Category Archives: Markets

The Micro-Plastics Menance: Oceans

The IUCN report published in 2019 looked at primary microplastics – plastics that enter the oceans in the form of small particles, as opposed to larger plastic waste that degrades in the water – released from household and industrial products across seven geographical regions. Sources of primary microplastics include car tyres, synthetic textiles, marine coatings, road markings, personal care products, plastic pellets and city dust.  According to the report, between 15 and 31% of the estimated 9.5 m tonnes of plastic released into the oceans each year could be primary microplastics, almost two-thirds of which come from the washing of synthetic textiles and the abrasion of tyres while driving…Synthetic textiles are the main source of primary microplastics in Asia and tyres dominate in the Americas, Europe and Central Asia…. Synthetic clothes could be designed to shed fewer fibres, for example, and consumers can act by choosing natural fabrics over synthetic ones”

The World Health Organization is reviewing microplastics’ potential impact on human health after a study found plastic in 259 bottles of water from 11 different brands bought in nine countries. Microplastics have turned up in seafood, drinking water, beer, honey and sugar, according to studies, but the impact on human health is unclear.Research shows that ingesting microplastics can hurt the ability of planktonic organisms to feed and the ability of fish and marine worms to gain energy from food.  Pending bills in New York and California, if successful, would require labels on clothes made from more than 50% synthetic material to tell consumers that these shed plastic microfibers when washed.

Researchers also have zeroed in on how clothes are washed. Outdoor-apparel brand Patagonia found fabrics shed lots of microfibers on the first wash, but few in subsequent washes. That suggests pretreating garments before they are sold could potentially capture and recycle what otherwise goes down consumers’ drains.  It also found types of washing machines matter. Jackets washed in top-load washing machines shed seven times as many microfibers as front-loaders.

Excerpts from  Invisible plastic particles from textiles and tyres a major source of ocean pollution – IUCN study,Feb 2017; The Tiny Plastics in Your Clothes Are Becoming a Big Problem, Wall Street Journal, Mar. 7, 2019
 

From Savior to Villain: Biofuel from Palm Oil

Globally, average palm oil yields have been more or less stagnant for the last 20  years, so the required increase in palm oil production to meet the  growing demand for biofuels  has come from deforestation and peat destruction in Indonesia.  Without fundamental changes in governance, we can expect at least a third of new palm oil  area to require peat drainage, and a half to result in deforestation.

Currently, biofuel policy results in 10.7  million tonnes of palm oil demand.  If the current biofuel policy continues we expect by 2030:
• 67 million tonnes palm oil demand due to biofuel policy.
• 4.5 million hectares deforestation.
• 2.9 million hectares peat loss.
• 7 billion tonnes of CO2 emissions over 20 years, more than total annual U.S. GHG emissions.
It must always be remembered that the primary purpose of biofuel policy in the EU and many  other countries is climate change mitigation. Fuel consumers in the European Union, Norway  and elsewhere cannot be asked to continue indefinitely to pay to support vegetable oil based
alternative fuels
that exacerbate rather than mitigate climate change.

The use of palm oil-based biofuel should be  reduced and ideally phased out entirely.  In Europe, the use of biodiesel other than that produced from approved waste or  by-product feedstocks should be reduced or eliminated.
In the United States, palm oil biodiesel should continue to be restricted from generating  advanced RINs under the Renewable Fuel Standard. Indonesia should reassess the relationship between biofuel mandate, and its  international climate commitments, and refocus its biofuel programme on advanced biofuels from wastes and residues. The aviation industry should focus on the development of advanced aviation biofuels  from wastes and residues, rather than hydrotreated fats and oils.

Excerpts from Dr Chris Malins,  Driving deforestation: The impact of expanding palm oil demand through biofuel policy, January 2018

In Feb. 28, 2019, Norway’s $1 trillion sovereign wealth fund, the world’s largest, pulled out of more than 33 palm oil companies over deforestation risks.

100 Ways to Finance Criminal Cartels Logging Forests

The report – Green Carbon, Black Trade (2012) – by UNEP and INTERPOL focuses on illegal logging and its impacts on the lives and livelihoods of often some of the poorest people in the world set aside the environmental damage. It underlines how criminals are combining old fashioned methods such as bribes with high tech methods such as computer hacking of government web sites to obtain transportation and other permits. The report spotlights the increasingly sophisticated tactics being deployed to launder illegal logs through a web of palm oil plantations, road networks and saw mills. Indeed it clearly spells out that illegal logging is not on the decline, rather it is becoming more advanced as cartels become better organized including shifting their illegal activities in order to avoid national or local police efforts. By some estimates, 15 per cent to 30 per cent of the volume of wood traded globally has been obtained illegally…

The much heralded decline of illegal logging in the mid- 2000s in some tropical regions was widely attributed to a short-term law enforcement effort. However, long-term trends in illegal logging and trade have shown that this was temporary, and illegal logging continues. More importantly, an apparent decline in illegal logging is due to more advanced laundering operations masking criminal activities, and notnecessarily due to an overall decline in illegal logging. In many cases a tripling in the volumes of timber “originating” from plantations in the five years following the law enforcement crack-down on illegal logging has come partly from cover operations by criminals to legalize and launder illegal logging operations….

