Category Archives: Nuclear Energy

Rebranding Saudi Arabia as a Nuclear Superpower

Saudi Arabia plans to use domestically-sourced uranium to build up its nuclear power industry, energy minister Prince Abdulaziz bin Salman said in January 2023. Saudi Arabia has a nascent nuclear programme that it wants to expand to eventually include uranium enrichment, a sensitive area given its role in nuclear weapons. Riyadh has said it wants to use nuclear power to diversify its energy mix. It is unclear where its ambitions end, since Crown Prince Mohammed bin Salman said in 2018 that the kingdom would develop nuclear weapons if regional rival Iran did.

“The kingdom intends to utilize its national uranium resources, including in joint ventures with willing partners in accordance with international commitments and transparency standards,” Abdulaziz bin Salman said. He told a mining industry conference in Riyadh that this would involve “the entire nuclear fuel cycle which involves the production of yellowcake, low enriched uranium and the manufacturing of nuclear fuel both for our national use and of course for export“.

Fellow Gulf state the United Arab Emirates (UAE) has the Arab world’s first multi-unit operating nuclear energy plant. The UAE has committed not to enrich uranium itself and not to reprocess spent fuel. Atomic reactors need uranium enriched to around 5% purity, but the same technology in this process can also be used to enrich the heavy metal to higher, weapons-grade levels. This issue has been at the heart of Western and regional concerns about Iran’s nuclear program, and led to the 2015 deal between Tehran and global powers that capped enrichment at 3.67%.

Excerpts from Ahmed Yosri, Saudi Arabia plans to use domestic uranium for nuclear fuel, Reuters, Jan. 11, 2023

Floating on Ice: the Nuclear Infrastructure of Russia

Not since Soviet days has more nuclear-powered icebreakers been operating at the same time in Arctic waters, the Barents Observer reported in the beginning of 2023. Russia has over the last few years put three brand new icebreakers of the Project 22220 class into operation. Two more are under construction in St. Petersburg and a sixth vessel got funding with a goal to put it into service by 2030 as a transport- and maintenance ship for spent nuclear fuel and radioactive waste removal from the country’s fleet of icebreakers.

This  new service ship (Project 22770) will be nearly 160 meters long and carry its own cranes to lift in and out containers with spent nuclear fuel or fresh uranium fuel from the icebreaker reactors, either at Rosatom’s service base in Murmansk or in open sea anywhere along the Northern Sea Route. Typically, the uranium fuel is used in icebreaker reactors for 3-4 years before being replaced. The spent fuel elements are then taken out of the reactors and loaded over to special casks to the service vessel where they are stored for a few years before being loaded on land at Atomflot in Murmansk and later transported by train to Mayak in the South Urals for reprocessing.

The vessel could also serve Russia’s floating nuclear power plants (FNPP), like the “Akademik Lomonosov” which today provides electricity to Pevek or to any of the new FNPPs planned for the Arctic.

Excerpts from Thomas Nilsen, Arctic nuclear waste ship gets funding, The Barents Observer, Jan 11, 2023

A Costly Affair: Japan’s Nuclear Waste Legacy

The Japan Atomic Energy Agency estimates that it will cost taxpayers 36.1 billion yen ($280 million) to rectify the shoddy storage of radioactive waste in a storage pool at the Tokai Reprocessing Plant, the nation’s first facility for reprocessing spent nuclear fuel, 

Around 800 containers of transuranic radioactive waste, or “TRU waste,” were dropped into the pool from 1977 to 1991 using a wire in the now-disused plant in Tokai, a village in Ibaraki Prefecture northeast of Tokyo. They emit high levels of radiation. The waste includes pieces of metal cladding tubes that contained spent nuclear fuel, generated during the reprocessing process. The containers are ultimately supposed to be buried more than 300 meters below surface.

The agency has estimated that 19.1 billion yen will be needed to build a new storage facility for the containers, and 17 billion yen for a building that will cover the storage pool and the crane equipment to grab containers. The 794 containers each are about 80 centimeters in diameter, 90 cm tall and weigh about 1 ton, with many lying on their sides or overturned in the pool. Some have had their shape altered by the impact of being dropped. The containers were found stored in the improper manner in the 1990s. While the agency said the storage is secure from earthquakes and tsunamis, it has nonetheless decided to improve the situation. The extractions have been delayed by about 10 years from the original plan and are expected to begin in the mid-2030s.

The Tokai Reprocessing Plant was the nation’s first plant that reprocessed spent fuel from nuclear reactors to recover uranium and plutonium. Between 1977 and 2007, about 1,140 tons of fuel were reprocessed. The plant’s dismantlement was decided in 2014 and is expected to take about 70 years at a cost of 1 trillion yen.

Excerpts from Righting shoddy nuclear waste storage site to cost Japan 36 bil. yen, Kyodo News, Jan 15, 2023

Nuclear Waste Helps Reach Dark Places of Universe

European scientists are developing a breed of battery for space missions that is powered by nuclear waste. The European Space Agency (ESA) hopes that the technology will, by the end of the decade…Ministers at ESA’s ministerial council meeting in Paris on 22 and 23 November, 2022 agreed to fund a €29-million (US$30-million) program called European Devices Using Radioisotope Energy (ENDURE). This aims to develop long-lasting heat and electricity units powered by the radioactive element americium-241, in time for a series of ESA Moon missions in the early 2030s.

Americium, a by-product of plutonium decay, has never been used as a fuel. For missions in which solar power would not suffice — either because of shade or because of distance from the Sun — ESA has relied on US or Russian partners, which have used plutonium-238 batteries to power missions since the space race. 

The lack of a power source has long restricted the solo missions that European scientists propose, and limited others. The agency felt its lack of radioisotope power keenly in 2014, when its comet-landing Philae probe was operational for less than three days because it ended up in a shaded spot where its solar panels were useless. “For years, European scientists have been saying that if you want to go far, or to dark and cold places, there is no other way,” says Coustenis.

Americium’s big advantage over plutonium is that it is cheaper and more abundant, repurposing waste that would otherwise be useless…Americium has a longer half-life than plutonium-238, which means it lasts longer but packs less power per gram. But because americium is more readily available, producing one watt of power costs about one-fifth as much as it does using plutonium…

Excerpts from Elizabeth Gibney, How Nuclear Waste Will Help Spacecraft Explore the Moon and Beyond, Nature, Dec. 6, 2022

Irradiating Plastics to Death: the IAEA Solution

Plastic pollution has become one of the major global environmental challenges of the century; projections show that by 2050 the oceans may have more plastic than fish. Nuclear technology has emerged as one innovative solution to this growing problem. The International Atomic Energy Agency (IAEA) has been working on an initiative called  Nuclear Technology for Controlling Plastic Pollution – NUTEC Plastics.

Nuclear technology can be used to innovate plastic waste recycling and support development of biodegradable, green alternatives to single use petroleum-based plastic products – an approach aimed at reducing the volume of plastic waste world-wide and prevent the plastics from reaching earth’s marine environments.  Nuclear techniques can also be used to quantify and characterize marine microplastic pollution and to assess their impact on coastal and marine ecosystems.  A global plastics monitoring network of marine laboratories can also help tackle marine pollution. Presently, there are 55 laboratories in the global NUTEC Plastics Monitoring Network. ..

The Philippines has a significant plastic pollution problem and a great interest in recycling. The Department of Science and Technology (DOST) in the Philippines has undertaken a pre-feasibility study for a pilot plant employing electron beam radiation to combine two waste streams – plastics and palm tree fibers – into a new consumer product, construction material…

The IAEA is unique within the United Nations system in having laboratories in Austria and Monaco that apply nuclear science to help states address some of the world’s biggest issues, including plastic pollution… The Monaco laboratories serve as the central hub to the global NUTEC Plastics Monitoring Network.

Excerpts from Sinead Harvey, More Plastic Than Fish by 2050 – IAEA Event Gathers Experts Working Together to Save Marine Environments from Plastic Pollution, IAEA Newsletter, Sept. 28, 2022
 

Bury It and Forget It: Nuclear Waste

The first nuclear burial site has been built in Finland, the Onkalo spent nuclear fuel repository]. Deep geological disposal of this sort is widely held to be the safest way to deal with the more than 260,000 tons of spent nuclear fuel which has accumulated in 33 countries since the first nuclear plants began churning out electricity in the mid-1950s, and the still large…. Spent fuel is a high-level nuclear waste. That means it is both physically hot (because of the energy released by radioactive decay) and metaphorically so—producing radiation of such intensity that it will kill a human being in short order. Yet unlike the most radioactive substances of all, which necessarily have short half-lives, spent fuel will remain hot for hundreds of thousands of years—as long, in fact, as Homo sapiens has walked Earth—before its radioactivity returns to roughly the same level as that of the ore it came from.

Once full, the waste repository will be backfilled with bentonite before their entrances are sealed with a reinforced-concrete cap. In 100 years’ time, Finland will fill the whole site in, remove all traces of buildings from the surface and hand responsibility over to the Finnish government. The thinking is that leaving no trace or indication of what lies below is preferable to signposting the repository for the curious to investigate.

[Unless someone decides to drill?]

Excerpt from Nuclear Waste: Oubliette, Economist, June 25, 2022

Spoiling the Nuclear-Industry Party: Nuclear Waste

According to a new study, the world’s push for Small Modular Nuclear Reactors to address climate change will generate more radioactive waste than the larger, existing reactors, and its chemical complexity will make it more difficult to manage.

Published in the peer-reviewed journal of the National Academy of Sciences, the study compared designs for three small modular reactors (SMRs) with a standard pressurized-water reactor… It concluded that most SMR designs will “entail a significant net disadvantage for nuclear waste disposal” and will produce wastes that aren’t compatible with existing disposal practices and facilities…

Traditional reactors have been capable of generating up to 1,000 or more megawatts of electricity, and are water-cooled; their spent fuel is highly radioactive and must be isolated from the environment for hundreds of thousands of years. SMRs by definition produce less than 300 megawatts, and would be cooled by novel substances such as molten salt or helium, producing different wastes…The smaller a reactor is, the more neutrons tend to escape the core and affect other components. That will create more radioactivity in the materials used in the reactor vessel which will have to be accounted for as a waste product. The researchers also determined that fuels from some SMRs would likely need processing to make them suitable for underground disposal.

The researchers found the SMRs would produce between double and 30-fold the volumes of waste arising from a typical reactor. They estimated spent fuel would contain higher concentrations of fissile materials than that from traditional reactors. That means the fuel could be at risk of renewed fission chain reactions if stored in high concentrations, meaning it would need to occupy more space underground. Such assertions contradict marketing claims from many SMR vendors…

In 2021, the Union of Concerned Scientists published a report that concluded many proposed SMRs would require new facilities to manage their wastes. It called claims that SMRs could burn existing waste “a misleading oversimplification.” The report found that reactors can consume only a fraction of spent fuel as new fuel – and that requires reprocessing to extract plutonium and other materials that could be used in weapons, thus raising what the organization described as an “unacceptable” risk.

Excerpt from MATTHEW MCCLEARN,The world’s push for small nuclear reactors will exacerbate radioactive waste issues, researchers say, Globe and Mail, June 3, 2022

The Best Opportunity for Nuclear Industry

[After the war on climate change….]Russia’s war in Ukraine has created the “best opportunity” for Japan’s nuclear industry to stage a comeback since the 2011 Fukushima disaster, according to the country’s largest reactor maker. Akihiko Kato, nuclear division head at Mitsubishi Heavy Industries, said in an interview with the Financial Times…” Japan’s heavy reliance on Russian gas imports has rekindled a debate over nuclear power in the country more than a decade after regulators took most plants offline following one of the worst nuclear disasters in history. The world’s third-largest economy has been plunged into a power crisis exacerbated by the soaring cost of liquefied natural gas and oil. Japan imports about 9 per cent of its LNG from Russia, putting it in a difficult diplomatic position as its western allies impose sanctions on Moscow.

But in contrast with the US, which sources close to a quarter of its processed uranium from Russia, Japan imports about 55 per cent of its processed uranium from western European countries, according to Ryan Kronk, a power markets analyst at Rystad Energy. Kato’s remarks underscored a shift in the country’s nuclear narrative, with an industry that had been in retreat now emboldened to speak out. His remarks come after Prime Minister Fumio Kishida told investors this month in London that Japan would use nuclear power to “help the world achieve de-Russification of energy”. “

Mitsubishi Heavy expects an increase in orders for components from Europe in the coming years, as countries including the UK and France commit to building new nuclear plants.  

Excerpts from Ukraine war is ‘best opportunity’ for nuclear comeback since Fukushima, industry says, FT, May 15, 2022

Nuclear Power Invades Space

The Defense Advanced Research Projects Agency (DARPA) is testing a technology known as “nuclear thermal propulsion”… DARPA spacecraft will carry a small nuclear reactor. Inside, uranium atoms will be split to generate tremendous heat…to produce thrust. Such a spacecraft could climb to a geostationary orbit above the Earth, nearly 36,000km up, in mere hours. Satellites that burn normal rocket fuel need several days for the same trip. Nuclear-powered satellites with abundant power would also be hard to destroy—their trajectories could be changed often enough to become unpredictable. DARPA  wants to test its spacecraft, dubbed DRACO  (Demonstration Rocket for Agile Cislunar Operations), in orbit in 2025.

Other proposals are for radioisotope thermoelectric generators (RTGs). These kinds of “nuclear batteries” have long been used to power probes sent into deep space, where solar power is especially feeble. Instead of building a nuclear reactor, an RTG uses devices called thermocouples to produce a modest wattage from heat released by the decay of radioactive isotopes. Plutonium-238, which is a by-product of weapons development, has been used by NASA to power both the Voyager probes, launched in the 1970s and still functioning, as well as the Curiosity rover currently trundling around Mars. Plutonium-238, however, is heavily regulated and in short suppl..Cobalt-60, with a half-life of 5.3 years, is a promising alternative and available commercially.

DARPA Draco Image https://www.youtube.com/watch?v=h3ubR9F55nk

How safe is it, however, to send nuclear devices, especially reactors, into space?…A danger is accidental atmospheric re-entry. The Soviet Union flew at least 33 spy satellites with nuclear reactors for onboard power (but not propulsion). In one accident, the reactor in a satellite named Kosmos 954 failed to ascend into a high-enough “disposal orbit” at the end of its mission. In 1978 it ended up spraying radioactive debris over a swathe of Canada’s Northwest Territories…The fuel for the Soviet Kosmos 954…was 90% uranium-235, similar to the material used in the atom bomb detonated over Hiroshima in 1945…

America is not alone in its nuclear quest. China and Russia are also developing nuclear power for space. China’s wish list includes a fleet of nuclear-powered space shuttles. Russia is designing an electric-propulsion cargo spacecraft called Zeus, which will be powered by a nuclear reactor. Roscosmos, Russia’s space agency, hopes to launch it in 2030. The prospect of more capable satellites will, no doubt, raise suspicions among spacefaring nations. Nuclear spacecraft with abundant electrical energy could be used to jam satellite communications…..

And not all of the interest in nuclear power comes from the armed forces. NASA…wants a nuclear plant to power a base on the Moon

Excerpt from Faster, higher, stronger: Why space is about to enter its nuclear age, Economist, Feb. 5, 2022

The Heavy Toll of Nuclear Waste Inheritance

After decades of prevarication, Sweden decided on a final storage plan for its nuclear waste, becoming only the second country in the world after Finland to take such a step. Permission was granted in January 2022 to build a facility to package and store spent nuclear fuel at a coastal site near the Forsmark nuclear power plant, about an hour’s drive north of the capital. 

The decision is significant because it confirms Sweden’s position as a global leader in the storage of nuclear waste. Finland is the only other country to decide on such a plan and is building a storage facility at Olkiluoto, across the Gulf of Bothnia from Forsmark. Like the Forsmark project, the Finnish plan was based on a process developed by Swedish researchers. 

The method — referred to as KBS3 — will see the spent nuclear fuel stored in copper containers surrounded by bentonite clay and placed in 500 tunnels that will be 500 meters under the ground. The aim is to keep the radioactive waste isolated for at least 100,000 years….But there has been criticism of the KBS3 method over recent years, including by researchers who have suggested that copper may not be as resistant to corrosion as the method assumes, meaning the risk of leaks could be higher than expected. 

