Tag Archives: marine pollution plastics

Fatalism about Plastics: Intractable Plastics Pollution

The annual inflow of plastic could nearly triple from 2016 to 2040, the study found, and even if companies and governments meet all their commitments to tackle plastic waste, it would reduce the projection for 2040 by only 7%, still a more-than twofold increase in volume.  The study’s authors, the nonprofit Pew Charitable Trust and sustainability consulting firm Systemiq Ltd., set out a range of measures to stem the flow and called on businesses and governments to do more to reduce the use of plastic. 

The study attributes the surge to a growing global population using more plastic per person. Other factors include greater use of nonrecyclable plastics and an increasing share of consumption occurring in countries with poor waste management. China and Indonesia are likely the top sources of plastic reaching the oceans, accounting for more than a third of the plastic bottles, bags and other detritus washed out to sea, according to a study published in 2015 by Jenna Jambeck, an environmental engineer at the University of Georgia.

Over the past two years China has been making strides to improve waste management, including banning the import of plastic and other waste from developed countries like the U.S., which for decades have shipped much of their trash overseas. Indonesia has implemented its own restrictions on trash coming in from overseas, while lawmakers in the U.S. are increasingly trying to find ways to improve the country’s domestic recycling rates as export markets vanish.

They found that flexible plastic packaging—particularly items like potato-chip bags and food pouches, which are made of several materials and typically aren’t recycled—accounts for a disproportionate amount of ocean plastic. The As You Sow report said companies should stop selling products in flexible plastic until it is recycled or composted in significant amounts. Companies, in response, have been redesigning flexible packaging to promote recycling. For example, Nestle recently began selling a line of Gerber baby-food pouches made from a single material. But hurdles remain, particularly around collection and sorting of the packaging…

The amount of plastic flowing into the oceans could be reduced by as much as 80% over the next 20 years through a combination of reduced plastic use, increased recycling, alternatives to problematic packaging like plastic pouches and better waste management, the Pew-Systemiq study said…

Excerpts from Saabira Chaudhuri, Ocean Plastic Is Getting Worse and Efforts to Stem the Tide Fall Short, Study Finds, WSJ, July 23, 2020

Air Pollution: the Microplastics We Breath

 Scientists measured microplastics — tiny particles and fibers of plastic that can float in the air like dust — and found that over 1,000 tons a year are falling into wilderness areas and national parks in the western U.S.  Janice Brahney of Utah State University and her team identified samples of microplastics and other particulates collected over 14 months in 11 national parks and wilderness areas to create the study published in the journal Science, on June 12, 2020.  Pieces of plastic less than 5 mm in length, or microplastics, occur in the environment as a consequence of plastic pollution…

The presence of microplastics in oceans and water supplies has been a matter of concern for some time, but the impact of airborne microplastics is a relatively new area of study. Though microplastics are found nearly everywhere on Earth, the sources and processes behind their ubiquitous distribution, or the “global plastic cycle,” remain vaguely understood.  Initially overlooked, recent studies have suggested that long-range atmospheric transport plays an important role in carrying microplastic pollution vast distances and to remote locations

Examination of weekly wet and monthly dry samples from 11 sites allowed the authors to estimate that more than 1,000 tons of microplastics are deposited onto protected lands in the western U.S. each year, equivalent to more than 123 million plastic water bottles.

The ubiquity of microplastics in the atmosphere has unknown consequences for humans and animals, but the research team observed sizes of particles that were within the ranges that accumulate in lung tissue. Moreover, the accumulation of plastic in the wilderness areas and national parks could well influence the ecosystems in complicated ways.

