Tag Archives: autonomous underwater vehicle (AUV)

Smart Weapons Who Make Many Mistakes: AI in War

Autonomous weapon systems rely on artificial intelligence (AI), which in turn relies on data collected from those systems’ surroundings. When these data are good—plentiful, reliable and similar to the data on which the system’s algorithm was trained—AI can excel. But in many circumstances data are incomplete, ambiguous or overwhelming. Consider the difference between radiology, in which algorithms outperform human beings in analysing x-ray images, and self-driving cars, which still struggle to make sense of a cacophonous stream of disparate inputs from the outside world. On the battlefield, that problem is multiplied.

“Conflict environments are harsh, dynamic and adversarial,” says UNDIR. Dust, smoke and vibration can obscure or damage the cameras, radars and other sensors that capture data in the first place. Even a speck of dust on a sensor might, in a particular light, mislead an algorithm into classifying a civilian object as a military one, says Arthur Holland Michel, the report’s author. Moreover, enemies constantly attempt to fool those sensors through camouflage, concealment and trickery. Pedestrians have no reason to bamboozle self-driving cars, whereas soldiers work hard to blend into foliage. And a mixture of civilian and military objects—evident on the ground in Gaza in recent weeks—could produce a flood of confusing data.

The biggest problem is that algorithms trained on limited data samples would encounter a much wider range of inputs in a war zone. In the same way that recognition software trained largely on white faces struggles to recognise black ones, an autonomous weapon fed with examples of Russian military uniforms will be less reliable against Chinese ones. 

Despite these limitations, the technology is already trickling onto the battlefield. In its war with Armenia last year, Azerbaijan unleashed Israeli-made loitering munitions theoretically capable of choosing their own targets. Ziyan, a Chinese company, boasts that its Blowfish a3, a gun-toting helicopter drone, “autonomously performs…complex combat missions” including “targeted precision strikes”. The International Committee of the Red Cross (ICRC) says that many of today’s remote-controlled weapons could be turned into autonomous ones with little more than a software upgrade or a change of doctrine….

On May 12th, 2021, the ICRD published a new and nuanced position on the matter, recommending new rules to regulate autonomous weapons, including a prohibition on those that are “unpredictable”, and also a blanket ban on any such weapon that has human beings as its targets. These things will be debated in December 2021 at the five-yearly review conference of the UN Convention on Certain Conventional Weapons, originally established in 1980 to ban landmines and other “inhumane” arms. Government experts will meet thrice over the summer and autumn, under un auspices, to lay the groundwork. 

Yet powerful states remain wary of ceding an advantage to rivals. In March, 2021 a National Security Commission on Artificial Intelligence established by America’s Congress predicted that autonomous weapons would eventually be “capable of levels of performance, speed and discrimination that exceed human capabilities”. A worldwide prohibition on their development and use would be “neither feasible nor currently in the interests of the United States,” it concluded—in part, it argued, because Russia and China would probably cheat. 

Excerpt from Autonomous weapons: The fog of war may confound weapons that think for themselves, Economist, May 29, 2021

Under-Water Data Centers: Reliable, Cool and Cheap

Earlier this year a ship hauled a large, barnacle-covered cylinder sporting a Microsoft logo from the seas off the Orkney islands. Inside were a dozen server racks, of the sort found in data-centres around the world. Sunk in 2018, and connected to the shore by cable, the computers had spent the past couple of years humming away, part of an experiment into the feasibility of building data-centres underwater.

On September 14th, 2020 Microsoft revealed some results. The aquatic data-centre suffered equipment failures at just one-eighth the rate of those built on land. Being inaccessible to humans, the firm could fill it with nitrogen instead of air, cutting down corrosion. The lack of human visitors also meant none of the bumping and jostling that can cause faults on land.

Microsoft hopes some of the lessons can be applied to existing, land-based data-centers. In the longer term, though, it notes that building underwater offers advantages beyond just reliability. Immersion in seawater helps with cooling, a big expense on land. Data-centres work best when placed close to customers. Land in New York or London is expensive, but nearby sea-floor is cheap. More than half the world’s population lives within 120 miles (192km) of the sea. Ben Cutler, the engineer in charge of the project, says submarine data-centres could be co-located with offshore wind farms as “anchor” customers. The cylinder fits in a standard shipping container, so could be deployed to remote places like islands, or even disaster areas to support relief efforts.