The approval of the Forsmark site is a big step forward in a long-running saga.  Since the 1970s, Swedish authorities — like their counterparts in nuclear-power-dependent states the world over — have been seeking a solution for the final storage of nuclear waste, scouring the country for suitable sites while also tasking researchers to develop safe methods.  But it took until 2011 for an application to be made by the company SKB — a nuclear waste manager owned by Swedish nuclear power producers — for planning permission at Forsmark. Since then, lengthy consultations have been held with interested parties, from scientists to residents in Östhammar municipality where Forsmark is located. The process became more politically divisive as the Green Party, which quit the government in November 2021, said the process was being rushed and more time was needed for research. 

According to the Environmental Minister Strandhäll:  “Today we have the knowledge and technology which means we don’t need to pass this responsibility onto our children and grandchildren,” she said. “This is a responsibility the government needs to take now.” 

Excerpts from  CHARLIE DUXBUR, Sweden approves nuclear waste storage site, http://www.politico.eu, Jan. 27, 2021

The Nuclear Middle East Kingdom

Russia’s state nuclear energy producer Rosatom is in talks with “several” countries in the Middle East and North Africa to explore development of nuclear power… Saudi Arabia is one of the countries that Rosatom is ready to work with when the kingdom puts out tenders, including to provide the fuel or build the plants…Rosatom was selected to help provide the enriched uranium for the UAE‘s first nuclear power plant, and is building the first nuclear power plants in both Turkey and Egypt.

Egypt’s El-Dabaa project is expected to start production in 2028…The Akkuyu project in Turkey will supply 35 TWh of electricity annually for 60 years, or 10% of Turkey’s consumption. Turkish President Tayyip Erdogan said the plant’s first unit would come online in May 2023.

Excerpt from Claudia Carpenter, Rosatom in talks with ‘several’ Middle East countries about starting nuclear power plants, S&P Global, Jan. 19, 2022

The Secret Nuclear Weapons Capabilities of States

South Korea, like the United States, has long relied on nuclear power as a major source of electric power. As a result, it has amassed large stores of spent nuclear fuel and, as in the United States, has experienced political pushback from populations around proposed central sites for the spent fuel.

South Korea also has a history of interest in nuclear weapons to deter North Korean attack. South Korea’s interest in spent fuel disposal and in a nuclear-weapon option account for the Korea Atomic Energy Research Institute’s dogged interest in the separation of plutonium from its spent fuel. Plutonium separated from spent fuel can be used to make nuclear weapons.

Two US Energy Department nuclear laboratories, Argonne National Laboratory  and the Idaho National Laboratory have encouraged South Korea’s interest in plutonium separation because of their own interests in the process. Now, a secret, leaked, joint South Korean-US report shows deliberate blindness to the economic and proliferation concerns associated with plutonium separation and lays the basis for policies that would put South Korea on the threshold of being a nuclear-weapon state. 

Japan is the only non-nuclear-armed state that separates plutonium. The Korea Atomic Energy Research Institute has domestic political support, however, for its demand that South Korea have the same right to separate plutonium as Japan. 

In 2001 Argonne and Idaho National Laboratories (INL) persuaded an energy-policy task force led by then-Vice President Dick Cheney that pyroprocessing is “proliferation resistant” because the extracted plutonium is impure and unsuitable for nuclear weapons. On that basis, Argonne and INL were allowed to launch a collaboration on pyroprocessing research and development with Korea. The Korea Atomic Energy Research Institute was enthusiastic. It had been blocked from pursuing reprocessing R&D since it had been discovered in 1974 that the institute was part of a nuclear-weapon program.

At the end of the Bush administration, however, nonproliferation experts from six US national laboratories, including Argonne and INL, concluded that pyroprocessing is not significantly more proliferation resistant than conventional reprocessing because it would be relatively easy to remove the weakly radioactive impurities from the plutonium separated by pyroprocessing. The finding that pyroprocessing is not proliferation resistant precipitated a struggle between the Obama administration and South Korea’s government during their negotiations for a new US-Republic of Korea Agreement of Cooperation on the Peaceful Uses of Nuclear Energy. The new agreement was required to replace the existing agreement, which was due to expire in 2014. But the negotiations stalemated when South Korea demanded the same right to reprocess the Reagan administration had granted Japan in 1987. 

At the beginning of September 2021, INL and the Korea Atomic Energy Research Institute submitted a 10-year report on their joint fuel cycle study. Instead of making a policy recommendation on the future of pyroprocessing, however, the Korea-US Joint Nuclear Fuel Cycle Research Steering Committee decided to continue the joint research. A senior US official with knowledge of the situation, told that “at least three or four more years will be necessary for the two governments to be in a position to draw any actual conclusions related to the technical and economic feasibility and nonproliferation acceptability of pyroprocessing on the Korean Peninsula.”

Excerpts from  Frank N. von Hippel, Jungmin Kang, Why joint US-South Korean research on plutonium separation raises nuclear proliferation danger, January 13, 2022

After We Vacuum the Earth, We Vacuum the Moon

Chinese nuclear scientists are studying samples carried back by China’s mission to the the moon in 2019. One of those under the microscope at the Beijing Research Institute of Uranium Geology is a 50-milligram rock—approximately the size of a lentil—believed to contain an isotope called helium-3. The isotope… is thought by scientists to have the potential to one day provide safer nuclear energy in a fusion reactor, as it isn’t radioactive. Rare on earth, helium-3 is thought to be abundant on the moon.

While researchers in the U.S. and other nations have studied the isotope, China’s renewed pursuit is part of a decadeslong plan to establish itself as a leading space power, mirroring the country’s rising economic and strategic influence on Earth. Since being shut out of working with the U.S. space agency by law a decade ago, the country has invested heavily in its own program. China is still playing catch-up technologically but is seeking to gain an edge through its moon missions…

China now building the Silk Road to space,” said James Head, a professor of geological sciences at Brown University who has lectured at universities across China in the past few years. 

The theory that the moon might have abundant reserves of helium-3 goes back several decades. In 1986, scientists at the University of Wisconsin estimated that lunar soil could contain a million tons of the isotope, also known as He3. A byproduct of the sun’s intense heat, it is carried through the solar system by solar winds…

In the future, there could be machines that vacuum up the top layer of the moon’s surface, which could then be used to address Earth’s energy needs or to power moon bases for future missions…

Excerpts from Natasha Khan, Moon Dust Fuels China’s Pursuit of Space Power, WSJ, Dec. 14, 2021

The New Alliance: SaudiChina

Saudi Arabia has imported sensitive missile technology from the Chinese military and is manufacturing its own ballistic missiles…The Saudi government has sought help from the missile branch of the Chinese military, the People’s Liberation Army Rocket Force…Ballistic missiles are powered by rockets that propel them in an arch-shaped trajectory upward before descending toward their target on the surface of the earth. They can be used to deploy both conventional and nuclear weapons.

The U.S. has long refused to sell ballistic missiles to Riyadh over proliferation concerns. The kingdom obtained Dong Feng-3 missiles in the 1980s from China and displayed them publicly in 2014. The Chinese military has also transferred multiple batches of finished Dong Feng-series missiles since around 2018 up to as recently as the spring of 2021….China also has helped Saudi Arabia construct a facility to fabricate uranium yellowcake, an early step along the path to a civil nuclear energy program or a nuclear arms capability, the Journal reported last year.

Excerpt from Jared Malsin et al, Saudis Begin Making Ballistic Missiles With Chinese Help, WSJ, Dec. 24, 2021

Nowhere to Go: Nuclear Waste Germany

Germany is to shut down its last nuclear reactors in 2022. However, the country still has no place to store the 27,000 cubic meters of highly radioactive material it has already produced, with the amount set to grow as power stations are decommissioned and dismantled. German authorities have set a deadline of 2031 to find a permanent storage location – but for now, the waste is being stored in temporary locations, much to the anger of local residents.

See Youtube video France24

Solar and Chemicals Are Not Enough: Nuclear Reactors in Space

Chinese scientists are currently building a powerful nuclear reactor for their moon and Mars expeditions. Beijing claims its reactor will be 100 times more powerful than the device US space agency NASA wants to set up on the moon’s surface by 2030. ..One Chinese expert claims that to satisfy the objectives of human space exploration, chemical fuel and solar panels will no longer suffice; the hunger for more energy sources is likely to grow dramatically if there are human settlements on the moon or Mars in the future.

In November 2021, NASA has issued a request for proposals for the development of a 10-kilowatt nuclear fission device capable of supporting a long-term human presence on the moon within a decade…The plan is to deploy a fission surface power system by 2026, with a flying system, lander, and reactor in place. The facility will be completely built and integrated on Earth, then thoroughly tested for safety and functionality…In addition, Russia has also indicated its intention to launch a massive spaceship powered by TEM, a megawatt-sized nuclear reactor, before 2030. The spaceship would be able to function in Earth’s lower orbit for more than a decade while conducting more missions to the moon or beyond owing to the nuclear energy.

Democritos, a parallel project led by the European Space Agency, will test a 200kW nuclear space reactor on the ground by 2023. Additionally, NATO secretary-general Jens Stoltenberg says that the alliance will not put weapons in space, but it will be required to safeguard its assets, which include 2,000 satellites in orbit. Space is becoming an “operational domain” for NATO as well…

Excerpts from  Ashish Dangwal, 100 Times More Powerful Than US Tech, China Claims Its Nuclear Reactor For Space Missions Will Outdo NASA Device, Eurasiantimes.com, Nov. 26, 2021

How to Lift Nuclear Submarines from Arctic Seabed

Projects aimed to improve nuclear safety are some of the few successful arenas for cooperation still going strong between the European Union and Russia…especially wiht regard to the two old Soviet submarines K-159 and K-27, both rusting on the Arctic seabed with highly radioactive spent nuclear fuel elements in their reactors…

“The sunken submarines K-27 and K-159 are the potential source of contamination of the Arctic, the riskiest ones,” Ambassador Jari Vilén of Filand explains. “Assessments made by the European Union together with Rosatom show that in 20-30 years’ time the metals will start corroding and there is a genuine risk of leakage. Therefore, lifting them in the coming decade is extremely important.”

“I’m very happy we are making progress and that a decision to make a technical review has been decided by the European Bank for Reconstruction and Development (EBRD) through the Northern Dimension Environmental Partnership. Hopefully, when these technical reviews are done, we will come to a phase where we can make decisions on a lifting operation,” Vilén says with enthusiasm.

Lifting a nuclear submarine from the seabed is nothing new. It is difficult, but doable. In 2002, the Dutch salvage company Mammoet managed to raise the ill-fated “Kursk” submarine from the Barents Sea. A special barge was built with wires attached underneath. The wreak of “Kursk” was safely brought in and placed in a dry-dock where the decommissioning took place.

K-159 is a November-class that sank in late August 2003 while being towed in bad weather from the closed naval base of Gremikha on the eastern shores of the Kola Peninsula towards the Nerpa shipyard north of Murmansk. The two onboard reactors contain about 800 kilograms of spent nuclear fuel, with an estimated 5,3 GBq of radionuclides. A modeling study by the Norwegian Institute of Marine Research said that a pulse discharge of the entire Cesium-137 inventory from the two reactors could increase concentrations in cod in the eastern part of the Barents Sea up to 100 times current levels for a two-year period after the discharge. While a Cs-137 increase of 100 times in cod sounds dramatic, the levels would still be below international guidelines. But that increase could still make it difficult to market the affected fish.

K-27, the other submarine in urgency to lift, was on purpose dumped in the Kara Sea in 1982….

Lifting the dumped reactors from the Kara Sea, a price tag of nearly €300 million has been mentioned. The sum includes K-27 and K-159, but also the other dumped reactors from K-11, K-19 and K-140, as well as spent nuclear fuel from an older reactor serving icebreaker “Lenin”. “The value of the fishing stocks in the area is ruffly €1.4 billion annually,” he says.

Excerpts from Thomas Nilsen, EU willing to co-fund lifting of sunken nuclear subs from Arctic seabed, The Barents Observer, Nov. 22, 2021

No Matter What they Say-Nobody Likes Nuclear Waste

The first stage of the process has been under way since November 2020 for the town of Suttsu and the village of Kamoenai assessing two municipalities in Hokkaido for their suitability to host a final disposal facility for high-level radioactive waste from nuclear power plants.  Under the government’s plan, the first-stage surveys take two years and will be followed by the second phase… which will include geophysical exploration, geological reconnaissance surveys and drilling surveys. Already stories about divisions and conflict over the surveys are emerging from the local communities.

The mayoral election of Suttsu in October 2021, for example, turned into a bitter and divisive political battle over the issue between the incumbent who decided to apply for the first-phase survey and a challenger who ran on opposition to the project. Some of the neighboring municipalities have enacted an ordinance to ban the entry of radioactive materials. Both the Hokkaido prefectural government and most of the local administrations around the two municipalities have declined to accept state subsidies related to the surveys. These actions have been driven by the fear that accepting the surveys will set in motion an unstoppable process leading to a permanent repository for nuclear waste.

The NUMO (Nuclear Waste Management Organization of Japan) and the METI (Ministry of Economy, Trade and Industry)  have jointly held more than 100 meetings to explain the plan to local communities across the nation. Even though they have continued calling for localities to volunteer, no local governments except for the two in Hokkaido have responded.

Excerpts from Entire nation should share in disposal of spent nuke fuel, Asahi Shimbun, Nov. 22, 2021

Nobody Can Escape the Nuclear Rat Race

When America and the Soviet Union raced each other to build ever-larger nuclear arsenals during the cold war, China ambled disdainfully. It did not detonate its first nuclear weapon until 1964, kept only a few hundred warheads compared with the tens of thousands piled up by the superpowers, and to this day maintains it will never be the first to use nukes in a war. Now China is sprinting to catch up.

In its 2021 annual assessment, the Pentagon says China’s stockpile of nuclear warheads, which last year it reckoned to be in the “low-200s”, could triple to about 700 by 2027 and will probably quintuple to about 1,000 or more by 2030… Even so, it would still be smaller than America’s or Russia’s. Those countries each have about 4,000 warheads. The Pentagon believes China is building fast-breeder reactors to make the necessary plutonium; may already have created a full “triad”, ie, the ability to launch nuclear weapons from the land, sea and air; and is expanding its early-warning systems, with help from Russia.

All told, China is shifting to a “launch on warning” doctrine. Rather than rely on a minimal nuclear deterrent to retaliate after an initial nuclear attack, China would henceforth fire at the first sign of an incoming nuclear strike, even before the enemy warheads have landed. This posture is akin to that of America and Russia… Why is China building up its nukes at a time when America and Russia have extended the New START treaty, which limits their arsenals…? One reason is China’s worry that its arsenal is too small to survive an American first strike…

Excerpt from Military Strategy: An Unpacific Contest, Economist, Nov. 6, 2021

A Shameless Love Affair with Nuclear Energy

Nuclear power once seemed like the world’s best hope for a carbon-neutral future. After decades of cost-overruns, public protests and disasters elsewhere, China has emerged as the world’s last great believer, with plans to generate an eye-popping amount of nuclear energy, quickly and at relatively low cost. 

The world’s biggest emitter, China’s planning at least 150 new nuclear reactors in the next 15 years, more than the rest of the world has built in the past 35. The effort could cost as much as $440 billion; as early as the middle of this decade, the country will surpass the U.S. as the world’s largest generator of nuclear power… It could also support China’s goal to export its technology to the developing world and beyond, buoyed by an energy crunch that’s highlighted the fragility of other kinds of power sources. Slower winds and low rainfall have led to lower-than-expected supply from Europe’s dams and wind farms, worsening the crisis, and expensive coal and natural gas have led to power curbs at factories in China and India. Yet nuclear power plants have remained stalwart…

And yet, even if China can develop the world’s most cost-effective, safe, flexible nuclear reactors, the U.S., India and Europe are unlikely to welcome their biggest global adversary into their power supplies. CGN has been on a U.S. government blacklist since 2019 for allegedly stealing military technology. In July, the U.K. began looking for ways to exclude CGN from its Sizewell reactor development. Iain Duncan Smith, Tory Member of Parliament, put it bluntly: “Nuclear is critical to our electric power, and we just can’t trust the Chinese.”

China’s ultimate plan is to replace nearly all of its 2,990 coal-fired generators with clean energy by 2060. To make that a reality, wind and solar will become dominant in the nation’s energy mix. Nuclear power, which is more expensive but also more reliable, will be a close third…Other countries would have to stretch to afford even a fraction of China’s investments. But about 70% of the cost of Chinese reactors are covered by loans from state-backed banks, at far lower rates than other nations can secure…

The most eager customer of China is Pakistan which, like China, shares a sometimes violently contested border with India. China’s built five nuclear reactors there since 1993, including one that came online this year and another expected to be completed in 2022. Other countries have been more hesitant. Romania last year canceled a deal for two reactors with CGN and opted to work with the U.S. instead.