Excerpts, VICTORIA PRIESKOP, Scientists Find Tons of Microplastics Polluting National Parks, Courthouse News Service, June 11, 2020

What the Naked Eye Can’t See: Nanoplastics in Food and Sea

Smaller plastic particles are especially dangerous, because they are easily ingested and can enter organs and body fluids of organisms and thus propagate up the food chain. The fact that these particles are also co-contaminated with various chemicals and other pollutants makes accurate assessments of the effects and toxicity of plastic pollution challenging. A group of scientists led by the IAEA has recently published a comprehensive review on the effects on fish of ‘virgin’ micro- and nano-plastics – tiny plastic particles such as resin pellets used in plastics manufacturing. The review, published in the journal Environmental Science and Technology in March 2020, revealed that in 32% of all studies assessed, such virgin plastic particles were indeed affecting biological functions in fish, such as their behavior and neurological functions, as well as their metabolism, intestinal permeability and intestinal microbiome diversity.

Plastic particles below 5 mm in length are called microplastics. The smaller ones, with a size equal to or less than 100 nm (1/10 000 mm) are called nanoplastics. They are so tiny that one cannot see them with naked eye or even with an ordinary optical microscope.

According to the UN Environment Programme, 8 million tonnes of plastic end up the world’s oceans every year, often carried there by rivers. If the trend continues, by 2050 our oceans could contain more plastic than fish Microplastic particles are accidentally consumed by marine organisms, which are then consumed by predator fish. Nanoplastic particles are even more toxic to living organisms as they are more likely to be absorbed through the walls of digestive tracts and thereby transported into the tissues and organs. Consequently, such plastic particles can interfere with various physiological processes, from neurotransmission to oxidative stress and immunity levels of freshwater and marine organisms.

Jennet Orayeva, New Research on the Possible Effects of Micro-and Nano-plastics on Marine Animals

Genes that Atttack Plastic

A common fixture in refrigerators, furniture and footwear, polyurethane plastic is pretty much always in high demand. Humans worldwide cycle through millions of tons of the durable substance each year, sending the bulk of what’s not recycled to garbage dumps, where it leaks toxic chemicals into the environment as it very slowly breaks down. At least one of Earth’s organisms sees the stuff as a boon: a bacterial strain called Pseudomonas sp.TDA1. This polyurethane-munching microbe seems to thrive in waste dump sites. Studying the Pseudomonas strain and the chemical strategies it deploys could someday help researchers put a small dent in the world’s plastic problem, which has cumulatively saddled the planet with more than 8 billion tons of slow-degrading synthetic material.

Pseudomonas sp. TDA1 is one of only a few microbes known to be tolerant to polyurethane plastic’s typically toxic properties. What’s more, the bacteria doesn’t just withstand the plastic’s harsh ingredients: it uses some of them as a food source… But while the bacterium can metabolize a subset of the chemicals in polyurethane plastic, it doesn’t seem able to break down these products completely. In-depth studies of Pseudomonas sp. TDA1 will reveal the genes crucial to these plastic-attacking abilities. Understanding how these genes and their products work could help scientists engineer synthetic approaches to tackling plastic in the future.

Excerpts from Katherine J. Wu, Scientists Discover Plastic-Munching Microbe in Waste Site, SMITHSONIANMAG.COM, Mar. 31, 2020

The Severe Extent of Marine Pollution Crime

A global operation led by INTERPOL involving 61 countries and regional law enforcement partners has identified thousands of illicit activities behind severe marine pollution. Code-named 30 Days at Sea 2.0, the month-long (1-31 October, 2019) operation gathered more than 200 enforcement authorities worldwide for concerted action across all continents. Illustrating the severe global extent of marine pollution crime, preliminary operational results have already revealed more than 3,000 offences detected during 17,000 inspections. The offences – such as illegal discharges at sea, in rivers, or in coastal areas – were found to have been committed primarily to avoid the cost of compliance with environmental legislation.

The operation gathered more than 200 enforcement authorities worldwide, such as here in Bosnia and Herzegovina where officers inspect a company suspected of illegal discharge into local rivers
In Nigeria, INTERPOL’s National Central Bureau in Abuja coordinated the action of 18 authorities through a task force created to conduct inspections into illegal oil refineries, found responsible for severe oil leakages polluting the country’s waterways.   Information exchanged between Malaysia and The Netherlands permitted authorities to identify the source country of seven containers of plastic waste being illegally shipped into Malaysia from Belgium via Hong Kong, and to initiate their repatriation.