Excerpts from Cloud computing: Davy Jones’s data-center, Economist, Sept. 19, 2020

Black Operations are Getting Blacker: US Military

Heterogeneous Collaborative Unmanned Systems (HCUS), as these drones will be known, would be dropped off by either a manned submarine or one of the navy’s big new Orca robot submersibles.

Logo for Orca Submarine by Lockheed Martin

They could be delivered individually, but will more often be part of a collective system called an encapsulated payload. Such a system will then release small underwater vehicles able to identify ships and submarines by their acoustic signatures, and also aerial drones similar to the BlackWing reconnaissance drones already flown from certain naval vessels.

BlackWing

Once the initial intelligence these drones collect has been analysed, a payload’s operators will be in a position to relay further orders. They could, for example, send aerial drones ashore to drop off solar-powered ground sensors at specified points. These sensors, typically disguised as rocks, will send back the data they collect via drones of the sort that dropped them off. Some will have cameras or microphones, others seismometers which detect the vibrations of ground vehicles, while others still intercept radio traffic or Wi-Fi.

Lockheed Martin Ground Sensor Disguised as Rock

HCUS will also be capable of what are described as “limited offensive effects”. Small drones like BlackWing can be fitted with warheads powerful enough to destroy an SUV or a pickup truck. Such drones are already used to assassinate the leaders of enemy forces. They might be deployed against fuel and ammunition stores, too.

Unmanned systems such as HCUS thus promise greatly to expand the scope of submarine-based spying and special operations. Drones are cheap, expendable and can be deployed with no risk of loss of personnel. They are also “deniable”. Even when a spy drone is captured it is hard to prove where it came from. Teams of robot spies and saboteurs launched from submarines, both manned and unmanned, could thus become an important feature of the black-ops of 21st-century warfare.

Excerpts from Submarine-launched drone platoons will soon be emerging from the sea: Clandestine Warfare, Economist, June 22, 2019

Undersea Drones: Military

Currently, manipulation operations on the seabed are conducted by Remotely Operated Vehicles (ROVs) tethered to a manned surface platform and tele-operated by a human pilot. Exclusive use of ROVs, tethered to manned ships and their operators, severely limits the potential utility of robots in the marine domain, due to the limitations of ROV tether length and the impracticality of wireless communications at the bandwidths necessary to tele-operate an underwater vehicle at such distances and depths. To address these limitations, the Angler program will develop and demonstrate an underwater robotic system capable of physically manipulating objects on the sea floor for long-duration missions in restricted environments, while deprived of both GPS and human intervention

The Angler program seeks to migrate advancements from terrestrial and space-based robotics, terrestrial autonomous manipulation, and underwater sensing technologies into the realm of undersea manipulation, with specific focus on long-distance, seabed-based missions. Specifically, the program aims to discover innovative autonomous robotic solutions capable of navigating unstructured ocean depths, surveying expansive underwater regions, and physically manipulating manmade objects of interest.

Excerpts DARPA Angle Program Nov. 2018

The Sea Hunter Drone

The Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) is developing an unmanned vessel optimized to robustly track quiet diesel electric submarines. … capable of missions spanning thousands of kilometers of range and months of endurance under a sparse remote supervisory control model. This includes…autonomous interactions with an intelligent adversary.
Excerpts from Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ASW Continuous Trail Unmanned Vessel (ACTUV))

 

Artificial Reefs

Reefs improvised from junk often do not work well. Corals struggle to colonise some metals, and cars and domestic appliances mostly disintegrate in less than a decade. Some organisms do not take to paints, enamels, plastics or rubber. Precious little sea life has attached itself to the 2m or so tyres sunk in the early 1970s to create a reef off Fort Lauderdale, Florida. Tyres occasionally break free, smash into coral on natural reefs and wash ashore.

Yet building artificial reefs that are attractive to marine life can pay dividends. Some of the reefs built in Japanese waters support a biomass of fish that is 20 times greater than similarly sized natural reefs, says Shinya Otake, a marine biologist at Fukui Prefectural University. He expects further gains from a decision by the Japanese government to build new reefs in deep water where they will be bathed in nutrients carried in plankton-rich seawater welling up from below.

The potential bounty was confirmed in a recent study by Occidental College in Los Angeles. Over five to 15 years researchers surveyed marine life in the vicinity of 16 oil and gas rigs off the Californian coast. These were compared with seven natural rocky reefs. The researchers found that the weight of fish supported by each square metre of sea floor was 27 times higher for the rigs. Although much of this increase comes from the rigs providing fish with the equivalent of skyscraper-style living, it suggests that leaving some rigs in place when production ceases might benefit the environment.