Still, versions of China’s first homegrown reactor design, known as Hualong One, continue to operate safely in Karachi and Fujian province. And in September, China announced a successful test of a new, modular reactor that could be enticing overseas. China Huaneng Group Co. said it had achieved sustained nuclear reactions in a domestically designed, 200-megawatt reactor that heats helium, not water. By making the cooling process independent of external power sources, it should prevent the potential for the kind of massive meltdown that required the evacuation of more than 150,000 people in Fukushima.  China’s modular reactors, if successful, wouldn’t require new power plant construction. In theory, they could replace coal-fired generators in existing thermal power plants…

Excerpts from Dan Murtaugh and Krystal Chia, China’s Climate Goals Hinge on a $440 Billion Nuclear Buildout, Bloomberg, Nov. 2, 2021

The Transparency of Oceans and Nuclear Submarines

There are warnings that different technologies will render the ocean “transparent”, so even the stealthiest submarines could be spotted by an enemy force… China has already developed submarine-spotting lasers. CSIRO is working with a Chinese marine science institute that has separately developed satellite technology that can find submarines at depths of up to 500 meters.   But others say submarines are just a base platform for a range of new and evolving technologies. The Australian Strategic Policy Institute’s outgoing head, Peter Jennings, said the nuclear-propelled submarines that Australia will get as part of the Aukus alliance have more space and energy for being “motherships” than conventional submarines.

“They’re significantly bigger and the reactors give you the energy not just for the propulsion but for everything else inside the boat,” he said. “You then have a huge amount of space for weapons, for vertical launch tubes for cruise missiles and for autonomous systems that can be stored on board. Not only is it a fighting unit but you might have half a dozen remote systems fanned out at quite a distance. They’ll be operating a long distance away from potential targets, potentially hundreds of kilometers. According to the taskforce set up under Aukus, the new submarines will have “superior characteristics of stealth, speed, manoeuvrability, survivability, and almost limitless endurance”, with better weapons, the ability to deploy drones and “a lower risk of detection”.

Excerpts from Tory Shepherd, Will all submarines, even nuclear ones, be obsolete and ‘visible’ by 2040?, Oct. 4, 2021

A New Page in History of Nuclear Energy?

A new page in the history of nuclear energy could be written this September 2021, in the middle of the Gobi Desert, in the north of China. At the end of August 2021, Beijing announced that it had completed the construction of its first thorium-fueled molten-salt nuclear reactor, with plans to begin the first tests of this alternative technology to current nuclear reactors within the next two weeks…

The Chinese reactor could be the first molten-salt reactor operating in the world since 1969, when the US abandoned its Oak Ridge National Laboratory facility in Tennessee. “Almost all current reactors use uranium as fuel and water, instead of molten salt and thorium,” which will be used in China’s new plant. These two “new” ingredients were not chosen by accident by Beijing: molten-salt reactors are among the most promising technologies for power plants

With molten-salt technology, “it is the salt itself that becomes the fuel”….The crystals are mixed with nuclear material – either uranium or thorium – heated to over 500°C to become liquid, and are then be able to transport the heat and energy produced. Theoretically, this process would make the installations safer. “Some accident risks are supposedly eliminated because liquid burning avoids situations where the nuclear reaction can get out of control and damage the reactor structures.”

There’s another advantage for China: this type of reactor does not need to be built near watercourses, since the molten salts themselves “serve as a coolant, unlike conventional uranium power plants that need huge amounts of water to cool their reactors”.  As a result, the reactors can be installed in isolated and arid regions… like the Gobi Desert.

Thorium belongs to a famous family of rare-earth metals that are much more abundant in China than elsewhere; this is the icing on the cake for Chinese authorities, who could increase its energy independence from major uranium exporting countries, such as Canada and Australia, two countries whose diplomatic relations with China have collapsed in recent years.

According to supporters of thorium, it would also a “greener” solution. Unlike the uranium currently used in nuclear power plants, burning thorium does not create plutonium, a highly toxic chemical element…

Among the three main candidates for nuclear reaction – uranium 235, uranium 238 and thorium – the first is “the only isotope naturally fissile”, Sylvain David explained. The other two must be bombarded with neutrons for the material to become fissile (able to undergo nuclear fission) and be used by a reactor: a possible but more complex process. Once that is done on thorium, it produces uranium 233, the fissile material needed for nuclear power generation….”This is an isotope that does not exist in nature and that can be used to build an atomic bomb,” pointed out Francesco D’Auria.

Excerpts from Why China is developing a game-changing thorium-fueled nuclear reactor, France24, Sept. 12, 2021

Mobile Nuclear Energy for the Arctic: Dream to Reality

Four small modular reactors (SMRs) will power the huge Baimskaya copper and gold mining development in the Russian Arctic, according to an agreement signed by Rosatom subsidiary Atomflot…Baimskaya is one of the world’s largest mineral deposits and is very rich in copper and gold. However, development of the remote site in Russia’s eastern Chukotka region demands a complex multi-partner plan involving the Russian government, the regional government and developers…

Nuclear power already plays a role in Baimskaya’s development as early facilities there are powered by the Akademik Lomonosov floating nuclear power plant at Pevek. KAZ Minerals said the plant will supply up to 20 MWe of nuclear power to the mine during its construction phase….Based on the agreement, two additional floating power plants will provided, each with two RITM-200M reactors. The first two should be in operation at Cape Nagloynyn by the beginning of 2027, the third in 2028 and the final one at the start of 2031….

Excerpts from SMRs to power Arctic development, World Nuclear News, Sept. 3, 2021

The 17 000 Nuclear Objects Dumped in the Kara Sea


“Having the exact coordinates for the dumped container with the nuclear reactors from K-19 submarine is undoubtedly good news,” says nuclear safety expert Andrey Zolotkov. Zolotkov hopes for risk assessments to be carried out soon with the aim to see how the nuclear reactors could be lifted out of the maritime environment and brought to a yard for safe decommissioning…More than 50 years have passed since the dumping.

In the so-called “White Book” on dumped nuclear objects, originally published by President Boris Yeltsin’s environmental advisor Alexei Jablokov, the dumping of the submarine’s two reactors is listed for the Abrosimova Bay on the east coast of the Kara Sea, but exact location hasn’t been confirmed.

It was in August 2021 that the the crew on “Akademik M. Keldysh” with the help of sonars and submersibles found the container. Both marine researchers, oceanology experts from Russia’s Academy of Science and representatives of the Ministry of Emergency Situations are working together in the expedition team.

K-19 is one of the most infamous nuclear-powered submarines sailing for the Soviet navy’s Northern Fleet. In July 1961 the reactor lost coolant after a leak in a pipe regulating the pressure to the primary cooling circuit. The reactor water started boiling causing overheating and fire. Crew members managed to extinguish the fire but had big problems fixing the leak in an effort to save the submarine from exploding. Many of them were exposed to high doses of radioactivity before being evacuated to a nearby diesel submarine sailing in the same area of the North Atlantic. Eight of the crew members who had worked on the leak died of radiation poisoning within a matter of days.

The submarine was towed to the Skhval shipyard (No. 10) in Polyarny. Later, the reactor compartment was cut out and a new installed. The two damaged reactors, still with spent nuclear fuel, were taken north to the Kara Sea and dumped. Keeping the heavily contaminated reactors at the shipyard was at the time not considered an option.

In the spring of 2021, Russia’s Foreign Ministry invited international experts from the other Arctic nations to a conference on how to recover sunken radioactive and hazardous objects dumped by the Soviet Union on the seafloor east of Novaya Zemlya. Moscow chairs the Arctic Council for the 2021-2023 period. 

The two reactors from the K-19 submarine are not the only objects posing a risk to marine environment. In fact, no other places in the world’s oceans have more radioactive and nuclear waste than the Kara Sea. Reactors from K-11 and K-140, plus the entire submarine K-27 and spent uranium fuel from one of the old reactors of the “Lenin” icebreaker are also dumped in the same sea. While mentality in Soviet times was «out of sight, out of mind», the Kara Sea seemed logical. Ice-covered most of the year, and no commercial activities. That is changing now with rapidly retreating sea ice, drilling for oil-, and gas, and increased shipping…Additional to the reactors, about 17,000 objects were dumped in the Kara Sea in the period from the late 1960s to the early 1990s.

Excerpts from Thomas Nilsen, Expedition finds reactors 56 years after dumping, The Barents Observer, Sept. 2, 2021

Conquering Virgin Digital Lands a Cable at a Time

Facebook  said it would back two new underwater cable projects—one in Africa and another in Asia in collaboration with Alphabet — that aim to give the Silicon Valley giants greater control of the global internet infrastructure that their businesses rely on.

The 2Africa project, a partnership between Facebook and several international telecom operators, said that it would add four new branches: the Seychelles, Comoro Islands, Angola and Nigeria. The project’s overall plan calls for 35 landings in 26 countries, with the goal of building an underwater ring of fiber-optic cables around Africa. It aims to begin operating in 2023… Separately, Facebook that it would participate in a 7,500-mile-long underwater cable system in Asia, called Apricot, that would connect Japan, Taiwan, Guam, the Philippines, Indonesia and Singapore. Google said that it would also join the initiative, which is scheduled to go live in 2024.

Driving the investments are costs and control. More than 400 commercially operated underwater cables, also known as submarine cables, carry almost all international voice and data traffic, making them critical for the economies and national security of most countries…Telecom companies own and operate many of these cables, charging fees to businesses that use them to ferry data. Facebook and Google used so much bandwidth that they decided about a decade ago that it would make sense to cut out the middleman and own some infrastructure directly.

Excerpts from Stu Woo, Facebook Backs Underwater Cable Projects to Boost Internet Connectivity, WSJ, Aug. 17, 2021

Imagining Failure: Nuclear Waste on the Beach, California

But for all the good vibes and stellar sunsets of  San Onofre state beach in California, beneath the surface hides a potential threat: 3.6m lb of nuclear waste from a group of nuclear reactors shut down nearly a decade ago. Decades of political gridlock have left it indefinitely stranded, susceptible to threats including corrosion, earthquakes and sea level rise. The San Onofre reactors are among dozens across the United States phasing out, but experts say they best represent the uncertain future of nuclear energy.

“It’s a combination of failures, really,” said Gregory Jaczko, who chaired the US Nuclear Regulatory Commission (NRC), the top federal enforcer, between 2009 and 2012, of the situation at San Onofre. That waste is the byproduct of the San Onofre Nuclear Generating Station (Songs), three nuclear reactors primarily owned by the utility Southern California Edison (SCE) that has shut down….

Since there is not central repository for the final disposition of nuclear wasted in the United States,  the California Coastal Commission approved in 2015 the construction of an installation at San Onofre to store it until 2035. In August 2020, workers concluded the multi-year burial process, loading the last of 73 canisters of waste into a concrete enclosure. San Onofre is not the only place where waste is left stranded. As more nuclear sites shut down, communities across the country are stuck with the waste left behind. Spent fuel is stored at 76 reactor sites in 34 states….

At San Onofre, the waste is buried about 100ft from the shoreline, along the I-5 highway, one of the nation’s busiest thoroughfares, and not far from a pair of faults that experts say could generate a 7.4 magnitude earthquake. Another potential problem is corrosion. In its 2015 approval, the Coastal Commission noted the site could have a serious impact on the environment in case of coastal flooding and erosion hazards beyond its design capacity, 

Concerns have also been raised about government oversight of the site. Just after San Onofre closed, SCE began seeking exemptions from the NRC’s operating rules for nuclear plants. The utility asked and received permission to loosen rules on-site, including those dealing with record-keeping, radiological emergency plans for reactors, emergency planning zones and on-site staffing.

San Onofre isn’t the only closed reactor to receive exemptions to its operating licence. The NRC’s regulations historically focused on operating reactors and assumed that, when a reactor shut down, the waste would be removed quickly.

It’s true that the risk of accidents decreases when a plant isn’t operating, said Dave Lochbaum of the Union of Concerned Scientists. But adapting regulations through exemptions greatly reduces public transparency, he argued. “Exemptions are wink-wink, nudge-nudge deals with the NRC,” he said. “In general, it’s not really a great practice,” former NRC chair Jaczko said about the exemptions. “If the NRC is regulating by exemption, it means that there’s something wrong with the rules … either the NRC believes the rules are not effective, and they’re not really useful, or the NRC is not holding the line where the NRC should be holding line,” he said…

It’s worth considering how things fail, though, argued Rod Ewing, nuclear security professor at Stanford University’s center for international security and cooperation, and author of a 2021 report about spent nuclear waste that focuses on San Onofre. “The problem with our safety analysis approach is we spend a lot of time proving things are safe. We don’t spend much time imagining how systems will fail,” he said. “And I think the latter is what’s most important.”

Excerpts from Kate Mishkin, ‘A combination of failures:’ why 3.6m pounds of nuclear waste is buried on a popular California beach, Guardian, Aug. 

The Giant Nuclear Graveyard in the Arctic

The Nuclear Waste in Saida Bay, Russia, is financed by Germany as part of the Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. Italy has paid for the floating dock that brings the nuclear reactor-compartments from the waters to the site. Reactor compartments from submarines and icebreakers will have to be stored for onshore for many decades before the radioactivity have come down to levels acceptable for cutting the reactors’ metal up and pack it for final geological disposal.

These giant containers contain parts of nuclear reactors in order to avoid leakages to the Arctic environment. Image Thomas Nilsen

The process of scrapping the 120 nuclear-powered submarines that sailed out from bases on the Kola Peninsula during the Cold War started in the early 1990 and has technically and economically been supported by a wide range of countries, including Norway and the European Union. Ballistic missile submarines scrapped at yards in Severodvinsk in the 1990s were paid by the United States Nunn-Lugar Cooperative Threat Reduction (CTR) Program.

Excerpts from Kola Peninsula to get radioactive waste from southern Russia, The Barents Observer, May 2021

Unthinkable: What Happens When Water Floods a Nuclear Plant

As the 9.0 magnitude earthquake hit the Japanese shore, the reactors of the Fukushima Daiichi nuclear power plant shut down automatically to control the nuclear fission. The electrical lines collapsed, but the plant responded as designed, and the earthquake itself did not cause any other problems. The tsunami it triggered, however, did.

“The reactors were robust, seismically speaking,” said Gustavo Caruso, Director of the IAEA’s Office of Safety and Security Coordination. “But they were vulnerable to the high tsunami waves.” When the flooding hit, the ‘tsunami walls’ made to protect the plant from such events were too low to prevent the sea water from entering the plant. The water’s strength destroyed some of the structures, and entered the diesel generator room — which was built lower and at a closer distance to sea level than other plants in Japan — affecting Units 1, 2 and 3. “The diesel generators are essential for maintaining the plant’s electrical supplies in emergency situations,” said Pal Vincze, Head of the Nuclear Power Engineering Section at the IAEA. “They were drowned.”

If the diesel generator is affected, special batteries can be used to generate electricity, but these have a limited capacity, and, in the case of Fukushima Daiichi, some were also flooded. “In Japan, they put up a heroic fight to get the electrical systems up and running again, but it wasn’t enough,” Vincze added.

Without functioning instrumentation and control systems, or electrical power or cooling capabilities, the overheated fuel melted, sank to the bottom of the reactors, and breached the reactor vessels, leading to three meltdowns. In addition, data logs and vital systems operated by safety parameters were also flooded, which meant that there was no way for the operator to monitor what was going on inside the reactors.

As stated in the IAEA report on the Fukushima Daiichi accident, “a major factor that contributed to the accident was the widespread assumption in Japan that its nuclear power plants were so safe that an accident of this magnitude was simply unthinkable. But…When planning, designing and constructing the plant, experts did not properly take into consideration past tsunami experiences… “It must be noted that the combination of an earthquake of this magnitude and a tsunami is extremely rare, but unfortunately this is what happened.”…

Excerpt from Laura Gil Fukushima Daiichi: The Accident, IAEA Bulletin, Mar. 2021

The Most Radioactive Sea on Earth and How to Save it

No other places in the world’s oceans have more radioactive and nuclear waste than the Kara Sea. The reactors from the submarines K-11, K-19, and K-140, plus the entire submarine K-27 and spent uranium fuel from one of the old reactors of the Lenin-icebreaker have to be lifted from the seafloor and secured. While mentality in Soviet times was «out of sight, out of mind», the Kara Sea seemed logical. Ice-covered most of the year, and no commercial activities. That is changing now with rapidly retreating sea ice, drilling for oil-, and gas and increased shipping.

