Category Archives: Nuclear Energy

The Enormous Task of Nuclear Waste Storage

“The Koeberg spent fuel pool storage capacity in South Africa  is currently over 90% full. (These) pools will reach (their) capacity by April 2020,” Eskom, the South African utility, told Reuters in a statement on Nov. 25, 2019.  Koeberg produces about 32 tonnes of spent fuel a year. Fuel assemblies, which contain radioactive materials including uranium and plutonium that can remain dangerous for thousands of years, are cooled for a decade under water in spent fuel pools.

Fuel Pool at Koeberg, South Africa

In 2016,  Eskom paid an estimated 200 million rand ($13.60 million) for an initial batch of seven reinforced dry storage casks from U.S. energy company Holtec International to help keep Koeberg running beyond 2018.  Eskom now has nine new unused casks on site, each with an individual capacity of 32 spent fuel assemblies, with another five expected to be delivered soon.

Holtec Cask

The 14 casks should ensure there is sufficient storage in the spent fuel pool until 2024, Eskom said, ahead of a tender for an extra 30 casks….Anti-nuclear lobby group Earthlife Africa said South Africa could not afford the social, environmental and economic costs associated with nuclear waste.  “We have a ticking bomb with high-level waste and fuel rods at Koeberg,” said Makoma Lekalakala, Earthlife Africa’s director.

Wendell Roelf, Waste storage at Africa’s only nuclear plant brimming, Reuters, Nov. 25, 2019

Between Colonialism and the Abyss: the Desperate Search for a Nuclear Waste Disposal Site, United States

A proposal for New Mexico to house one of the world’s largest nuclear waste storage facilities has drawn opposition from nearly every indigenous nation in the state. Nuclear Issues Study Group co-founder and Diné organizer Leona Morgan told state legislators in November 2019 the project, if approved, would perpetuate a legacy of nuclear colonialism against New Mexico’s indigenous communities and people of color.

Holtec International, a private company specializing in spent nuclear fuel storage and management, applied for a license from the federal Nuclear Regulatory Commission to construct and operate the facility in southeastern New Mexico. Holtec’s proposal would see the majority of high-level nuclear waste in the U.S. transported to a consolidated interim storage facility located in southeastern New Mexico. If licensed, the facility would house up to 100,000 metric tons of high-level waste at capacity — more nuclear waste than currently exists in the country — for up to 40 years, while the federal government either re-opens Yucca Mountain or establishes a new deep repository to permanently store the waste.

The proposal, which has been in the works since 2011, would see high-level waste generated at nuclear power plants across the country transported to New Mexico for storage at the proposed facility along the Lea-Eddy county line between Hobbs and Carlsbad. Holtec representatives say the facility would be a temporary solution to the nation’s growing nuclear waste problem, but currently there is no federal plan to build a permanent repository for the waste.

Legislators, activists and residents alike share concerns about the proposals. Some fear the “interim” storage facility could become a de facto permanent storage facility if no other repository is built; others question the site selection for a nuclear facility so close to oil and gas activity in the Permian Basin. Increased transport of high-level radioactive waste across the state could also lead to potentially dangerous nuclear releases, leaving impacted communities responsible for emergency responses.

“New Mexico doesn’t make the waste, why should we take the waste?” Morgan said. “What we’re advocating for is not a temporary, band-aid solution, but something more scientifically sound. The waste does have to go somewhere. However, storing it in New Mexico temporarily is not the right idea. It’s not safe; it’s not supported by the local communities; and New Mexico does not want it.”  “We see this as environmental racism and perpetuating nuclear colonialism that is going to result in a continuation of a slow genocide,” she said….