Much of the laundering of illegal timber is only possible due to large flows of funding from investors based in Asia, the EU and the US, including investments through pension funds. As funds are made available to establish plantations operations to launder illegal timber and obtain permits illegally or pass bribes, investments, collusive corruption and tax fraud combined with low risk and high demand, make it a highly profitable illegal business, with revenues up to 5–10 fold higher than legal practices for all parties involved. This also undermines subsidized alternative livelihood incentives available in several countries.

[It is important to discourage] the use of timber from these regions and introducing a rating og companies based on the likelihood of their involvement in illegal practices to discourage investors and stock markets from funding them.

Excerpts from Nellemann, C., INTERPOL Environmental Crime Programme (eds). 2012.Green Carbon, Black Trade Illegal Logging, Tax Fraud and Laundering in the Worlds Tropical Forests. A Rapid Response Assessment United Nations Environment Programme

How Nuclear Technology Creates New Plants

Joining the FAO/IAEA coordinated research projects in the area of mutation breeding has led to the development of several barley mutant lines with improved yield and quality under Kuwait’s environmental conditions.  As arable land is limited to small areas, 95% of the country’s food and animal fodder is imported. Barley is a preferred crop for cultivation, because it is relatively drought tolerant and therefore one of the most suitable crops for an arid country like Kuwait. Having high yielding home grown crops is among the key objectives of the country’s agricultural programme to enhance food security.

Drought, salinity and diseases have historically limited staple crop productivity in Kuwait.   Mutation induction by radiation rapidly increases the genetic diversity necessary to produce new and improved varieties and is thus advantageous over traditional breeding…The best adaptable varieties were identified, and the seeds were subjected to induced mutation using gamma rays.

New mutant lines have been generated and they are now examined for drought and salinity tolerance. The selected mutant lines will be advanced, which then can be multiplied for planting. …One of the major challenges was explaining to farmers the safety of the new mutated barley lines developed. “When they heard that ‘nuclear techniques’ were used to create improved barely seeds, they got scared….

Aabha Dixit , Nuclear Technology Helps Develop New Barley Variety in Kuwait, IAEA Press Release, Feb. 18, 2019

Worse than the Dirty Bomb? Mobile Nuclear Military Reactors

In January 2019, the Defense Department issued a call for information in support of the aptly titled Project Dilithium. It seeks to develop a tiny, readily transportable, yet virtually indestructible nuclear power reactor for use at forward operating bases, the military facilities that provide logistical and troop support to the front-lines of conflict zones.

To be sure, the type of reactor it is seeking could be a great military asset: all the benefits of nuclear energy with none of the risks. The costly and dangerous process of trucking diesel fuel to bases, sometimes through hostile territory, may eventually be a thing of the past. Unfortunately, the need to store and ship irradiated nuclear fuel in a war zone will introduce different problems. And the odds that a meltdown-proof reactor could be successfully developed any time soon are vanishingly small.

The Defense Department…is seeking a nuclear reactor capable of producing 1 to 10 megawatts of electricity. …The reactor, at a minimum, should be less than 40 tons total weight; small enough to be transported by truck, ship, and aircraft; able to run for at least three years without refueling; and capable of semi-autonomous operation… The reactor should have an “inherently safe design” that ensures “a meltdown is physically impossible in various complete failure scenarios;” cause “no net increase in risk to public safety … by contamination with breach of primary core;” and have “minimized consequences to nearby personnel in case of adversary attack.

 An Octrober 2018 report commissioned by the army’s Deputy Chief of Staff admits, quite reasonably, that exposed mobile nuclear plants would “not be expected to survive a direct kinetic attack.” If commanders need to expend significant resources to protect the reactors or their support systems from military strikes, such reactors could become burdens rather than assets.  Can one really invent a reactor robust enough to suffer such a strike without causing unacceptable consequences? …If a severe accident or sabotage attack were to induce more extreme conditions than the reactor was designed to withstand, all bets are off. How long would passive airflow keep nuclear fuel safely cool if, say, an adversary threw an insulating blanket over a small reactor? Or if the reactor were buried under a pile of debris?