The submarine reactors dumped in shallow bays east of the closed-off military archipelago of Novaya Zemlya… had experienced accidents and posed a radiation threat at the navy yards where people were working.  Dumping the reactors in shallow waters, someplace at only 50 meters, meant they could be lifted one day when technology allowed.

A worst-case scenario would be a failed lifting attempt, causing criticality in the uranium fuel, again triggering an explosion with following radiation contamination of Arctic waters.  

A Russian-Norwegian expedition to the K-27 submarine in Stepovogo bay in 2012 took samples for studying possible radioactive leakages. Now, the Bellona group, an environmental NGOs, calls  an expedition in 2021  to thoroughly study the strength of the hull and look for technical options on how to lift the heavy submarine and reactor compartments. A previous study report made for Rosatom and the European Commission roughly estimated the costs of lifting all six objects, bringing them safely to a yard for decommissioning, and securing the reactors for long-term storage.

The estimated price-tag for all six is €278 million, of which the K-159 in the Barents Sea is the most expensive with a cost of €57.5 million. Unlike the submarines and reactors that are dumped in relatively shallow waters in the Kara Sea, the K-159 is at about 200 meters depth, and thus will be more difficult to lift.

Excerpt from Tackling dumped nuclear waste gets priority in Russia’s Arctic Council leadership in 2021, BarentsObserver, May 23, 2021

Nuclear Nightmare Coming Back to Haunt Us: Nuclear Waste Dumped at Sea

A stock control inspection has revealed that about 2,800 barrels of radioactive waste partly originating from the healthcare and defense industries may have been handled carelessly, Swedish Television reported. The barrels are reportedly located on the floor of the Baltic Sea 100 kilometres north of Stockholm in Forsmark, where one of Sweden’s seven nuclear plants is situated. The barrels, dating from the 1970s and 1980s, are said to be of no danger at the moment but may pose a risk in the future if not taken care of and repositioned properly.

The government will now have to make decisions on the financial costs of inspecting and restoring the waste and how it will be handled in the future…

 Pekka Vanttinen, 2,800 radioactive waste barrels found near Baltic Sea, stored carelessly, EURACTIV.com, May 18, 2021

A War Like No Other: the Covert Invasion of Iran

Within hours of Iran proudly announcing the launch of its latest centrifuges, on April 10, 2021, a power blackout damaged some of the precious machines at its site in Natanz…One thing reports seem to agree on is that an “incident” affected the power distribution network at Natanz.

Natanz is critical to Iran’s nuclear program. The heavily secured site is protected by anti-aircraft guns and has two large centrifuge halls buried more than 50 feet underground to protect them from airstrikes. Despite the conflicting reports, it appears the facility’s main power distribution equipment — Natanz has its own grid — was taken out with explosives. Backup emergency electricity also was taken down, and power cut out across the multibuilding compound, Behrouz Kamalvandi, spokesperson for Iran’s Atomic Energy Organization, told Iran’s state-run TV.

A blackout may not sound that serious, but it can be at an enrichment plant. Centrifuges are slender machines linked up in what are called cascades which enrich uranium gas by spinning it at incredibly high speeds using rotors. The stress on the advanced materials involved is intense and the process is technically immensely challenging. A small problem can send a centrifuge spinning out of control, with parts smashing into each other and damaging a whole cascade.

The question is: what caused the blackout – a cyber-attack or a physical act of sabotage, like a bomb?

Israel has a long history of sabotaging nuclear facilities in Iraq, Syria, and Iran, both through cyber means — including the sophisticated Stuxnet attack against Iran, which Israel conducted with U.S. and Dutch intelligence agencies — and with conventional bombs and explosives. Israel is also reportedly behind a number of assassinations of Iranian nuclear scientists and officials over the last decade. The Stuxnet attack was particularly significant because it launched the era of cyberwarfare, as it was the first cyberattack known to use a digital weapon that could leap into the physical realm to cause actual destruction of equipment. The highly skilled covert operation was conducted in lieu of a kinetic attack to avoid attribution and an escalation in hostilities with Iran; it remained undetected for three years..

Excerpts from Gordon Corera, Iran nuclear attack: Mystery surrounds nuclear sabotage at Natanz, BBC, Apr. 12, 2021, Kim Zetter, Israel may have Destroyed Iran Centrifuges Simply by Cutting Power, Intercept, Apr. 13, 2021

Facing the Unprecedented: Nuclear Waste Burial in China

China is building a massive underground laboratory to research disposal technologies for high-level radioactive waste, the most dangerous byproduct of nuclear technology and applications. This is meant to pave the way for a repository that can handle the disposal of at least a century’s worth of such materials for tens of thousands of years, the lab’s chief designer told China Daily in an exclusive interview.

The lab will be situated in granite up to 560 meters below ground in the Beishan region of Gansu province, said Wang Ju, vice-president of the Beijing Research Institute of Uranium Geology. The underground lab was listed as one of China’s major scientific construction projects in the 13th Five-Year Plan (2016-20).

Its surface facilities will cover 247 hectares, with 2.39 hectares of gross floor space. The underground complex will have a total structural volume of 514,200 square cubic meters, along with 13.4 kilometers of tunnels, he added. The lab is estimated to cost over 2.72 billion yuan ($422 million) and take seven years to build. It is designed to operate for 50 years, and if its research proves successful and the site is suitable, a long-term underground repository for high-level waste will be built near the lab by 2050

According to the 14th Five-Year Plan (2021-25), China seeks to cut carbon emissions by optimizing its energy consumption structure and raising its proportion of nonfossil energy. This includes building a new generation of coastal nuclear plants,… small-scale reactors and offshore floating reactors.. As of 2020, China had 49 nuclear reactors in operation, making it the world’s third-largest nuclear energy producer, behind the United States and France. There are 16 nuclear reactors in construction in China, the most in the world, according to the World Nuclear Association.

Excerpts from Zhang Zhihao, Construction of radioactive waste disposal lab underway, China Daily, Apr. 8, 2021

 
 
 

The Fukushima Nuclear Meltdown: Ten Years — and Counting

A resolution to the crisis at the Fukushima Daiichi nuclear power plant remains a distant goal a decade after three of its reactors melted down. The most challenging part of the cleanup—removing molten nuclear fuel from each reactor—has yet to begin because of high radiation inside the reactor buildings, putting the targeted decommissioning of the plant by 2051 into doubt.

More than 80% of the Japanese public doesn’t feel significant progress is being made and is concerned about further accidents because of recent events. On Feb. 13, 2021 a large earthquake centered near Fukushima, an aftershock of the one 10 years ago, caused water to slosh out of a tank containing spent fuel rods, which must be kept submerged to avoid overheating. A week later, a fish caught off the coast of Fukushima was found to contain 10 times the allowed level of radioactive cesium…This incident shows how risks from the plant continue to weigh on those who live and work nearby. 

“We are still struggling with harmful rumors from the nuclear plant accident,” said Tadaaki Sawada, a spokesman for the federation of Fukushima fishery cooperatives. “How many more years will it continue?”…By several measures, the worst nuclear disaster since the Chernobyl accident in 1986 has been contained. Only around 2% of Fukushima prefecture, or state, is still a no-go area, down from 12% immediately after the disaster. An extensive decontamination process removed topsoil from areas around the plant. Still, thousands of people remain forced out of towns closest to the plant.

In 2020, plant operator Tokyo Electric Power Co., known as Tepco, and the government were close to a decision to start releasing into the sea over a million cubic meters of water from the plant, but plans were suspended amid opposition from local fishermen and concerns raised by neighboring countries. Contaminated rain and groundwater is stored in large tanks that dominate one side of the plant site. Once treated to remove most radioactive elements, the water still contains tritium, a form of hydrogen that emits a weak form of radiation. Tritium is regularly released into the sea and air from nuclear plants around the world after dilution.

Inspectors from the International Atomic Energy Agency visited the Fukushima plant in 2020 and said disposal of the treated water into the sea would be in line with international practice. “A decision on the disposition path should be taken urgently” to keep the overall decommissioning on track, the IAEA said.

The most challenging part of the cleanup—removing molten nuclear fuel from each reactor—has yet to begin…Tepco has yet to get a clear picture of the location of molten fuel in the reactors because the levels of radiation are damaging even to robots…Gov. Uchibori said that gaining an accurate grasp of the molten-fuel situation was critical to making headway. “If you look at the entire process, right now we are still around the starting point of decommissioning,” he said.

Excerpts from Alastair Gale Fukushima Nuclear Cleanup Is Just Beginning a Decade After Disaster, 

Who Will Rule the Arctic?


Rosatom joined the Arctic Economic Council*in February 2021. Rosatom is a Russian state-owned corporation supplying about 20% of the country’s electricity. The corporation mainly holds assets in nuclear power and machine engineering and construction. In 2018, the Russian government appointed Rosatom to manage the Northern Sea Route (NSR). The NSR grants direct access to the Arctic, a region of increasing importance for Russia due to its abundance of fossil fuels. Moreover, due to climate changes, the extraction of natural resources, oil and gas are easier than ever before.

Since Russia’s handover of NSR’s management, Rosatom’s emphasis on the use of nuclear power for shipping, infrastructure development and fossil fuel extraction is likely to become more prevalent in the Arctic region. Rosatom already operate the world’s first floating nuclear power plant in the Siberian port of Pevek and is the only company in the world operating a fleet of civilian nuclear-powered icebreakers…The company has numerous plans up its sleeves, among them to expand the fleet of heavy-duty nuclear icebreakers to a minimum of nine by 2035.

*Other members of the Arctic Economic Council.

Excerpt from Polina Leganger Bronder, Rosatom joins Arctic Economic Council, BarentsObserver, Feb. 8, 2021

A Lethal Combination: Pentagon and NASA

U.S. government and aerospace-industry officials are removing decades-old barriers between civilian and military space projects, in response to escalating foreign threats beyond the atmosphere. The Pentagon and the National Aeronautics and Space Administration (NASA) are joining forces to tackle efforts such as exploring the region around the moon and extending the life of satellites. Many details are still developing or remain classified.  Driving the changes are actions by Moscow and Beijing to challenge American space interests with antisatellite weapons, jamming capabilities and other potentially hostile technology. Eventually, according to government and industry officials briefed on the matter, civil-military cooperation is expected to extend to defending planned NASA bases on the lunar surface, as well as protecting U.S. commercial operations envisioned to extract water or minerals there…

Large and small contractors are maneuvering to take advantage of opportunities to merge military and nonmilitary technologies. They include established military suppliers that already have a foot in both camps, such as Northrop Grumman,  the Dynetics unit of Leidos Holdings, and Elon Musk’s Space Exploration Technologies Corp. Smaller companies such as Maxar Technologies Holdings,  closely held robotic-lander maker Astrobotic Technology, and small-satellite producer Blue Canyon Technologies, recently acquired by Raytheon Technologies, also seek to diversify in the same way…

The U.S. astronaut corps always has included many military officers, some previous NASA scientists quietly shared data with military counterparts and NASA’s now-retired Space Shuttle fleet was supposed to launch Pentagon satellites. But today, veteran industry and government experts describe the cooperation as much more extensive, covering burgeoning capabilities such as repairing and repurposing satellites in orbit, or moving them around with nuclear propulsion. Intelligence agencies are more involved than ever in leveraging civilian technology, including artificial intelligence, robotic capabilities and production know-how.

Excerpt from Pentagon, NASA Knock Down Barriers Impeding Joint Space Projects, WSJ, Feb. 1, 2021

Time for Burial: Last Repository for Nuclear Waste, Germany

Germany published on September 28, 2020 a list of potential storage sites for radioactive waste as part of its plans to exit nuclear power, dropping the Gorleben salt dome in Lower Saxony from the running.  The 444-page list of sites, to be assessed by 2031 for use from 2050 to hold waste currently in interim storage at nuclear plants, was published by Germany’s Federal Agency for Final Storage (BGE).  Some 90 locations, including parts of Lower Saxony, Bavaria, Baden Wuerttemberg and eastern German states, have been found to be potentially suitable after BGE undertook preliminary mapping that revealed 54% of German territory could be satisfactory.

Taking three years, the process identified salt, clay and crystalline, above all granite, formations, stressing the criteria were science-based, without political influence.  No location was predetermined, said Stefan Studt, head of BGE’s managing board, at a news conference. “Any region in today’s list would take a long, long time to become the actual final space,” he said. Germany had been on a course to exit nuclear power since 2000 but hastened the plan, now set for 2022, following the Fukushima nuclear disaster in 2011.

Gorleben, which became the focus of anti-nuclear protests in the 1970s, failed on three points related to retention, hydrochemical and overall geological qualities, so that it could not be ruled out that aquifers may come into contact with salt, said Steffen Kanitz, a BGE board member.

Germany publishes nuclear storage list, Gorleben dropped

Lots of Money Forever for Waste that Lasts for Forever: Nuclear Waste in Japan

Since August 2020, two local governments on the western shore of Hokkaido in Japan have said they will apply to the central government for a survey that could eventually lead to their municipalities hosting a permanent underground repository for high-level radioactive waste. The fact that these two localities made their announcements about a month apart and are situated not far from each other was enough to attract more than the usual media attention, which revealed not only the straitened financial situations of the two areas, but also the muddled official policy regarding waste produced by the country’s nuclear power plants.

The respective populations of the two municipalities reacted differently. The town of Suttsu made its announcement in August 2020, or, at least, its 71-year-old mayor did, apparently without first gaining the understanding of his constituents, who, according to various media, are opposed to the plan…. Meanwhile, the mayor of the village of Kamoenai says he also wants to apply for the study after the local chamber of commerce urged the village assembly to do so in early September 2020. TBS asked residents about the matter and they seemed genuinely in favor of the study because of the village’s fiscal situation. Traditionally, the area gets by on fishing — namely, herring and salmon — which has been in decline for years. A local government whose application for the survey is approved will receive up to ¥2 billion in subsidies from the central government… Kamoenai, already receiving subsidies for nuclear-related matters. The village is 10 kilometers from the Tomari nuclear power plant, where some residents of Kamoenai work. In exchange for allowing the construction of the plant, the village now receives about ¥80 million a year, a sum that accounts for 15 percent of its budget. According to TBS, Kamoenai increasingly relies on that money as time goes by, since its population has declined by more than half over the past 40 years.

Since Japan’s Nuclear Waste Management Organization started soliciting local governments for possible waste storage sites in 2002, a few localities have expressed interest, but only one — the town of Toyo in Kochi Prefecture — has actually applied, and then the residents elected a new mayor who canceled the application. The residents’ concern was understandable: The waste in question can remain radioactive for up to 100,000 years.

The selection process also takes a long time. The first phase survey, which uses existing data to study geological attributes of the given area, requires about two years. If all parties agree to continue, the second phase survey, in which geological samples are taken, takes up to four years. The final survey phase, in which a makeshift underground facility is built, takes around 14 years. And that’s all before construction of the actual repository begins.

Neither Suttsu nor Kamoenai may make it past the first stage. Yugo Ono, an honorary geology professor at Hokkaido University, told the magazine Aera that Suttsu is located relatively close to a convergence of faults that caused a major earthquake in 2018. And Kamoenai is already considered inappropriate for a repository on a map drawn up by the trade ministry in 2017.

If the Nuclear Waste Management Organization’s process for selecting a site sounds arbitrary, it could reflect the government’s general attitude toward future plans for nuclear power, which is still considered national policy, despite the fact that only three reactors nationwide are online.

Japan’s spent fuel is being stored in cooling pools at 17 nuclear plants comprising a storage capacity of 21,400 tons. As of March 2020, 75 percent of that capacity was being used, so there is still some time to find a final resting place for the waste. Some of this spent fuel was supposed to be recycled at the Rokkasho Reprocessing Plant in Aomori Prefecture, but, due to numerous setbacks, it doesn’t look as if it’s ever going to open, so the fuel will just become hazardous garbage.

According to some, the individual private nuclear plants should be required to manage their own waste themselves. If they don’t have the capacity, then they should create more. It’s wrong to bury the waste 300 meters underground because many things can happen over the course of future millennia. The waste should be in a safe place on the surface, where it can be readily monitored.  However, that would require lots of money virtually forever, something the government would prefer not to think about, much less explain. Instead, they’ve made plans that allow them to kick the can down the road for as long as possible.