Meanwhile, nuclear power utilities across the country have sued the federal government over a breach of contract for failing to establish a permanent repository for the waste

Nuclear colonialism, a term first coined by environmentalist Winona LaDuke and activist Ward Churchill, describes a systematic dispossession of indigenous lands, the exploitation of cultural resources, and a history of subjugation and oppression of indigenous peoples by a government to further nuclear production of energy and proliferation of weapons.  “All of the impacts from nuclear colonialism can be simplified by explaining it as environmental racism,” Morgan told state legislators last week. She pointed to the health and environmental consequences of uranium mining on the Navajo Nation during the last century.  “My family lives in areas where there was past uranium mining. We’re still dealing with the legacy of all of the mining that fuelled World War II and the Cold War,” Morgan said. “This legacy is still unaddressed — not just in New Mexico, but in the entire country. For that reason, my concern is the health of our people, our environment.”

Cleaning Abandoned Uranium Mines New Mexico

“We do not believe we are separate from the environment,” Morgan said. “We are not here to protect the environment as land and as mountains, but as living, breathing entities.”  Similar beliefs, sometimes referred to in policy discussions as “environmental personhood,” have gained recognition among regulators in countries across the world in recent years. 

Excerpts from Kendra Chamberlain, Nuclear Colonialism: Indigenous opposition grows against proposal for nation’s largest nuclear storage facility in NM, https://nmpoliticalreport.com/,  Nov. 14, 2019

Why Russia Loves Germany’s Toxic Waste

Environmental groups have voiced concern in November 2019 that Russia is again accepting shipments of uranium tails, a byproduct formed when uranium is enriched, from a German nuclear fuel firm, reigniting a debate over whether the substance meets the definition of nuclear waste.  The shipments of the toxic compound – also called uranium hexafluoride – were halted in 2009 over revelations that Russia was accepting it from foreign customers and storing it in the open. At that time, Rosatom, Russia’s nuclear corporation, bowed to environmental pressure and promised to no longer import the radioactive substance.

But German government documents revealed in November 2019 by Greenpeace and the Russian environmental group Ecodefense show that the German-based enrichment company Urenco resumed the uranium tail shipments as long ago as May 2019.  According to Urenco’s contract with the Russian nuclear-fuel giant Teksnabeksport (Tenex), a subsidiary of Rosatom, some 12,000 tons of uranium tails are set to be delivered to Novouralsk, near Yekaterinburg by 2022. Four thousands tons have been sent so far….

Urenco, Germany

Uranium hexafluoride, also called depleted uranium, is a colorless radioactive powder that is produced as a byproduct of enriching uranium for use as fuel in nuclear power plants. Urenco, which is a partnership involving German, British and Dutch energy firms, has operated an enrichment facility in Gronau, Germany since 1985.  This facility stores depleted uranium in the open air. In the early 1990s, Russian opened its doors to reprocessing depleted uranium from foreign customers. A previous contract between Tenex and Urenco envisioned the import of 100,000 tons of uranium tails between 1996 and 2009.

The issue of whether uranium tails in fact constitute nuclear waste depends on whom you ask. Both Rosatom and Germany’s nuclear industry classify uranium hexafluoride as a recyclable material. The US Nuclear Regulatory Commission, however, has long held that uranium tails should be classified as nuclear waste – a view that Bellona, Ecodefense and Greenpeace share.  But while Rosatom asserts that uranium tails are valuable raw material, the motive for importing them is unclear. By most estimates, Russia already holds nearly 1 million tons of uranium tails from its own fuel production – making the need for another 12,000 tons from abroad questionable.

Charles Digges, Russia resumes importing depleted uranium from Germany, breaching old promises, Bellona, Nov. 1, 2019

Stopping GreenWashing

The EU wants to revolutionise the world of green finance. Brussels officials, MEPs and member states are currently trying to thrash out plans for a gold standard in green investment they hope will unleash tens of millions of euros of private money to fund the transition to a more sustainable world.   The project has a classically boring Brussels name — the “taxonomy” for sustainable activities — but the implications are potentially transformative. The EU wants to become the first supranational regulator to write rules that banks and funds will have to comply with when they claim to launch “green” products or investments.  As it stands, there is no global benchmark to judge just how green a financial product is. Funds and banks can sell and label sustainable finance products without an independent arbiter checking if reality meets the hype. The point of the EU’s work is to stamp out this so-called “greenwashing”…

Perhaps the most sensitive issue of all is how to handle nuclear energy. France — which has big nuclear business interests — doesn’t want the taxonomy to stigmatise nuclear as a “brown” technology. Other member states, led by Germany, want it excluded from being green, as do the MEPs. 