Moreover, it is hard to imagine that a direct explosive breach of the reactor core would not result in dispersal of some radioactive contamination. An operating nuclear reactor is essentially a can filled with concentrated radioactive material, including some highly volatile radionuclides, under conditions of high pressure and/or temperature. Even a reactor as small as 1 megawatt-electric would contain a large quantity of highly radioactive, long-lived isotopes such as cesium-137—a potential dirty bomb far bigger than the medical radiation sources that have caused much concern among security experts. 

At best a release of radioactivity would be a costly disruption, and at worst it would cause immediate harm to personnel, render the base unusable for years, and alienate the host country. For any reactor and fuel design, extensive experimental and analytical work would be needed to understand how much radioactivity could actually escape after an attack and how far it would disperse. This is also true for spent fuel being stored or transported.

The 2018 report describes several existing reactor concepts that it thinks might meet its needs. One is the 2 megawatt-electric “Megapower” reactor being designed by Los Alamos National Laboratory. But a 2017 INL study of the design iden­­tified several major safety concerns, including vulnerabilities to seismic and flooding events. The study also found that the reactor lacked sufficient barriers to prevent fission product release in an accident. INL quickly developed two variants of the original Los Alamos design, but a subsequent review found that those shared many of the safety flaws of the original and introduced some new ones.

Building Mobile Nuclear Reactor LANL

The other designs are high-temperature gas-cooled reactors that use TRISO (“tristructural isotropic”) fuel, which was originally developed decades ago for use in reactors such as the now-decommissioned Fort St. Vrain plant in Colorado. TRISO fuel consists of small particles of uranium coated with layers of different materials designed to retain most fission products at temperatures up to 1,600 degrees Celsius.

TRISO fuel enthusiasts have long claimed that reactors utilizing it do not need containments because each particle essentially has its own. This would seem to make TRISO an ideal fuel for small, mobile reactors, which can’t be equipped with the large, leak-tight containment structures typical of commercial power reactors. The army report buys into the notion that these “encapsulated” nuclear fuels can “avoid the release of radioactive volatile elements” and prevent contamination of the surrounding area, either during normal operations or accidents.

TRISO fuel contained in pebble

TRISO fuel’s actual performance has been inconsistent, however, and much is still not known. The Energy Department has been carrying out a program for more than a decade to try to improve TRISO fuel, but final results are not expected for years. In addition, if the fuel temperature rises above 1,600 degrees Celsius, fission product release can rapidly increase, making it vulnerable to incendiary weapons that burn hotter, such as thermite. The Defense Department may have already realized that TRISO fuel is not as miraculous as it first thought.

The RFI also specifies that the reactor should be capable of being transported within seven days after shutdown, presumably with the irradiated nuclear fuel still inside. While this requirement is understandable—if forces need to retreat in a hurry, they would not want to leave the reactor behind—it is unrealistic to expect this could be met while ensuring safety. Typically, spent nuclear fuel is stored for many months to years after discharge from a reactor before regulators allow it to be shipped, to allow for both thermal cooling and decay of short-lived, intensely radioactive fission products. Moving a reactor and its irradiated fuel so soon after shutdown could be a risky business.

Finally, the proliferation risks of these reactors and their fuel is a concern. The original RFI stipulated that the reactor fuel had to be high-assay low-enriched uranium (HALEU), which is uranium enriched to levels above the 5 percent uranium-235 concentration of conventional power reactors, but still below the 20 percent that marks the lower limit for highly enriched uranium (HEU), which is usable in nuclear weapons….If the Defense Department goes forward with Project Dilithium, other nations, including US adversaries, may be prompted to start producing HALEU and building their own military power reactors.

Excerptsf rom Edwin Lyman The Pentagon wants to boldly go where no nuclear reactor has gone before. It won’t work, Feb. 22, 2019

Radical New Potatoes

Potatoes are already a staple for 1.3 billion people… but unlike other major crops, however, the potato has not had a breeding breakthrough of the kind that helped dramatically boost yields during the Green Revolution of the 1950s and 1960s. The reason is that creating a new potato variety is slow and difficult, even by the patient standards of plant breeders…Readying a new potato variety for farm fields can take a decade or more.  Many countries continue to plant popular potato varieties that have remained essentially unchanged for decades. But new approaches, including genetic engineering, promise to add more options. Potato breeders are particularly excited about a radical new way of creating better varieties. This system, called hybrid diploid breeding, could cut the time required by more than half, make it easier to combine traits in one variety, and allow farmers to plant seeds instead of bulky chunks of tuber

Solynta Hybrid Potato Seeds

To breed a better potato, it helps to have plenty of genetic raw material on hand. But the world’s gene banks aren’t fully stocked with the richest source of valuable genes: the 107 potato species that grow in the wild. Habitat loss threatens many populations of those plants. In a bid to preserve that wild diversity before it vanishes, collectors have made their biggest push ever, part of a $50 million program coordinated by the Crop Trust, an intergovernmental organization based in Bonn, Germany.