Excerpt from PHILIP BRASOR, Hokkaido municipalities gamble on a nuclear future, but at what cost? Japan Times, Oct. 24, 2020

1 Million Tons Radioactive Water Release at Sea: Fukushima, Japan

On October 19, 2020, China urged the Japanese government to “cautiously” consider whether to release treated radioactive water in the sea from the Fukushima No. 1 nuclear power plant. China’s remarks came days after it was reported by Japanese media that an official decision on the discharge of the water from the nuclear plant may be made by the end of October 2020. The water has been treated using an advanced liquid processing system, or ALPS, to remove most contaminants other than the relatively less toxic tritium and is stored in tanks on the facility’s premises.

But space is expected to run out by the summer of 2022, with contaminated water increasing by about 170 tons per day. As of September 2020, the stored water totaled 1.23 million tons and continues to grow.

China urges Japan to cautiously consider nuclear plant water release, Japan Times, Oct. 19, 2020

A Dream Come True? the Saudi Nuclear Program

Saudi Arabia has constructed with Chinese help a facility for extracting uranium yellowcake from uranium ore, an advance in the oil-rich kingdom’s drive to master nuclear technology…Even though Riyadh is still far from that point, the facility’s exposure appears certain to draw concern in the U.S. Congress, where a bipartisan group of lawmakers has expressed alarm aboutabout Saudi Crown Prince Mohammed bin Salman’s 2018 vow that “if Iran developed a nuclear bomb, we will follow suit as soon as possible.” ….Saudi Arabia has no known nuclear-weapons program, operating nuclear reactors or capacity to enrich uranium. But it says it wants to acquire nuclear plants that Saudi authorities say will generate power and reduce its reliance on oil, its principal export…

“Yellowcake” is a milled form of uranium ore which occurs naturally in Saudi Arabia and neighboring countries such as Jordan. It is produced by chemically processing uranium ore into a fine powder. It takes multiple additional steps and technology to process and enrich uranium sufficiently for it to power a civil nuclear energy plant. At very high enrichment levels, uranium can fuel a nuclear weapon…Olli Heinonen said that…yellowcake facility alone wouldn’t mark a significant advance unless the yellowcake is converted into a compound known as uranium hexafluoride and then enriched. But Mr. Heinonen said of the Saudis, “Where is the transparency? If you claim your program is peaceful, why not show what you have?”

One Western official said the facility is located in a remote desert location in the general vicinity of al Ula, a small city in northwest Saudi Arabia. Two officials said it was constructed with the help of two Chinese entities. While the identities of these entities couldn’t be learned, the China National Nuclear Corp. signed a memorandum of understanding with Saudi Arabia in 2017 to help explore its uranium deposits. A second agreement was signed with China Nuclear Engineering Group Corp. That followed a 2012 pact announced between Riyadh and Beijing to cooperate on peaceful uses of nuclear energy.

Riyadh has expressed a desire to master all aspects of the nuclear fuel cycle. It is constructing with Argentina’s state-owned nuclear technology company a small research reactor outside of Riyadh. In recent years, the Saudis have significantly expanded their nuclear workforce, experts say, through academic nuclear engineering programs and growing research centers. In addition to its agreement with Argentina, the Saudis are collaborating with South Korea in refining the design of a small commercial reactor to be built in Saudi Arabia, and that could also be marketed to other nations in the Middle East and Southeast Asia. It also has public cooperation agreements with Jordan on uranium mining and production.

Excerpts from  Warren P. Strobel et al., Saudi Arabia, With China’s Help, Expands Its Nuclear Program, WSJ, Aug. 4, 2020

Global Nuclear Waste Movements: from Estonia to Utah

Regulators are weighing whether a local uranium company can import the material for processing at a mill near the border of a Native American reservation. For Energy Fuels Inc , the shipment represents an economic lifeline, after the company posted an operating loss of $7.8 million for the first quarter of 2020. Its president in March 2020 described the U.S. uranium industry as being “on the cusp of complete collapse.”
But for the Ute Mountain Ute Tribe living near the facility – the only operational uranium mill in the United States – the proposal has stoked fears that tribal land will become a dumping ground for global radioactive waste. Both the White Mesa mill and the tribal reservation are in San Juan County, Utah’s poorest.

The mill, built in 1979, was only meant to process conventional uranium ores from the Colorado Plateau for up to 20 years, the tribe says. The Navajo Utah Commission and Navajo Nation have also that the company’s application be rejected. “The state of Utah must recognize and acknowledge the reality that the mill is far past its design life and no longer a conventional uranium mill, but, instead, a radioactive waste dump seeking to operate for decades, if not a millennium,” the Ute Mountain Ute Tribe said in a document submitted to the state….

The 660 tons of powdered material in question, now sitting in 2,000 drums at a plant on the Estonian coast near the Russian border, would be Energy Fuels’ first-ever radioactive import from outside North America. The powder is a byproduct from tantalum and niobium mining by Estonian company Silmet, which contains uranium. But it cannot stay within Estonia, where there is no licensed facility for reprocessing radioactive material. Energy Fuels says there is enough uranium in that byproduct that it is worth processing. Opponents say Energy Fuels is simply taking in waste, which would be stored on site. According to Energy Fuels business from the shipment would help the company keep its 70 workers employed.

Energy Fuels anticipates demand for domestic uranium could rise, after the Trump administration in April 2020 proposed a $1.5 billion federal uranium reserve that would purchase uranium from domestic producers. Such a reserve, however, would need Congressional approval – a major hurdle. The reserve was one of the main proposals to come from a federal Nuclear Fuel Working Group aimed at reviving the U.S. uranium and nuclear industry. The United States currently imports over 90% of its uranium from abroad for its reactors.

Excerpts from Valerie Volcovicin Utah, a Debate Stirs Over Estonian Radioactive Waste, Reuters, July 16, 2020

Radioactive Water Dumping and Human Rights

In the aftermath of the Fukushima Daiichi nuclear disaster, [UN Special Rapporteurs  have] consistently raised concerns about the approaches taken by the government of Japan. UN Special Rapporteurs have been concerned that raising of “acceptable limits” of radiation exposure to urge resettlement violated the government’s human rights obligations to children.

UN Special Rapporteurs have been concerned of the possible exploitation of migrants and the poor for radioactive decontamination work. Their most recent concern is how the government used the COVID-19 crisis to dramatically accelerate its timeline for deciding whether to dump radioactive wastewater accumulating at Fukushima Daiichi in the ocean

The communities of Fukushima, so devastated by the tragic events of March 11, 2011, have expressed their concerns and opposition to the discharge of the contaminated water into their environment. It is their human right to an environment that allows for living a life in dignity, to enjoy their culture, and to not be exposed deliberately to additional radioactive contamination. Those rights should be fully respected and not be disregarded by the government in Tokyo. The discharge of nuclear waste to the ocean could damage Japan’s international relations. Neighboring countries are already concerned about the release of large volumes of radioactive tritium and other contaminants in the wastewater.

Japan has a duty under international law to prevent transboundary environmental harm. More specifically, under the London Convention, Japan has an obligation to take precaution with the respect to the dumping of waste in the ocean.

Indigenous peoples have an internationally recognized right to free, prior and informed consent. This includes the disposal of waste in their waters and actions that may contaminate their food. No matter how small the Japanese government believes this contamination will be of their water and food, there is an unquestionable obligation to consult with potentially affected indigenous peoples that it has not met…The disaster of 2011 cannot be undone. However, Japan still has an opportunity to minimize the damage…There are grave risks to the livelihoods of fishermen in Japan and also to its international reputation. Again, I urge the Japanese government to think twice about its legacy: as a true champion of human rights and the environment, or not.

Excerpts from, Baskut Tuncak [UN Rapporteur], Fukushima nuclear waste decision also a human rights issue, Kyodo News, July 8, 2020

Japan’s Nuclear Bombs

On May 13, Japan’s Nuclear Regulation Authority announced that the nuclear fuel reprocessing plant in Rokkasho, Aomori Prefecture, had met new safety standards created after the March 11, 2011, earthquake and tsunami….The Rokkasho plant is a 3.8 million square meter facility designed to reprocess spent nuclear fuel from the nation’s nuclear reactors.  Construction began in 1993. Once in operation, the plant’s maximum daily reprocessing capacity will be a cumulative total of 800 tons per year.  During reprocessing, uranium and plutonium are extracted, and the Rokkasho plant is expected to generate up to eight tons of plutonium annually.

Both are then turned into a mixed uranium-plutonium oxide (MOX) fuel at a separate MOX fabrication plant, also located in Rokkasho, for use in commercial reactors. Construction on the MOX facility began in 2010 and it’s expected to be completed in 2022.  Japan had originally envisioned MOX fuel powering between 16 and 18 of the nation’s 54 commercial reactors that were operating before 2011, in place of conventional uranium.  But only four reactors are using it out of the current total of nine officially in operation. MOX fuel is more expensive than conventional uranium fuel, raising questions about how much reprocessed fuel the facilities would need, or want.

The Rokkasho reprocessing plant can store up to 3,000 tons of spent nuclear fuel from the nation’s power plants on-site. It’s nearly full however, with over 2,900 tons of high-level waste already waiting to be reprocessed.

Why has it taken until now for the Rokkasho plant to secure approval from the nuclear watchdog?   Decades of technical problems and the new safety standards for nuclear power that went into effect after the 2011 triple meltdown at the power plant in Fukushima Prefecture have delayed Rokkasho’s completion date 24 times so far. It took six years for the plant to win approval under the post-3/11 safety standards…By the time of the NRA announcement on May 13, 2020, the price tag for work at the Rokkasho plant had reached nearly ¥14 trillion.

Japan is the only non-nuclear weapons state pursuing reprocessing. But as far back as the 1970s, as Japan was debating a nuclear reprocessing program, the United States became concerned about a plant producing plutonium that could be used for a nuclear weapons program.  The issue was raised at a Feb. 1, 1977, meeting between U.S. Vice President Walter Mondale and Prime Minister Takeo Fukuda.  “Reprocessing facilities which could produce weapons grade material are simply bomb factories,” noted a declassified U.S. State Department cable on the meeting. “We want to cooperate (with Japan) to keep the problem under control.”

The U.S. oppose the Rokkasho plant’s construction in 1993, following an agreement in 1988 between the two countries on nuclear cooperation. ..The U.S.-Japan nuclear agreement meant the U.S. would give advance consent for Japan to send spent nuclear fuel to the United Kingdom and France — states with nuclear weapons — for reprocessing until Rokkasho was running at full-scale.

Currently, Japan has nearly 45 tons of plutonium stockpiled, including 9 tons held by domestic utilities. Another 21.2 tons is in the United Kingdom and France is holding 15.5 tons under overseas reprocessing contracts.

Thus, Japan finds itself caught between promises to the international community to reduce its plutonium stockpile through reprocessing at Rokkasho, and questions about whether MOX is still an economically, and politically, viable resource — given the expenses involved and the availability of other fossil fuel and renewable energy resources.

Excerpts from Aomori’s Rokkasho nuclear plant gets green light but hurdles remain, Japan Times, May 31, 2020

Builiding a Nuclear War Chest: the US Uranium Reserve

The US electricity production from nuclear plants hit at an all-time high in 2019… generating more than 809 billion kilowatt-hours of electricity, which is enough to power more than 66 million homes.  Yet, despite operating the largest fleet of reactors in the world at the highest level in the industry, US ability to produce domestic nuclear fuel is on the verge of a collapse.  

Uranium miners are eager for work, the United States’s only uranium conversion plant is idle due to poor market conditions, and its inability to compete with foreign state-owned enterprises (most notably from China and Russia) is not only threatening US energy security but weakening the ability to influence the peaceful uses of nuclear around the world. Restoring America’s Competitive Nuclear Energy Advantage was recently released by the U.S. Department of Energy (DOE) to preserve and grow the entire U.S. nuclear enterprise…. The first immediate step in this plan calls for DOE to establish a uranium reserve.   Under the Uranium Reserve program, the DOE Office of Nuclear Energy (NE) would buy uranium directly from domestic mines and contract for uranium conversion services. The new stockpile is expected to support the operation of at least two US uranium mines, reestablish active conversion capabilities, and ensure a backup supply of uranium for nuclear power operators in the event of a market disruption [such as that caused the COVID-19 pandemic]. 

NE will initiate a competitive procurement process for establishing the Uranium Reserve program within 2021.  Uranium production in the United States has been on a steady decline since the early 1980s as U.S. nuclear power plant operators replaced domestic uranium production with less expensive imports. State-owned foreign competitors, operating in different economic and regulatory environments, have also undercut prices, making it virtually impossible for U.S. producers to compete on a level-playing field.  As a result, 90% of the uranium fuel used today in U.S. reactors is produced by foreign countries.

Establishing the Uranium Reserve program is exactly what United States needs at this crucial time to de-risk its nuclear fuel supply. It will create jobs that support the U.S. economy and strengthen domestic mining and conversion services….The next 5-7 years will be a whirlwind of nuclear innovation as new fuels and reactors will be deployed across the United States.

Excerpts  from USA plans revival of uranium sector, World Nuclear News, May 12, 2020.  See also Building a Uranium Reserve: The First Step in Preserving the U.S. Nuclear Fuel Cycle, US Office of Nuclear Energy, May 11, 2020.

Nuclear Operators: Who Helps India and Pakistian with their Atomic Bombs

Using open-source data, the nonprofit Centre For Advance Defense Studies (C4ADS) report published in April 2020 provides one of the most comprehensive overviews of networks supplying the rivals, in a region regarded as one of the world’s most dangerous nuclear flashpoints.

To identify companies involved, C4ADS analysed more than 125 million records of public trade and tender data and documents, and then checked them against already-identified entities listed by export control authorities in the United States and Japan. Pakistan, which is subject to strict international export controls on its programme, has 113 suspected foreign suppliers listed by the United States and Japan. But the C4ADS report found an additional 46, many in shipment hubs like Hong Kong, Singapore and the United Arab Emirates. The father of Pakistan’s atomic bomb, AQ Khan, admitted in 2004 to selling nuclear technology to North Korea, Iran and Libya. He was pardoned a day later by Pakistani authorities, which have refused requests from international investigators to question him.

India has a waiver that allows it to buy nuclear technology from international markets. The Indian government allows inspections of some nuclear facilities by the International Atomic Energy Agency, but not all of them. C4ADS identified 222 companies that did business with the nuclear facilities in India that had no IAEA oversight. Of these, 86 companies did business with more than one such nuclear facility in India.

Both countries are estimated to have around 150 useable nuclear warheads apiece, according to the Federation of American Scientists, a nonprofit group tracking stockpiles of nuclear weapons.

Excerpts from Alasdair Pal, Exclusive: India, Pakistan nuclear procurement networks larger than thought, study shows, Reuters, Apr. 30, 2020

Craving Nuclear Energy: Emerging Nations

According to World Nuclear Assocation as of March 2020, about 30 countries are considering, planning or starting nuclear power programmes, and a further 20 or so countries have at some point expressed an interest.

In Europe: Albania, Serbia, Croatia, Portugal, Norway, Poland, Belarus, Estonia, Latvia, Lithuania, Ireland, Turkey.
In the Middle East and North Africa: Gulf states including UAE, Saudi Arabia, Qatar and Kuwait; Yemen, Israel, Syria, Jordan, Egypt, Tunisia, Libya, Algeria, Morocco, Sudan.
In west, central and southern Africa: Nigeria, Ghana, Senegal, Kenya, Uganda, Tanzania, Zambia, Namibia, Rwanda, Ethiopia.
In Central and South America: Cuba, Chile, Ecuador, Venezuela, Bolivia, Peru, Paraguay.
In central and southern Asia: Azerbaijan, Georgia, Kazakhstan, Mongolia, Bangladesh, Sri Lanka, Uzbekistan.
In SE Asia and Oceania: Indonesia, Philippines, Vietnam, Thailand, Laos, Cambodia, Malaysia, Singapore, Myanmar, Australia.

The Connection between Nuclear Energy and Nuclear Weapons

State-owned nuclear companies in Russia and China have taken the lead in offering nuclear power plants to emerging countries includingfinance and fuel services.

Excerpts from Emerging Nuclear Energy Countries, Press Release, World Nuclear Association, Mar. 20, 2020

The Nuclear Reactors Buried in the Deep Sea

The Soviet Union used the waters east of Novaya Zemlya to dump reactors, spent nuclear fuel and solid radioactive waste from both the navy and the fleet of nuclear-powered civilian icebreakers. About 17,000 objects were dumped in the period from the late 1960s to the late 1980s. Most of the objects are metal containers with low- and medium level radioactive waste. The challenge today, though, are the reactors with high-level waste and spent uranium fuel, objects that will pose a serious threat to the marine environment for tens of thousands of years if nothing is done to secure them.