Excerpts from  Mehreen Khan, The Green Gold Standard, FT, Nov. 11, 2019

Cyber-Attacking Nuclear Plants: the 3 000 cyber bugs

In the first half of 2019 , no country endured more cyber-attacks on its Internet of Things—the web of internet-connected devices and infrastructure—than India did. So asserts Subex, an Indian telecommunications firm, which produces regular reports on cyber-security. Between April and June of 2019, it said, recorded cyber-attacks jumped by 22%, with 2,550 unique samples of malware discovered. Some of that malicious code is turning up in hair-raising places.

On October 28, 2019 reports indicated that malware had been found on the computer systems of Kudankulam Nuclear Power Plant in Tamil Nadu, the newest and largest such power station in India. Pukhraj Singh, a cybersecurity researcher who formerly worked for the National Technical Research Organisation (NTRO), India’s signals-intelligence agency, says he was informed of the malware by an undisclosed third party in September, and notified the government.The attackers, he said, had acquired high-level access and struck “extremely mission-critical targets”…. On October 30, 2019 the body that operates nuclear power plants acknowledged, sheepishly, that a computer had indeed been infected, but it was only an “administrative” one.

Sensitive sites such as power plants typically isolate the industrial-control systems (those that control the workings of a plant) from those connected to the wider internet. They do so using air-gaps (which involve disconnecting the system from the wider world), firewalls (which monitor data-flows for suspicious traffic) or data diodes (which allow information to flow out but not in).

But breaching a computer on the outside of these digital moats is nevertheless troubling. It could have given the attackers access to sensitive emails, personnel records and other details which would, in turn, make it easier to gain access to the more isolated operational part of the plant. America and Israel are thought to have sneaked the devastating Stuxnet virus into Iran’s air-gapped uranium-enrichment plant at Natanz around 2007 by planting a USB stick on a worker, who carried it inside and plugged it in.

The culprit behind the Kudankulam attack is unknown, but left some clues. The malware in question is from a family known as DTrack, which gives attackers an intimate look at what victims are doing—down to their keystrokes. It is typically used to monitor a target, making it easier to deliver further malware. DTrack was originally developed by a group of hackers known as the Lazarus Group, who are widely assumed to be controlled or directed by North Korea.

Excerpts from On the DTrack: A cyber-attack on an Indian nuclear plant raises worrying questions, Economist, Nov. 1, 2019

A Huge Headache: the Radioactive Water at Fukushima

What to do with the enormous amount of radioactive  water, which grows by around 150 tons a day at Fukushima, is a thorny question, with controversy surrounding a long-standing proposal to discharge it into the sea, after extensive decontamination.  The water comes from several different sources: Some is used for cooling at the plant, which suffered a meltdown after it was hit by a tsunami triggered by a massive earthquake in March 2011.  Groundwater that seeps into the plant daily, along with rainwater, add to the problem.

A thousand, towering tanks have now replaced many of the cherry trees that once dotted the plant’s ground. Each can hold 1,200 tons, and most of them are already full.  “We will build more on the site until the end of 2020, and we think all the tanks will be full by around the summer of 2022,” said Junichi Matsumoto, an official with the unit of plant operator TEPCO in charge of dismantling the site.

TEPCO has been struggling with the problem for years, taking various measures to limit the amount of groundwater entering the site.  There is also an extensive pumping and filtration system, that each day brings up tons of newly contaminated water and filters out as many of the radioactive elements as possible.

The hangar where the decontamination system runs is designated “Zone Y” — a danger zone requiring special protections.  All those entering must wear elaborate protection: a full body suit, three layers of socks, three layers of gloves, a double cap topped by a helmet, a vest with a pocket carrying a dosimeter, a full-face respirator mask and special shoes.  Most of the outfit has to burned after use.