The Crop Trust has provided grants and training to collectors around the world. The effort on wild potatoes, which wraps up this month, has yielded a collection representing 39 species from six nations: Peru, Brazil, Ecuador, Guatemala, Costa Rica, and Chile. Zorrilla’s team alone found 31 species in Peru, including one for which no seeds had ever been collected. They plan to continue to search for four other species still missing from gene banks. “We will not stop,” she says. The plants are being stored in each nation’s gene bank, CIP, and the Millennium Seed Bank at the Royal Botanic Gardens, Kew, in the United Kingdom. The stored seeds will be available to potato breeders worldwide.

THE HARDEST PART comes next: getting desirable genes from wild species into cultivated potatoes….Other researchers are skirting the limitations of traditional breeding by using genetic engineering. CIP’s Marc Ghislain and colleagues, for example, have directly added genes to already successful potato varieties without altering the plants in any other way—an approach not possible with traditional breeding. They took three genes for resistance to late blight from wild relatives and added them to varieties of potato popular in East Africa.

Potato Blight , a disease affecting potatoes

The engineered varieties have proved successful in 3 years of field tests in Uganda and are undergoing final studies for regulators. Transgenic potatoes that resist late blight have already been commercialized in the United States and Canada….

Pim Lindhout has been plotting a revolution that would do away with much of that tedium and complexity. As head of R&D for Solynta, a startup company founded in 2006, he and his colleagues have been developing a new way to breed potatoes….Breeders reduce the complexity either by using species with only two sets of chromosomes (known as diploids) or by manipulating domesticated potatoes to cut the number of chromosomes in half. With persistence, diploid potatoes can be inbred. In 2011, Lindhout published the first report of inbred diploid lines that are vigorous and productive. More recently, Jansky and colleagues also created inbred diploid lines.

Such diploid inbred plants are at the heart of Solynta’s strategy to revolutionize potato breeding. Other firms, including large seed companies, are also working to develop hybrid potatoes. HZPC in Joure, the Netherlands, has begun field trials in Tanzania and in several countries in Asia.

Excerpt from Erik Stokstad, The new potato, Science, Feb. 8, 2019

Can Gucci Save the Steppes of Mongolia?

 Essential to the identity and economy of Mongolia—more than half of the country’s 3 million people live there—the grasslands are under increasing threat from overgrazing and climate change. Multiple studies over the past decade have shown that the once lush Mongolian steppe, an expanse twice the size of Texas that is one of the world’s largest remaining grasslands, is slowly turning into a desert. An estimated 70% of all the grazing lands in the country are considered degraded to some degree…. 

The collective here of a little more than 100 families is at the center of an unusual effort, run by the Wildlife Conservation Society (WCS), to turn space-based maps of the grasslands into a tool for making grazing more sustainable. Supported by the world’s largest mining company and a luxury apparel giant, the pilot effort uses data gathered by NASA and Stanford University in Palo Alto, California, to help herders find places where the vegetation is healthy enough to sustain their voracious herds.

 Meanwhile, development, especially mining, has exponentially increased water usage. Twelve percent of rivers and 21% of lakes have dried up entirely. An increasing number of people, vehicles, and heavy equipment put additional stress on the land.  But one factor stands out: overgrazing, which, according to a 2013 study by researchers at Oregon State University in Corvallis, has caused 80% of the recent decline in vegetation on the grasslands.

Mongolia is now the world’s second-largest cashmere producer, after China. Goats, which account for more than half of all grazing animals on the grasslands, can be more lucrative than other livestock, but they’re also much more destructive than the sheep they’ve replaced because they eat roots and the flowers that seed new grasses=s.

WCS’s Sustainable Cashmere project may offer part of the solution. The project, whose budget the organizers won’t disclose, is funded by mining giant Rio Tinto, which runs a massive copper mine not far away, and Kering, the French luxury apparel giant that owns Gucci, Balenciaga, and other brands that need cashmere. Both aim to help offset their impact on the Mongolian environment, a requirement of Rio’s mining agreement and part of Kering’s corporate social responsibility program.

Excerpts Kathleen McLaughlin, Saving the steppes, Science, Feb. 1, 2019