The reactors from the submarines K-11, K-19 and K-140, plus the entire submarine K-27 (in the Kara Sea) and spent uranium fuel from one of the old reactors of the Lenin-icebreaker have to be lifted and secured. Also, the submarine K-159 (in the Barents Sea) that sank north of Murmansk while being towed for decommissioning in 2003 have to be lifted from the seafloor, the experts conclude. A study report made for Rosatom and the European Commission has evaluated the costs of lifting all six objects, bringing them safely to a yard for decommissioning and securing the reactors for long-term storage. The estimated price-tag for all six will €278 millions, of which the K-159 is the most expensive with a cost of €57.5 millions. Unlike the submarines and reactors that are dumped in relatively shallow waters in the Kara Sea, the K-159 is at about 200 meters depth, and thus will be more difficult to lift.

Excerpts from Thomas Nilsen, Lifting Russia’s accident reactors from the Arctic seafloor will cost nearly €300 million, Mar. 8, 2020

The Nightmare: Sabotaging 20 Million Nuclear Shipments

Nuclear and other radioactive material is hardest to protect when it is transported from point A to point B — more than half of the incidents of theft of radioactive material reported to the IAEA between 1993 and 2019 occurred while it was in transport.

Around 20 million shipments of nuclear and other radioactive material are regularly transported within countries and across borders each year. These materials are used in industry, agriculture and medicine, as well as in education. Some of them are also radioactive sources that are no longer useful, known as disused sources.

The aim of nuclear security during transport is to ensure that the material is secured throughout and that it is not used for criminal or malicious purposes. While the level of security differs depending on the sensitivity of the material, the fundamental elements of secure transport include physical protection, administrative measures, training and protection of information about the transport routes and schedule. In some cases, escort personnel may also need to be armed

“During conversion of our research reactor from high enriched to low enriched uranium fuel, we had to transport highly radioactive spent reactor fuel from the site to the airport to be sent back to the original manufacturer, and we had to transport the new low enriched uranium fuel from the airport to the facility,” said Yusuf A. Ahmed, Director of the Centre for Energy Research and Training in Nigeria, who was involved in the conversion project. “Although the transport time is only a few hours, there is a lot that can happen during that time, from simple traffic accidents to malicious interventions and sabotage of shipments.”

While only around 30 countries use nuclear power and therefore have significant amounts of nuclear materials to transport, almost all countries use radioactive sources.

Excerpts from Inna Pletukhin, A Moving Target: Nuclear Security During Transport, IAEA Bulletin, Jan. 24, 2020

Saving the Fisheries of Barents Sea from Nuclear Waste: the Andreeva Bay Case

A shipment of 14 containers with spent nuclear fuel from Andreeva Bay to Atomflot in Murmansk, Russia took place in December 2019 but it was paid by Norway.  Unloading the 40-years old spent uranium fuel elements from the rundown storage tanks and repacking them to transport containers came with a price-tag of 5 million kroner (€500 000), while the shipment from Andreeva Bay to Murmansk will cost additional 2,5 million kroner (€250 000).

The December 2019 shipment was the fourth that year, but the first one paid by Norway.  In Andreeva Bay, only 65 kilometers from the border to Norway, the Soviet navy packed away its lethal leftovers. Without too much thought for the costs of future clean up.  In Norway, like in Russia, the demand for action came out of fears for possible radioactive leakages that could have potentially negative impact on the important fisheries in the Barents Sea.  So far, isotopes contamination has only been discovered in the sediments in the near proximity off the shore and not further out in the bay.

Concerns of nuclear accidents and radioactive leakages are also why Norwegian authorities have granted hundres of millions kroner in aid to secure and clean up the site.  After 25 years of cooperation to improve the situation in Andreeva Bay, the Norwegian experts argue that direct financing of practical work is the best way to gain an insight into how Russia deals with the clean up.

By the end of Soviet times, in the late 1980s, a total of 22,000 spent nuclear fuel elements, equal to about 100 reactor cores from submarines, had accumulated at the run-down storage facilities. In addition came thousands of cubic meters of solid radioactive waste stored outdoor in rusty containers and hundreds of cubic meters of liquid radioactive waste in tanks.

The two first decades of international cooperation concentrated on improving the infrastructure. Buildings were erected to cover three concrete tanks holding the spent nuclear fuel, both to keep out rain and snow, but also to make sure the removal- and repacking work could take place in safe conditions.  The quay by the shore was rebuilt, a new special crane for lifting transport casks where put in place. Even a new on-purpose designed ship was built, paid by Italy.

In 2017, the first load of containers with spent nuclear fuel left Andreeva Bay towards Murmansk, from where it go by rail to Mayak, Russia’s reprocessing plant north of Chelyabinsk east of the Ural Mountains.  So far in 2019, three shipments paid by Russia and one shipment paid by Norway have left Andreeva Bay.  “25% of the original amount of spent nuclear fuel is now removed,” says Per-Einar Fiskebeck…

The remaining waste, tank 3A holds numerous rusty, partly destroyed steel pipes where concrete of poor quality was filled in the space between. Some of those fuel assemblies are stuck in the canisters, while some of the canisters are stuck in the cells.  This is high level nuclear waste with radiation levels close to the uranium fuel comparable to the melted fuel rods inside the ill-fated Chernobyl reactor. 

Another groundbreaking milestone in the clean up work took place earlier this fall when the retrieval of six abandoned, highly radioactive spent nuclear fuel assemblies from the bottom of Building No. 5 were successfully completed.  Building No. 5 is a former pool storage, where several elements fell to the floor following a water-leakages in 1982. Traces of uranium and other radionuclides remained in the sludge at the bottom of the pool.

Thomas Nilsen,Norway helps pay for transporting old Russian navy nuclear waste, Barents Observer, Dec. 20, 2019

Forever Fukushima: Cleaning Up the Huge Mess

By the end of 2019, Japan further delayed the removal of thousands of spent fuel units that remain in cooling pools since the 2011 disaster The government and the plant operator, Tokyo Electric Power Co., are keeping a 30- to 40-year completion target.

More than 4,700 units of fuel rods remain at the three melted reactors and two others that survived the 2011 earthquake and tsunami. They pose a high risk because their storage pools are uncovered and a loss of water in case of another major disaster could cause the fuel rods to melt, releasing massive radiation. Their removal at Units 1 and 2, after repeated delays, is now postponed by up to 10 years from the initial target of 2018, with more preparation needed to reduce radiation and clear debris and other risks.

Fuel rod removal at the Unit 1 reactor pool will begin sometime in 2027-2028, after debris is cleaned up and a huge rooftop cover installed to contain radioactive dust. Fuel removal at Unit 2 pool is to begin in 2024-2026. Work at the Unit 3 reactor pool began in April 2019 and all 566 units will be removed by March 2021. TEPCO has emptied the pool at Unit 4, which was offline and only suffered building damage, and aims to have all remaining rods in reactor pools removed by 2031 for safer storage in dry casks.

TEPCO has been unable to release the 1.2 million tons of treated but still radioactive water kept in nearly 1,000 tanks at the plant, fearing public repercussions and the impact on the area’s struggling fishing and agriculture. The amount of water is growing by 170 tons daily because it is used to cool the melted fuel inside the reactors.

The Ministry of Economy, Trade and Industry recently drafted a proposal to release the water to the sea or the air, or a combination of both. TEPCO says it can only store up to 1.37 million tons, or until the summer of 2022. Time is limited because preparation is needed before any water release. TEPCO and the government say the tanks pose risks if they were to spill their contents in another major earthquake, tsunami or flood…. The water is still somewhat contaminated, but TEPCO says further treatment can remove all but radioactive tritium to levels allowed for release. Experts say tritium is not harmful to humans in small amounts and has been routinely released from nuclear plants around the world.

Removing an estimated 880 tons of molten fuel from Fukushima’s three melted reactors is the toughest and unprecedented challenge. It’s six times the amount dealt with in the aftermath of the 1979 Three Mile Island partial core melt in the United States.  Removal is to begin in 2021 at Unit 2, where robotic probes have made more progress than at Units 1 and 3. A robotic arm was developed to enter the reactor from the side to reach the melted fuel, which has largely fallen to the bottom of the primary containment vessel… The first decade through 2031 is a crucial phase that will affect future progress…

Japan has yet to develop a plan to dispose of the highly radioactive melted fuel and other debris that come out of the reactors. TEPCO will compile a plan for those after the first decade of melted fuel removal. Managing the waste will require new technologies to reduce its volume and toxicity. TEPCO and the government say they plan to build a site to store waste and debris removed from the reactors, but finding one and obtaining public consent will be difficult.

Additionally, there will be an estimated 770,000 tons of solid radioactive waste by 2030, including contaminated debris and soil, sludge from water treatment, scrapped tanks and other waste. They will be sorted, treated and compacted for safe storage under a plan to be compiled by 2028.

The government says Fukushima’s decommissioning cost is estimated at 8 trillion yen ($73 billion), though adding compensation, decontamination of surrounding areas and medium-term storage facilities would bring the total to an estimated 22 trillion yen ($200 billion). The Japan Center for Economic Research, a think tank, estimates that decommissioning alone would cost 51 trillion yen ($470 billion) if the water is not released and tritium removal technology is pursued.

More than 10,000 workers will be needed annually in coming years, about one third assigned to work related to the radioactive water. 

Excerpts from MARI YAMAGUCHI,  Japan revises Fukushima cleanup plan, delays key steps, Associated Press, Dec. 27, 2019

The Nuclear Fuel Bank is Up and Running

The International Atomic Energy Agency (IAEA) received in December 2019 the second and final shipment of low-enriched uranium (LEU) at a purpose-built facility in Kazakhstan housing the IAEA LEU Bank, which was established to provide assurance to countries about the supply of nuclear fuel. The delivery completes the planned stock of the material that the IAEA LEU Bank will hold, following the first shipment in October 2019.

Kazakhstan’s JSC National Atomic Company Kazatomprom – the world’s largest producer of natural uranium – delivered 28 cylinders of LEU to the facility at the Ulba Metallurgical Plant (UMP) in the city of Ust-Kamenogorsk. The uranium originated from Kazakhstan and was enriched at a facility in neighbouring Russia before the LEU was transported by train to the site in eastern Kazakhstan, where it was checked and officially accepted by IAEA experts.

Owned by the IAEA and hosted by Kazakhstan, the IAEA LEU Bank is one of the Agency’s most ambitious undertakings since it was founded in 1957.  The establishment and operation of the IAEA LEU Bank are fully funded by voluntary contributions from IAEA Member States and other donors totalling US $150 million, covering estimated costs for at least 20 years of operation. Donors include the Nuclear Threat Initiative, the United States, the European Union, the United Arab Emirates, Kuwait, Norway and Kazakhstan. Kazakhstan contributed also in kind by hosting the IAEA LEU Bank.

The Bank operates with er assurance of supply mechanisms established including a guaranteed physical reserve of LEU maintained by the Russian Federation at the International Uranium Enrichment Centre in Angarsk, Russian Federation, and an assurance of supply guaranty by the United Kingdom for supplies of LEU enrichment services.

Globally, there are around 450 nuclear power reactors in operation today, supplying about 10 percent of the world’s electricity and one-third of all low-carbon electricity. Fifty-two additional nuclear power reactors are currently under construction.

Excerpts from Second Shipment of Low Enriched Uranium Completes IAEA LEU Bank, IAEA Press Release, Dec. 10, 2019

Denizen Nuclear Waste: the Orchid Island

Several members of the Tao Aboriginal community in Taiwan reiterated their decades-long demand that the government remove nuclear waste from Taitung County’s Orchid Island saying that they would not accept the NT$2.55 billion (US$83.57 million) in compensation.  Since construction of a storage site was finished in 1982, more then 100,000 barrels of low-level radioactive waste have been transported from nuclear power plants on Taiwan proper to the outlying island, without obtaining residents’ consent in advance….  [According to the community], the government should establish a platform to discuss how to handle the nuclear waste and related compensation, while also continuing to reveal the storage site’s buried history

Excerpts from Lin Chia-nan,  Tao protest, reject compensation for waste, Tapei Times, Nov. 30, 2019
 
By Lin Chia-nan  /  Staff reporter

The Enormous Task of Nuclear Waste Storage

“The Koeberg spent fuel pool storage capacity in South Africa  is currently over 90% full. (These) pools will reach (their) capacity by April 2020,” Eskom, the South African utility, told Reuters in a statement on Nov. 25, 2019.  Koeberg produces about 32 tonnes of spent fuel a year. Fuel assemblies, which contain radioactive materials including uranium and plutonium that can remain dangerous for thousands of years, are cooled for a decade under water in spent fuel pools.

Fuel Pool at Koeberg, South Africa

In 2016,  Eskom paid an estimated 200 million rand ($13.60 million) for an initial batch of seven reinforced dry storage casks from U.S. energy company Holtec International to help keep Koeberg running beyond 2018.  Eskom now has nine new unused casks on site, each with an individual capacity of 32 spent fuel assemblies, with another five expected to be delivered soon.

Holtec Cask

The 14 casks should ensure there is sufficient storage in the spent fuel pool until 2024, Eskom said, ahead of a tender for an extra 30 casks….Anti-nuclear lobby group Earthlife Africa said South Africa could not afford the social, environmental and economic costs associated with nuclear waste.  “We have a ticking bomb with high-level waste and fuel rods at Koeberg,” said Makoma Lekalakala, Earthlife Africa’s director.

Wendell Roelf, Waste storage at Africa’s only nuclear plant brimming, Reuters, Nov. 25, 2019

Between Colonialism and the Abyss: the Desperate Search for a Nuclear Waste Disposal Site, United States

A proposal for New Mexico to house one of the world’s largest nuclear waste storage facilities has drawn opposition from nearly every indigenous nation in the state. Nuclear Issues Study Group co-founder and Diné organizer Leona Morgan told state legislators in November 2019 the project, if approved, would perpetuate a legacy of nuclear colonialism against New Mexico’s indigenous communities and people of color.

Holtec International, a private company specializing in spent nuclear fuel storage and management, applied for a license from the federal Nuclear Regulatory Commission to construct and operate the facility in southeastern New Mexico. Holtec’s proposal would see the majority of high-level nuclear waste in the U.S. transported to a consolidated interim storage facility located in southeastern New Mexico. If licensed, the facility would house up to 100,000 metric tons of high-level waste at capacity — more nuclear waste than currently exists in the country — for up to 40 years, while the federal government either re-opens Yucca Mountain or establishes a new deep repository to permanently store the waste.

The proposal, which has been in the works since 2011, would see high-level waste generated at nuclear power plants across the country transported to New Mexico for storage at the proposed facility along the Lea-Eddy county line between Hobbs and Carlsbad. Holtec representatives say the facility would be a temporary solution to the nation’s growing nuclear waste problem, but currently there is no federal plan to build a permanent repository for the waste.

Legislators, activists and residents alike share concerns about the proposals. Some fear the “interim” storage facility could become a de facto permanent storage facility if no other repository is built; others question the site selection for a nuclear facility so close to oil and gas activity in the Permian Basin. Increased transport of high-level radioactive waste across the state could also lead to potentially dangerous nuclear releases, leaving impacted communities responsible for emergency responses.

“New Mexico doesn’t make the waste, why should we take the waste?” Morgan said. “What we’re advocating for is not a temporary, band-aid solution, but something more scientifically sound. The waste does have to go somewhere. However, storing it in New Mexico temporarily is not the right idea. It’s not safe; it’s not supported by the local communities; and New Mexico does not want it.”  “We see this as environmental racism and perpetuating nuclear colonialism that is going to result in a continuation of a slow genocide,” she said….

Meanwhile, nuclear power utilities across the country have sued the federal government over a breach of contract for failing to establish a permanent repository for the waste

Nuclear colonialism, a term first coined by environmentalist Winona LaDuke and activist Ward Churchill, describes a systematic dispossession of indigenous lands, the exploitation of cultural resources, and a history of subjugation and oppression of indigenous peoples by a government to further nuclear production of energy and proliferation of weapons.  “All of the impacts from nuclear colonialism can be simplified by explaining it as environmental racism,” Morgan told state legislators last week. She pointed to the health and environmental consequences of uranium mining on the Navajo Nation during the last century.  “My family lives in areas where there was past uranium mining. We’re still dealing with the legacy of all of the mining that fuelled World War II and the Cold War,” Morgan said. “This legacy is still unaddressed — not just in New Mexico, but in the entire country. For that reason, my concern is the health of our people, our environment.”