“The machinery filters contain radionuclides, so you have to be very protected here, just like with the buildings where the reactors are,” explained TEPCO risk communicator Katsutoshi Oyama.  TEPCO has been filtering newly contaminated water for years, but much of it needs to go through the process again because early versions of the filtration process did not fully remove some dangerous radioactive elements, including strontium 90.

The current process is more effective, removing or reducing around 60 radionuclides to levels accepted by the International Atomic Energy Agency (IAEA) for water being discharged.  But there is one that remains, which cannot be removed with the current technology: tritium.

Tritium is naturally present in the environment, and has also been discharged in its artificial form into the environment by the nuclear industry around the world.  There is little evidence that it causes harm to humans except in very high concentrations and the IAEA argues that properly filtered Fukushima water could be diluted with seawater and then safely released into the ocean without causing environmental problems.

But those assurances are of little comfort to many in the region, particularly Fukushima’s fishing industry which, like local farmers, has suffered from the outside perception that food from the region is unsafe.

Karyn Nishimura, At Fukushima plant, a million-ton headache: radioactive water, Japan Times, Oct. 7, 2019
 

Can Nuclear Power Beat Climate Change?

The 2019 World Nuclear Industry Status Report (WNISR2019) assesses the status and trends of the international nuclear industry and analyzes the potential role of nuclear power as an option to combat climate change. Eight interdisciplinary experts from six countries, including four university professors and the Rocky Mountain Institute’s co-founder and chairman emeritus, have contributed to the report.

While the number of operating reactors has increased over the past year by four to 417 as of mid-2019, it remains significantly below historic peak of 438 in 2002.  Nuclear construction has been shrinking over the past five years with 46 units underway as of mid-2019, compared to 68 reactors in 2013 and 234 in 1979. The number of annual construction starts have fallen from 15 in the pre-Fukushima year (2010) to five in 2018 and, so far, one in 2019. The historic peak was in 1976 with 44 construction starts, more than the total in the past seven years.

WNISR project coordinator and publisher Mycle Schneider stated: “There can be no doubt: the renewal rate of nuclear power plants is too slow to guarantee the survival of the technology. The world is experiencing an undeclared ‘organic’ nuclear phaseout.”  Consequently, as of mid-2019, for the first time the average age of the world nuclear reactor fleet exceeds 30 years.

However, renewables continue to outpace nuclear power in virtually all categories. A record 165 gigawatts (GW) of renewables were added to the world’s power grids in 2018; the nuclear operating capacity increased by 9 GW. Globally, wind power output grew by 29% in 2018, solar by 13%, nuclear by 2.4%. Compared to a decade ago, nonhydro renewables generated over 1,900 TWh more power, exceeding coal and natural gas, while nuclear produced less.

What does all this mean for the potential role of nuclear power to combat climate change? WNISR2019 provides a new focus chapter on the question. Diana Ürge-Vorsatz, Professor at the Central European University and Vice-Chair of the Intergovernmental Panel on Climate Change (IPCC) Working Group III, notes in her Foreword to WNISR2019 that several IPCC scenarios that reach the 1.5°C temperature target rely heavily on nuclear power and that “these scenarios raise the question whether the nuclear industry will actually be able to deliver the magnitude of new power that is required in these scenarios in a cost-effective and timely manner.”

Over the past decade, levelized cost estimates for utility-scale solar dropped by 88%, wind by 69%, while nuclear increased by 23%. New solar plants can compete with existing coal fired plants in India, wind turbines alone generate more electricity than nuclear reactors in India and China. But new nuclear plants are also much slower to build than all other options, e.g. the nine reactors started up in 2018 took an average of 10.9 years to be completed. In other words, nuclear power is an option that is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options.

Excerpts from WNISR2019 Assesses Climate Change and the Nuclear Power Option, Sept. 24, 2019