Making reefs with hollow concrete modules has been especially successful. Called reef balls, these structures are pierced with holes and range in height up to 2.5 metres. The design is promoted by the Reef Ball Foundation, a non-profit organisation based in Athens, Georgia. Reef balls can be positioned to make the most of photosynthesis and for plankton to drift slowly across their curved inner surface. This improves the nourishment of plants and creatures setting up home within. A hole in the top reduces the chance of them being moved about by storm currents.

Concrete used to make a reef ball is mixed with microsilica, a silicon-dioxide powder, to strengthen the material and lower its acidity level to be more organism-friendly. The balls are cast from fibreglass moulds, which are typically sprayed with a sugary solution before the concrete is poured. This creates tiny hollows which provide a foothold for larval corals. Over 500,000 reef balls have been placed in the waters of more than 60 countries, and each one should last for some 500 years, says the foundation.

The value of artificial reefs has been boosted by the spread of GPS devices and sophisticated sonars on boats. This allows fishermen to locate the subsea structures precisely. It is necessary to be directly above the reef to reel in more fish, says David Walter of Walter Marine, an Alabama company that used to sink vehicles for fishermen but now places pyramid-shaped, hurricane-resistant steel, concrete and limestone structures to create artificial reefs. These constructions can cost nearly $2,000, but many fishermen consider them to be a good investment, especially to catch red snapper.

Using underwater drones for long-term studies of reefs and their associated marine life is also helping improve designs. Sensors can be installed on reefs to monitor boat traffic and activities such as fishing and scuba diving.

Perhaps the most innovative way to build a reef involves anchoring a frame made with steel reinforcing bars to the sea floor and zapping it continuously it with electricity. This causes minerals dissolved in seawater to crystallise on the metal, thickening the structure by several centimetres a year. Biorock, as the resulting material has been trademarked, becomes stronger than concrete but costs less to make. More than 400 “electrified” reefs, many the size of a small garage, have been built this way. Three-quarters of them are in the ocean around Indonesia.

Excerpts, Artificial reefs: Watery dwellings, Economist, Dec.6, 2014,  Technology Quarterly,  at 4

SeaWeb Live: drones, mules & gliders

UUVs [unmanned underwater vehicles]  will probably play a bigger role as roving wireless nodes that increase the reach of underwater networks. The latest “glider” UUVs consume very little battery power…. Already, gliders serving as “mules” are descending to sensors in deep water where they acoustically collect information. They then ascend to the surface and send the data via radio, says David Kelly, chief executive of Bluefin Robotics, which provides UUVs to half a dozen navies.

The US Navy has ordered several gliders to form underwater mobile networks. With no engine noise, a stealthy “swarm” of gliders could monitor submarines and ships entering a strait, for example, surfacing to transmit their findings. Floating gateway nodes, dropped from the air, allow messages to be sent to submerged devices via low-frequency acoustic signals. This scheme, known as Deep Siren and developed by Raytheon, an American defence contractor, has been tested by the British and American navies.

“Underwater networking will put an end to the ‘data starvation’ experienced by submarines”.  The combination of acoustic signalling and UUVs, which can deliver data physically, will put an end to the “data starvation” experienced by submarines, as America’s submarine command described it in a report last year. Often incommunicado, subs have been condemned to “lone wolf” roles, says Xavier Itard, head of submarine products at DCNS, a French shipbuilder. His firm is developing a funnel-shaped torpedo-tube opening that would make it easier for a UUV to dock with a submarine. Being able to send messages quickly via acoustic networks would enable submarines to take on more tactical roles—inserting special forces when needed to a nearby battlefield, say, or supporting ground operations by launching cruise missiles from the depths.

The Soviet-built ELF radio system remains a “backbone” of Russia’s submarine communications, according to a Norwegian expert. But in a clear vote of confidence in newer technologies, America shut down its own system in 2004. Thanks to steady progress in undersea networks, what was once a technological marvel was, a US Navy statement explained, “no longer necessary”. Whether via sound waves, laser pulses, optical fibres or undersea drones, there are now better ways to deliver data underwater.

Excerpt , Underwater networking: Captain Nemo goes online, Economist Technology Quarterly, Mar. 9, 2013, at 7