Marine pollution: thousands of serious offences exposed in global operation, Interpol Press Release, Dec. 16, 2019.

Sunlight Can Make Plastics Disappear

Numerous international governmental agencies that steer policy assume that polystyrene, a sort of plastic  persists in the environment for millennia. 

Styrofoam Cup

In their research paper published in the Journal of  Environmental Science and Technology Letters, scientists show the  that polystyrene is completely photochemically oxidized to carbon dioxide and partially photochemically oxidized to dissolved organic carbon. Lifetimes of complete and partial photochemical oxidation are estimated to occur on centennial and decadal time scales, respectively. These lifetimes are orders of magnitude faster than biological respiration of polystyrene and thus challenge the prevailing assumption that polystyrene persists in the environment for millennia. 

Excerpt from Collin P. Ward et al, Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon, Journal of Environmental Science and Technology Letters, October 10, 2019

From Streets into Drains into Seas: Cigarette Butts

Cigarette butts, the most littered items in the world, are posing an intractable trash problem for regulators and tobacco companies: Throwing them on the ground is a firmly entrenched habit for many smokers.  Regulators are taking a tougher stance on cigarette filter pollution amid concerns about the environmental impact of single-use plastic. Butts for decades have been made from cellulose acetate, a form of plastic, which takes years to break down. Studies show that butts—which often wash from sidewalks into drains and then waterways—can be toxic to fish.

About 65% of cigarettes smoked in the U.S. are littered, according to Keep America Beautiful, a nonprofit whose cigarette litter prevention program is funded by the tobacco industry.  “That whole habit is so ingrained it becomes part of the ritual of taking the cigarette out of the pack, lighting it, smoking it, putting it on the ground,” said Christopher Proctor, chief scientific officer at British American Tobacco (BAT), whose cigarette brands include Kent, Newport and Camel. “Changing ingrained behavior is a really difficult thing to do.”

The European Union in May adopted new rules under which members must pass laws within two years requiring tobacco companies to fund the cleanup of filter litter as part of a broader crackdown on single-use plastics. A bill proposing banning filters has made its way through the California Senate and will be heard by the lower house next year.  In response, BAT and Japan Tobacco Inc. are testing biodegradable filters, while Philip Morris International Inc. is assessing the appetite for portable ashtrays. Companies also are tapping behavioral psychologists to understand what propels smokers to litter, hoping to forestall stricter regulation…

he World Health Organization says that when filters do break down they leach out some of the 7,000 chemicals contained in cigarettes, many of which are environmentally toxic.

Excerpts from Saabira Chaudhuri, The World’s Most Littered Item Comes Under Fire, WSJ, July 31, 2019

Melted Plastic on the Shores: Madeira Island

‘Plasticrusts’ are see on the surface of rocks in Madeira island, Portugal. Researchers say they may have identified a new kind of plastic pollution in the sea, and they’re calling it “plasticrust.” Scientists working on Madeira, a volcanic Portuguese island off northwest Africa, have found small patches of what look like melted plastic encrusted on rocks along the shoreline. 

Excerpts from Scientists on Madeira see new ‘plasticrust’ sea pollution, Associated Press,
June 25, 2019

Keep it in Your Backyard Please! The Revolution against Recyclable Plastics

There is no point collecting recyclable waste unless someone is willing to buy it and actually do the recycling. Until late 2017 China was the world’s biggest importer of scrap by far.  All this came to a halt when the Chinese government banned the import of all but the purest scrap material in 2017, killing a trade worth $24bn a year. Waste dealers in the rich world had to scramble to find new buyers. South-East Asia soon emerged as the pre-eminent destination for foreign waste. Unfortunately, the region’s recycling industry is much smaller than China’s; its processing plants were quickly overwhelmed. Plastics from America and Europe have piled up in landfills. Lots of toxic rubbish has simply been torched.

