excerpts from Christopher Mims, Google, Amazon, Meta and Microsoft Weave a Fiber-Optic Web of Power, WSJ, Jan. 15, 2022

Under-Water Data Centers: Reliable, Cool and Cheap

Earlier this year a ship hauled a large, barnacle-covered cylinder sporting a Microsoft logo from the seas off the Orkney islands. Inside were a dozen server racks, of the sort found in data-centres around the world. Sunk in 2018, and connected to the shore by cable, the computers had spent the past couple of years humming away, part of an experiment into the feasibility of building data-centres underwater.

On September 14th, 2020 Microsoft revealed some results. The aquatic data-centre suffered equipment failures at just one-eighth the rate of those built on land. Being inaccessible to humans, the firm could fill it with nitrogen instead of air, cutting down corrosion. The lack of human visitors also meant none of the bumping and jostling that can cause faults on land.

Microsoft hopes some of the lessons can be applied to existing, land-based data-centers. In the longer term, though, it notes that building underwater offers advantages beyond just reliability. Immersion in seawater helps with cooling, a big expense on land. Data-centres work best when placed close to customers. Land in New York or London is expensive, but nearby sea-floor is cheap. More than half the world’s population lives within 120 miles (192km) of the sea. Ben Cutler, the engineer in charge of the project, says submarine data-centres could be co-located with offshore wind farms as “anchor” customers. The cylinder fits in a standard shipping container, so could be deployed to remote places like islands, or even disaster areas to support relief efforts.

Excerpts from Cloud computing: Davy Jones’s data-center, Economist, Sept. 19, 2020

Undersea Drones: Military

Currently, manipulation operations on the seabed are conducted by Remotely Operated Vehicles (ROVs) tethered to a manned surface platform and tele-operated by a human pilot. Exclusive use of ROVs, tethered to manned ships and their operators, severely limits the potential utility of robots in the marine domain, due to the limitations of ROV tether length and the impracticality of wireless communications at the bandwidths necessary to tele-operate an underwater vehicle at such distances and depths. To address these limitations, the Angler program will develop and demonstrate an underwater robotic system capable of physically manipulating objects on the sea floor for long-duration missions in restricted environments, while deprived of both GPS and human intervention

The Angler program seeks to migrate advancements from terrestrial and space-based robotics, terrestrial autonomous manipulation, and underwater sensing technologies into the realm of undersea manipulation, with specific focus on long-distance, seabed-based missions. Specifically, the program aims to discover innovative autonomous robotic solutions capable of navigating unstructured ocean depths, surveying expansive underwater regions, and physically manipulating manmade objects of interest.

Excerpts DARPA Angle Program Nov. 2018