Cleaning Abandoned Uranium Mines New Mexico

“We do not believe we are separate from the environment,” Morgan said. “We are not here to protect the environment as land and as mountains, but as living, breathing entities.”  Similar beliefs, sometimes referred to in policy discussions as “environmental personhood,” have gained recognition among regulators in countries across the world in recent years. 

Excerpts from Kendra Chamberlain, Nuclear Colonialism: Indigenous opposition grows against proposal for nation’s largest nuclear storage facility in NM, https://nmpoliticalreport.com/,  Nov. 14, 2019

Why Russia Loves Germany’s Toxic Waste

Environmental groups have voiced concern in November 2019 that Russia is again accepting shipments of uranium tails, a byproduct formed when uranium is enriched, from a German nuclear fuel firm, reigniting a debate over whether the substance meets the definition of nuclear waste.  The shipments of the toxic compound – also called uranium hexafluoride – were halted in 2009 over revelations that Russia was accepting it from foreign customers and storing it in the open. At that time, Rosatom, Russia’s nuclear corporation, bowed to environmental pressure and promised to no longer import the radioactive substance.

But German government documents revealed in November 2019 by Greenpeace and the Russian environmental group Ecodefense show that the German-based enrichment company Urenco resumed the uranium tail shipments as long ago as May 2019.  According to Urenco’s contract with the Russian nuclear-fuel giant Teksnabeksport (Tenex), a subsidiary of Rosatom, some 12,000 tons of uranium tails are set to be delivered to Novouralsk, near Yekaterinburg by 2022. Four thousands tons have been sent so far….

Urenco, Germany

Uranium hexafluoride, also called depleted uranium, is a colorless radioactive powder that is produced as a byproduct of enriching uranium for use as fuel in nuclear power plants. Urenco, which is a partnership involving German, British and Dutch energy firms, has operated an enrichment facility in Gronau, Germany since 1985.  This facility stores depleted uranium in the open air. In the early 1990s, Russian opened its doors to reprocessing depleted uranium from foreign customers. A previous contract between Tenex and Urenco envisioned the import of 100,000 tons of uranium tails between 1996 and 2009.

The issue of whether uranium tails in fact constitute nuclear waste depends on whom you ask. Both Rosatom and Germany’s nuclear industry classify uranium hexafluoride as a recyclable material. The US Nuclear Regulatory Commission, however, has long held that uranium tails should be classified as nuclear waste – a view that Bellona, Ecodefense and Greenpeace share.  But while Rosatom asserts that uranium tails are valuable raw material, the motive for importing them is unclear. By most estimates, Russia already holds nearly 1 million tons of uranium tails from its own fuel production – making the need for another 12,000 tons from abroad questionable.

Charles Digges, Russia resumes importing depleted uranium from Germany, breaching old promises, Bellona, Nov. 1, 2019

Stopping GreenWashing

The EU wants to revolutionise the world of green finance. Brussels officials, MEPs and member states are currently trying to thrash out plans for a gold standard in green investment they hope will unleash tens of millions of euros of private money to fund the transition to a more sustainable world.   The project has a classically boring Brussels name — the “taxonomy” for sustainable activities — but the implications are potentially transformative. The EU wants to become the first supranational regulator to write rules that banks and funds will have to comply with when they claim to launch “green” products or investments.  As it stands, there is no global benchmark to judge just how green a financial product is. Funds and banks can sell and label sustainable finance products without an independent arbiter checking if reality meets the hype. The point of the EU’s work is to stamp out this so-called “greenwashing”…

Perhaps the most sensitive issue of all is how to handle nuclear energy. France — which has big nuclear business interests — doesn’t want the taxonomy to stigmatise nuclear as a “brown” technology. Other member states, led by Germany, want it excluded from being green, as do the MEPs. 

Excerpts from  Mehreen Khan, The Green Gold Standard, FT, Nov. 11, 2019

Cyber-Attacking Nuclear Plants: the 3 000 cyber bugs

In the first half of 2019 , no country endured more cyber-attacks on its Internet of Things—the web of internet-connected devices and infrastructure—than India did. So asserts Subex, an Indian telecommunications firm, which produces regular reports on cyber-security. Between April and June of 2019, it said, recorded cyber-attacks jumped by 22%, with 2,550 unique samples of malware discovered. Some of that malicious code is turning up in hair-raising places.

On October 28, 2019 reports indicated that malware had been found on the computer systems of Kudankulam Nuclear Power Plant in Tamil Nadu, the newest and largest such power station in India. Pukhraj Singh, a cybersecurity researcher who formerly worked for the National Technical Research Organisation (NTRO), India’s signals-intelligence agency, says he was informed of the malware by an undisclosed third party in September, and notified the government.The attackers, he said, had acquired high-level access and struck “extremely mission-critical targets”…. On October 30, 2019 the body that operates nuclear power plants acknowledged, sheepishly, that a computer had indeed been infected, but it was only an “administrative” one.

Sensitive sites such as power plants typically isolate the industrial-control systems (those that control the workings of a plant) from those connected to the wider internet. They do so using air-gaps (which involve disconnecting the system from the wider world), firewalls (which monitor data-flows for suspicious traffic) or data diodes (which allow information to flow out but not in).

But breaching a computer on the outside of these digital moats is nevertheless troubling. It could have given the attackers access to sensitive emails, personnel records and other details which would, in turn, make it easier to gain access to the more isolated operational part of the plant. America and Israel are thought to have sneaked the devastating Stuxnet virus into Iran’s air-gapped uranium-enrichment plant at Natanz around 2007 by planting a USB stick on a worker, who carried it inside and plugged it in.

The culprit behind the Kudankulam attack is unknown, but left some clues. The malware in question is from a family known as DTrack, which gives attackers an intimate look at what victims are doing—down to their keystrokes. It is typically used to monitor a target, making it easier to deliver further malware. DTrack was originally developed by a group of hackers known as the Lazarus Group, who are widely assumed to be controlled or directed by North Korea.

Excerpts from On the DTrack: A cyber-attack on an Indian nuclear plant raises worrying questions, Economist, Nov. 1, 2019

A Huge Headache: the Radioactive Water at Fukushima

What to do with the enormous amount of radioactive  water, which grows by around 150 tons a day at Fukushima, is a thorny question, with controversy surrounding a long-standing proposal to discharge it into the sea, after extensive decontamination.  The water comes from several different sources: Some is used for cooling at the plant, which suffered a meltdown after it was hit by a tsunami triggered by a massive earthquake in March 2011.  Groundwater that seeps into the plant daily, along with rainwater, add to the problem.

A thousand, towering tanks have now replaced many of the cherry trees that once dotted the plant’s ground. Each can hold 1,200 tons, and most of them are already full.  “We will build more on the site until the end of 2020, and we think all the tanks will be full by around the summer of 2022,” said Junichi Matsumoto, an official with the unit of plant operator TEPCO in charge of dismantling the site.

TEPCO has been struggling with the problem for years, taking various measures to limit the amount of groundwater entering the site.  There is also an extensive pumping and filtration system, that each day brings up tons of newly contaminated water and filters out as many of the radioactive elements as possible.

The hangar where the decontamination system runs is designated “Zone Y” — a danger zone requiring special protections.  All those entering must wear elaborate protection: a full body suit, three layers of socks, three layers of gloves, a double cap topped by a helmet, a vest with a pocket carrying a dosimeter, a full-face respirator mask and special shoes.  Most of the outfit has to burned after use.

“The machinery filters contain radionuclides, so you have to be very protected here, just like with the buildings where the reactors are,” explained TEPCO risk communicator Katsutoshi Oyama.  TEPCO has been filtering newly contaminated water for years, but much of it needs to go through the process again because early versions of the filtration process did not fully remove some dangerous radioactive elements, including strontium 90.

The current process is more effective, removing or reducing around 60 radionuclides to levels accepted by the International Atomic Energy Agency (IAEA) for water being discharged.  But there is one that remains, which cannot be removed with the current technology: tritium.

Tritium is naturally present in the environment, and has also been discharged in its artificial form into the environment by the nuclear industry around the world.  There is little evidence that it causes harm to humans except in very high concentrations and the IAEA argues that properly filtered Fukushima water could be diluted with seawater and then safely released into the ocean without causing environmental problems.

But those assurances are of little comfort to many in the region, particularly Fukushima’s fishing industry which, like local farmers, has suffered from the outside perception that food from the region is unsafe.

Karyn Nishimura, At Fukushima plant, a million-ton headache: radioactive water, Japan Times, Oct. 7, 2019
 

Can Nuclear Power Beat Climate Change?

The 2019 World Nuclear Industry Status Report (WNISR2019) assesses the status and trends of the international nuclear industry and analyzes the potential role of nuclear power as an option to combat climate change. Eight interdisciplinary experts from six countries, including four university professors and the Rocky Mountain Institute’s co-founder and chairman emeritus, have contributed to the report.

While the number of operating reactors has increased over the past year by four to 417 as of mid-2019, it remains significantly below historic peak of 438 in 2002.  Nuclear construction has been shrinking over the past five years with 46 units underway as of mid-2019, compared to 68 reactors in 2013 and 234 in 1979. The number of annual construction starts have fallen from 15 in the pre-Fukushima year (2010) to five in 2018 and, so far, one in 2019. The historic peak was in 1976 with 44 construction starts, more than the total in the past seven years.

WNISR project coordinator and publisher Mycle Schneider stated: “There can be no doubt: the renewal rate of nuclear power plants is too slow to guarantee the survival of the technology. The world is experiencing an undeclared ‘organic’ nuclear phaseout.”  Consequently, as of mid-2019, for the first time the average age of the world nuclear reactor fleet exceeds 30 years.

However, renewables continue to outpace nuclear power in virtually all categories. A record 165 gigawatts (GW) of renewables were added to the world’s power grids in 2018; the nuclear operating capacity increased by 9 GW. Globally, wind power output grew by 29% in 2018, solar by 13%, nuclear by 2.4%. Compared to a decade ago, nonhydro renewables generated over 1,900 TWh more power, exceeding coal and natural gas, while nuclear produced less.

What does all this mean for the potential role of nuclear power to combat climate change? WNISR2019 provides a new focus chapter on the question. Diana Ürge-Vorsatz, Professor at the Central European University and Vice-Chair of the Intergovernmental Panel on Climate Change (IPCC) Working Group III, notes in her Foreword to WNISR2019 that several IPCC scenarios that reach the 1.5°C temperature target rely heavily on nuclear power and that “these scenarios raise the question whether the nuclear industry will actually be able to deliver the magnitude of new power that is required in these scenarios in a cost-effective and timely manner.”

Over the past decade, levelized cost estimates for utility-scale solar dropped by 88%, wind by 69%, while nuclear increased by 23%. New solar plants can compete with existing coal fired plants in India, wind turbines alone generate more electricity than nuclear reactors in India and China. But new nuclear plants are also much slower to build than all other options, e.g. the nine reactors started up in 2018 took an average of 10.9 years to be completed. In other words, nuclear power is an option that is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options.

Excerpts from WNISR2019 Assesses Climate Change and the Nuclear Power Option, Sept. 24, 2019

Zero Radioactive Leakage: China Experiments with Nuclear Waste Disposal

China has chosen a site for an underground laboratory to research the disposal of highly radioactive waste, the country’s nuclear safety watchdog said in September 2019.
Officials said work would soon begin on building the Beishan Underground Research Laboratory 400 metres (1,312 feet) underground in the northwestern province of Gansu, in the middle of the Gobi desert.

(a) Enttrance Beishan Underground Research Laboratory
(b) Ramp Beishan Underground Research Laboratory

Liu Hua, head of the National Nuclear Safety Administration, said work would be carried out to determine whether it was possible to build a repository for high-level nuclear waste deep underground….Once the laboratory is built, scientists and engineers will start experiments to confirm whether it will make a viable underground storage facility…

Gobi desert

Lei Yian, an associate professor at Peking University’s school of physics, said there was no absolute guarantee that the repositories would be safe when they came into operation.
Leakage has happened in [repositories] in the US and the former Soviet Union … It’s a difficult problem worldwide,” he said. “If China can solve it, then it will have solved a global problem.”
China is also building more facilities to dispose of low and intermediate-level waste. Officials said new plants were being built in Zhejiang, Fujian and Shandong, three coastal provinces that lack disposal facilities.

Excerpts from Echo Xie , China earmarks site to store nuclear waste deep underground,  South China Morning Post, Sept 5, 2019

Free Markets? No! Subsidies for Nuclear Industry

The U.S. Department of Energy (DOE) announced on Aug. 15, 2019 the launch of the National Reactor Innovation Center (NRIC). The new initiative will assist with the development of advanced nuclear energy technologies by harnessing the world-class capabilities of the DOE national laboratory system.  Authorized by the Nuclear Energy Innovation Capabilities Act, NRIC will provide private sector technology developers the necessary support to test and demonstrate their reactor concepts and assess their performance. This will help accelerate the licensing and commercialization of these new nuclear energy systems.

“NRIC will enable the demonstration and deployment of advanced reactors that will define the future of nuclear energy,” said U.S. Energy Secretary Rick Perry. “By bringing industry together with our national labs and university partners, we can enhance our energy independence and position the U.S. as a global leader in advanced nuclear innovation.”  NRIC will be led by Idaho National Laboratory and builds upon the successes of DOE’s Gateway for Accelerated Innovation in Nuclear (GAIN) initiative… 

The Nuclear Energy Innovation Capabilities Act was signed into law in 2018 by President Donald J. Trump and eliminates some of the financial and technological barriers standing in the way of nuclear innovation. It directs DOE to facilitate the siting of advanced reactor research demonstration facilities through partnerships between DOE and private industry. The House Energy and Water Development committee has allocated $5 million in the FY2020 budget for NRIC, which plans to demonstrate small modular reactor and micro-reactor concepts within the next five years.

Excerpts from DOE,  Energy Department Launches New Demonstration Center for Advanced Nuclear Technologies, Press Release, Aug. 15, 2019

The Rolls Royce Nuclear Reactor

Small modular nuclear  reactors (SMRs) are relatively small and flexible: they have a power capacity of up to 300 MW(e) and their output can fluctuate in line with demand. This makes them particularly attractive for remote regions with less developed grids, but also for use as a complement to renewables and for non-electric applications of nuclear power. SMRs can be manufactured and then shipped and installed on site, so they are expected to be more affordable to build.

The Rolls Royce SMR is small enough to be transported by truck.

Globally, there are about 50 SMR designs and concepts at different stages of development. Three SMR plants are in advanced stages of construction or commissioning in Argentina, China and Russia, which are all scheduled to start operation between 2019 and 2022…Some SMR designs have features that could reduce the tasks associated with spent fuel management. Power plants based on these designs require less frequent refuelling, every 3 to 7 years, in comparison to between 1 and 2 years for conventional plants, and some are even designed to operate for up to 30 years without refuelling. Nevertheless, even in such cases, there will be some spent fuel left, which will have to be properly managed.

Excerpts from Small Modular Reactors: A Challenge for Spent Fuel Management? IAEA News, Aug. 8, 2019

Where to Go? 1 Million Tons Radioactive Water at Fukushima

In August 2019, Tepco projected that storage of radioactive water at the Fukushima nuclear plant would reach full capacity by around summer 2022 even after the expansion — the first time it has issued such a precise estimate.  According to Tepco, the Fukushima No. 1 plant had 960 massive tanks containing 1.15 million tons of treated water as of July 18, 2019. Water that has touched the highly radioactive melted fuel debris has been cleaned up through water treatment machines and is stored in the tanks, but the high-tech treatment machines are able to remove most radionuclides except tritium. The plant currently sees an increase of contaminated water by 170 tons a day, Tepco says.

Releasing tritium-tainted water into the sea in a controlled manner is common practice at nuclear power plants around the world, and it was generally considered the most viable option as it could be done quickly and would cost the least.  The head of the Nuclear Regulation Authority, Toyoshi Fuketa, has long said that releasing the treated water into the sea is the most reasonable option, but people in Fukushima, especially fishermen, fear it will damage the region’s reputation.

Addressing those concerns, the government panel, launched in November 2016, has been looking for the best option in terms of guarding against reputational damage. Injecting it into the ground, discharging it as steam or hydrogen, or solidification followed by underground burial have all been on the table. Under the current plan, Tepco is set to increase the tank space to store 1.37 million tons of water a total, but estimates show that will only last until summer 2022.  But the more space it creates, the bigger the decommissioning headache becomes.