South-East Asian governments are not pleased. They have begun to ban or crimp imports themselves, abruptly diminishing a booming business. On May 28th, 2919 Yeo Bee Yin, Malaysia’s environment minister, complaining that “garbage [was] being traded under the pretext of recycling”, announced that her government would be sending back 3,000 tonnes of foreign plastic. Much of it was of poor quality, she noted, and hence unrecyclable.  Thailand plans to ban plastic-waste imports by 2021. Vietnam’s government has similar ideas. Kate O’Neill of the University of California, Berkeley, reckons these bans are motivated not only by environmental concerns but also by pride: Asia does not want to be the world’s dumping ground.  Rodrigo Duterte, the president of the Philippines, recently threatened to go to war with Canada if it did not take back a shipment of plastic scrap. Canada agreed to take it away…

Excerpts from South-East Asian countries are banning imports of waste for recycling, Economist, June 15, 2019

Forever Dead Products

In a paper published in 2107 in Science Advances, Roland Geyer of the University of California, Santa Barbara, and his colleagues put the cumulative amount of solid plastic waste produced since the 1950s that has not been burned or recycled at 4.9bn tonnes. It could all have been dumped in a landfill 70 metres deep and 57 square kilometres in area—that is to say, the size of Manhattan

If only it had all remained on land, or even washed up on beaches, where it could be collected. A bigger environmental worry is that much plastic has ended up in the ocean, where, dispersed by currents, the stuff becomes virtually irretrievable, especially once it has fragmented into microplastics. Computer models suggest that seas hold as many as 51trn microplastic particles. Some are the product of larger pieces breaking apart; others, like microbeads added to toothpaste or face scrubs, were designed to be tiny….

Even if the flow of plastic into the sea, totalling perhaps 10m tonnes a year, was instantly stanched, huge quantities would remain. And the flow will not stop. Most of the plastic in the ocean comes not from tidy Europe and America, but from countries in fast-developing East Asia, where waste-collection systems are flawed or non-existent. In October 2017 scientists at the Helmholtz Centre for Environmental Research, in Germany, found that ten rivers—two in Africa and the rest in Asia—discharge 90% of all plastic marine debris. The Yangtze alone carries 1.5m tonnes a year

Trucost, a research arm of Standard & Poor’s, a financial-information provider, has estimated that marine litter costs $13bn a year, mainly through its adverse effect on fisheries, tourism and biodiversity. It puts the overall social and environmental cost of plastic pollution at $139bn a year. Of that half arises from the climate effects of greenhouse-gas emissions linked to producing and transporting plastic. Another third comes from the impact of associated air, water and land pollution on health, crops and the environment, plus the cost of waste disposal.

Exerpts from:  Plastic Pollution: Too Much of a Good Thing, Economist, Mar. 3, 2018, at 51

Production, use, and fate of all plastics ever made (R. Greyer et al., 2017)

The Love for Plastic Bags

Since their invention in the 1960s, disposable plastic bags have made lives easier for lazy shoppers the world over. But once used, they become a blight. This is particularly true in poor countries without good systems for disposing of them. They are not only unsightly. Filled with rainwater, they are a boon for malaria-carrying mosquitoes. Dumped in the ocean, they kill fish. They may take hundreds of years to degrade. On March 15th Kenya announced that it will become the second country in Africa to ban them. It follows Rwanda, a country with a dictatorial obsession with cleanliness, which outlawed them in 2008…

As Kenyans get richer and move to cities, the amount of plastic they use is growing. By one estimate, Kenya gets through 24m bags a month, or two per person. (Americans, by comparison, use roughly three per person.) Between 2010 and 2014 annual plastic production in Kenya expanded by a third, to 400,000 tonnes. Bags made up a large part of the growth.

Kenya has tried to ban polythene bags twice before, in 2007 and 2011, without much success. This latest measure is broader, but few are ready for it. The Kenyan Association of Manufacturers says it will cost thousands of jobs. Some worry that supermarkets will simply switch to paper bags, which could add to deforestation. And then there is the question of whether Kenyan consumers will accept it. In Rwanda, since its ban was imposed, a thriving underground industry has emerged smuggling the bags from neighbouring Congo.

Excerpts African Rubbish: Plastic Bantastic, Economist, Mar. 25, 2016