Excerpts from KAZUAKI NAGAT, Fukushima nuclear plant to run out of tanks to store tritium-laced water in three years, Tepco says, Japan Times, Aug. 9, 2019
BY KAZUAKI NAGATA

How to Shh! a Nuclear Accident: the explosion of a nuclear-powered cruise missile on August 8, 2019, Russia

Two days after the explosion of a suspected nuclear-powered cruise missile undergoing testing on Aug. 8, 2010 near Nyonoksa Russia, two monitoring stations nearest the site of the accident stopped transmitting data, Lassina Zerbo, who heads the Comprehensive Nuclear Test Ban Treaty Organization, told The Wall Street Journal.  The Russian monitoring stations, called Dubna and Kirov after the places where they are located, were contacted immediately about the data disruptionl, and Russian officials responded that they were experiencing “communication & network issues.”

The missile test, on a platform in Dvinsk Bay on the White Sea in northwest Russia, has been the subject of considerable speculation. President Trump has said it involved an advanced nuclear-powered cruise missile, which has been dubbed Skyfall by the North Atlantic Treaty Organization, and which Russia calls Burevestnik.

The manned monitoring stations are part of an international network of hundreds of stations set up to verify compliance with the Comprehensive Nuclear Test Ban Treaty, which prohibits nuclear weapons tests globally. Participating nations are responsible for running the stations…The stations are designed to monitor everything from seismic shifts to sound waves for signs of nuclear activity. The two stations that went silent in Russia are designed to measure radioactive particles in the atmosphere…Arms-control experts said the monitoring problem appears to be a Russian effort to conceal information about the accident and not an effort to hide evidence of a prohibited nuclear weapons test.

Excerpts from Russian Nuclear Monitoring Stations Went Silent After Missile Blast, WSJ, Aug. 19, 2019

The 2017 Nuclear Cloud: Unreported Nuclear Accidents

The probable culprit behind a mysterious cloud of radioactive particles detected floating above much of Europe in 2017 appears to have been identified. The radiation spike – in the form of an extremely high airborne concentration of the radioactive isotope ruthenium–106 – was detected by scientists in October 2017, but the source of the dramatic radiation surge (almost 1,000 times normal levels) was never definitively confirmed.  At the time, many speculated that nuclear facilities in Russia were responsiblefor what was perceived as an accidental ruthenium–106 release – despite denials at the time by Russian authorities.

Now new research looks to back up the Russian origin hypothesis, according to an international team of almost 70 scientists led by radionuclides researcher Olivier Masson from the Institut de radioprotection et de sûreté nucléaire (IRSN) in France.  “Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation),” the researchers explain in their new paper.

In what they claim is the most comprehensive assessment of the incident to date, Masson and his team analysed over 1,300 readings taken of the radioactive cloud, recorded by 176 measuring stations in almost 30 countries.  While the airborne radioactive matter released was not harmful to human health, it nonetheless constituted the most serious release of radioactive material since the Fukushima accident in 2011 – with maximum values of 176 millibecquerels of the isotope per cubic metre of air.

Shortly after the release, Russian officials suggested the radiation surge might have been due to a crashing satellite, with the isotope being released from the battery of a spacecraft re-entering Earth’s atmosphere.  “The measurements indicate the largest singular release of radioactivity from a civilian reprocessing plant,” says one of the researchers, radioecologist Georg Steinhauser from the University of Hanover.  Specifically, the new evidence – based on modelling of air mass movements around the time of the accident – indicates Russia’s Mayak nuclear complex in the southern Urals “should be considered as a likely candidate for the release”, the researchers conclude…

If the researchers’ modelling is correct, the accident occurred sometime in late September 2017, on either the 25th or 26th of the month – almost exactly 60 years to the day after one of the worst nuclear accidents in history at the same site: the Kyshtym disaster, ranked as the third most serious nuclear accident ever on the International Nuclear Event Scale.

Excerpts frorm  PETER DOCKRILL,  Mysterious Radioactive Cloud That Blanketed Europe Traced to Russian Nuclear Facility, Science Alert, July 30, 2019

Anti-Nuclear Protests in India

Agitations against the Kudankulam nuclear plant broke out in June 2019.  Villages around the contentious reactors moved a resolution to put a stop to the government’s plans to construct an Away From Reactor (AFR) facility on the premises of the nuclear power plant.  The AFR is a storage unit meant to store spent fuel generated at the two nuclear plants in Kudankulam… While resolutions passed at four villages –  Kavalkinar, Vadakankulam, Perumanal  and Kudankulam  were recorded by district authorities, a similar move in the village of Vijayapathi was stopped. The decision led to protests in the village and was forcefully dispersed by the police. …

A public hearing regarding the AFR scheduled for July 10, 2019 was recently postponed indefinitely. A look at the circular shows that only two villages were invited – Kudankulam and Vijayapathi. Activists allege that this was an intentional attempt to shut down dissent against the proposed facility. 

The resolutions included – opposition to collection of nuclear waste in Kudankulam, demand to stop construction of an AFR facility and demand to permanently shut down the plant. Opposition parties and activists had urged the Centre to come out with a detailed plan for setting up a permanent deep geological repository and drop the plan of a proposed Away From Reactor facility.   “This entire exercise is meant to create storage for spent fuel and an AFR is only a temporary solution till the government finds land to build a deep geological repository,” explains Sundarrajan. “But across the country, no state is ready to risk giving land for permanent disposal of nuclear waste. So, residents fear that this will used as an excuse by the government to make the AFR a permanent storage space.”

Excerpts from Priyanka Thirumurthy , Protests break out in TN village over proposed facility in Kudankulam nuclear plant, the newsminute.com, June 29, 2019

The Most Nuclearized Waters on the Planet: Arctic

Northern Norway saw a record number of 12 visiting NATO nuclear-powered submarines in 2018. The subs are in for supplies or crew change before continuing the cat-and-mouse hunt for Russian submarines sailing out in the strategically important waters between Norway, Iceland and Greenland.  It was here, in international waters outside Senja in Troms, the Russian Echo-II class submarine K-192 suffered a severe reactor coolant accident 30 years ago, on June 26th 1989. Radioactive iodine was leaking with the reactor-steam while the vessel was towed around the coast of northernmost Norway to the navy homeport at the Kola Peninsula.

Fearing similar accidents could happen again, Norway is pushing for international awareness to..A dedicated group, named ARCSAFE, was established under the Arctic Council in 2015 aimed at sharing knowledge and experiences between national radiation authorities and other rescue services.“Norway has suggested to form an expert group, where one of the tasks could be to look into a possible Arctic Council agreement for radiation emergencies, like already exists for oil spill and search- and rescue cooperation,” says Øyvind Aas-Hansen.

Meanwhile, international experts on radiation monitoring teamed up with industry developers looking at the potential for using unmanned aerial vehicles (UAVs) in the Arctic. …Some environments are too risky for humans to survey and collect data. A nuclear accident site is one such spot, also if it happens at sea. UAVs, better known as drones, could carry a geiger counter, camera or other tools in the air over hazardous objects like a submarine on fire. From safe distance, emergency response units could then be better prepared before boarding or sailing close-up.

The Barents Observer has recently published an overview  listing the increasing number of reactors in the Russian Arctic.  According to the list there are 39 nuclear-powered vessels or installations in the Russian Arctic today with a total of 62 reactors. This includes 31 submarines, one surface warship, five icebreakers, two onshore and one floating nuclear power plants.  Looking 15 years ahead, the number of ships, including submarines, and installations powered by reactors is estimated to increase to 74 with a total of 94 reactors, maybe as many as 114. Additional to new icebreakers and submarines already under construction, Russia is brushing dust of older Soviet ideas of utilizing nuclear-power for different kind of Arctic shelf industrial developments, like oil- and gas exploration, mining and research.  “By 2035, the Russian Arctic will be the most nuclearized waters on the planet,” the paper reads.

Other plans to use nuclear reactors in the Russian Arctic in the years to come include many first-of-a-kind technologies like sea-floor power reactors for gas exploration, civilian submarines for seismic surveys and cargo transportation, small-power reactors on ice-strengthen platforms.

In the military sphere, the Arctic could be used as testing sites for both Russia’s new nuclear-powered cruise-missile and nuclear-powered underwater weapons drone. Both weapons were displayed by President Vladimir Putin when he bragged about new nuclear weapons systems in his annual speech to the Federation Council last year.

For Norway and Russia, a nuclear accident in the Barents Sea could be disastrous for sales of seafood. The two countries export of cod and other spices is worth billions of Euros annually.

Excerpts from Arctic countries step up nuclear accident preparedness, Barents Observer, June 30, 2019.

The Nuclear Waste Dumps in the Arctic

Source: Nuclear Waste In the Arctic, RadioFreeEurope/RadioLiberty, July 12, 2109

Forget Nevada! How America Buries its Nuclear Waste 1999-2019

Just before midnight on June 27, 2019, the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico received its 12,500th transuranic (TRU) waste shipment since operations began there in 1999.

Nuclear Waste heading to WIPP from Idaho

The shipment originated from the EM program at Idaho National Laboratory, which has sent WIPP the most TRU waste shipments — 6,500 and counting — of all Departement of Energy (DOE) generator sites over the past 20 years…

Idaoho National Laboratory Nuclear Waste Management

WIPP drivers have safely traveled over 14.9 million loaded miles, transporting more than 178,500 waste containers for permanent disposal 2,150 feet underground.

Excerpts from WIPP Reaches 12,500-Shipment Milestone, Press Release US Department of Energy, July 2, 2019

How to Prepare for Deadly Flu and Nuclear Fallout

Breakthroughs in the science of programmable gene expression inspired DARPA to establish the PReemptive Expression of Protective Alleles and Response Elements (PREPARE) program with the goal of delivering powerful new defenses against public health and national security threats. DARPA has now selected five teams to develop a range of new medical interventions that temporarily and reversibly modulate the expression of protective genes to guard against acute threats from influenza and ionizing radiation, which could be encountered naturally, occupationally, or through a national security event.

The program builds from the understanding that the human body has innate defenses against many types of health threats, but that the body does not always activate these defenses quickly or robustly enough to block the worst damage. To augment existing physiological responses, PREPARE technologies would provide a programmable capability to up- or down-regulate gene expression on demand, providing timely, scalable defenses that are proportional to anticipated threats. Service members and first responders could administer these interventions prior to threat exposure or therapeutically after exposure to mitigate the risk of harm or death.

Influenza: “Researchers working within the PREPARE program seek to improve rates of survival and recovery in catastrophic scenarios for which reliable and scalable countermeasures don’t currently exist,” said Dr. Renee Wegrzyn, the PREPARE program manager….Three PREPARE teams are pursuing multi-pronged approaches to influenza defense and treatment that use programmable gene modulators to boost the human body’s natural defenses against influenza and also weaken the virus’ ability to cause harm by directly neutralizing the viral genomes. If successful, their approaches would potentially protect against virtually all influenza strains — regardless of whether a virus is newly emergent or has developed drug resistance — and would provide near instantaneous immunity, in contrast to traditional vaccines. Additionally, the teams are designing their countermeasures so that they are simple to deliver — for example, as intranasal sprays — reducing the logistical challenge of protecting large numbers of people.A team led by DNARx LLC, under principal investigator Dr. Robert Debs, aims to develop a new DNA-encoded gene therapy that helps patients fight influenza by boosting the natural immune response and other protective functions of their nasal passages and lungs.

Radiation Hazard Symbol

Ionizing Gamma Radiation: Other PREPARE teams are pursuing treatments to protect the body from the effects of ionizing gamma radiation. In humans, radiation poisoning primarily affects stem cells in the blood and gut, yet existing treatments only help to regenerate blood cells, and only with limited effect. There is no possibility for prophylactic administration of these drugs, and most must be delivered immediately following radiation exposure to provide any benefit. There are no existing medical countermeasures for radiation damage to the gut
A team led by the University of California, San Francisco, under principal investigator Dr. Jonathan Weissman, also aims to develop gene therapies to enhance resilience against ionizing radiation. The team’s approach should result in an intravenous or orally available treatment that activates innate defenses in gut and blood stem cells for a period of several weeks.

A Dose of Inner Strength to Survive and Recover from Potentially Lethal Health Threats
New tools for programmable modulation of gene expression could yield enhanced resilience against influenza and ionizing radiation for service members and first responders, DARPA Press Release, June 27, 2019

Nuclear Submarines on Fire (2)

Vladimir Putin has confirmed  on July 4, 2019  that the top-secret submarine that suffered a deadly fire was nuclear-powered, but Russia’s defence minister said the nuclear unit had been sealed off and was in “working order.”  The incident, which left 14 Russian sailors dead,  The Russian government has been slow to reveal information about the incident because the submersible, thought to be a deep-diving vessel used for research and reconnaissance, is among Russia’s most secret military projects.  The fire aboard the “Losharik” AS-31 submersible began in the battery compartment and spread through the vessel…The vessel is thought to be made of a series of orb-like compartments, which increase the submersible’s resilience and allow it to dive to the ocean floor. Once there, it can perform topographical research and participate in rescue missions. It may even be able to tap and sever communications cables on the seabed.

Officials claim the submariners sealed themselves in one of the compartments to battle the blaze and toxic fumes…A Norwegian official told Reuters there had been no “formal communication” from Russia about an incident aboard a nuclear-powered vessel, but “we would have been happy to have been informed of such incidents”….Accidents aboard submarines invariably evoke comparisons to Putin’s clumsy handling of the sinking of the Kursk nuclear submarine in 2000, which left 118 dead and families desperate for information about their loved ones.

Excerpt Putin confirms fire-hit Russian submarine was nuclear-powerered, Guardian, July 4, 2019

Taking Pride in Nuclear Waste: Finland and Sweden

The site for Posiva’s repository at Eurajoki for the disposal of Finland’s high-level radioactive waste (used nuclear fuel), near the Olkiluoto nuclear power plant, was selected in 2000. The Finnish parliament approved the the repository project the following year in 2001… The government granted a construction licence for the project in November 2015 and construction work on the repository started iin 2016.  Posiva’s plan is for used nuclear fuel to be packed inside copper-steel canisters at an above-ground encapsulation plant, from where they will be transferred into the underground tunnels of the repository, located at a depth of 400-450 meters, and further into deposition holes lined with a bentonite buffer. Operation of the repository is expected to begin in 2023. The cost estimate of this large-scale construction project totals about EUR500 million (USD570 million), the company said.

Posiva  announced on June 25, 2019  the start of construction of the used fuel encapsulation plant. Janne Mokka, Posiva’s President, noted, “In Finland, full lifecycle management of nuclear fuel is a precondition for the production of climate-friendly nuclear electricity. Posiva will execute the final disposal of the spent fuel of its owners’ Olkiluoto and Loviisa nuclear power plants responsibly.”

Sweden is planning a similar used fuel encapsulation and disposal facility using the same storage method. Under its current timetable, national radioactive waste management company Svensk Kärnbränslehantering AB plans to start construction of the used fuel repository and the encapsulation plant sometime early in the 2020s and they will take about 10 years to complete.

Exceprts from Work starts on Finnish fuel encapsulation plant, World Nuclear News, June 25, 2019

See also documentary “Into Eternity” (YouTube)

$400 Billion and Up: Cleaning Up Pollution from Nuclear Weapons

The cost of cleaning up pollution from nuclear weapons manufacturing is estimated to be  $377 billion.  This reflects cleanup cost estimates for 16 sites across the United States. Two of these, the Hanford site in Washington and Savannah River site in South Carolina, have most of  nuclear waste stored in tanks, which is particularly costly and complicated to treat.

family type bomb shelter (picture 1958)

These clean up costs  grew by $214 billion between 2011 and 2018 and they will continue to grow for several reasons including the lack of a program-wide cleanup strategy and reliance primarily on individual sites to locally negotiate cleanup activities and establish priorities. For example, the Hanford and Savannah River sites plan to treat similar radioactive tank waste differently, with Hanford’s efforts possibly costing tens of billions more than Savannah River’s. In addition, the government manages most of its cleanup work as operations activities, under less stringent requirements than other environmental remediation projects. For example, operations activities are not subject to independent oversight.

Excerpts adapted from GAO, Environmental Liability Continues to Grow, and Significant Management Challenges Remain for Cleanup Effort, May 1, 2019.

How to Kill the Tsetse Fly: Use Nuclear Energy

The tsetse fly’s toxic bite kills an estimated 3 million livestock annually in sub-Saharan Africa.  Farmers here used to count on losing pounds of valuable beef to the fingernail-size pest. Then veterinarians in the West African country teamed up with researchers in Austria, who work on a little-known project funded entirely by the United States.  The United States has poured about $5 million into the effort of sterilizing the male tsetse files with gamma rays.   This has led to the eradication of 99 percent of those files

Cows, Senegale. (source IAEA)

Farmer income in Niayes, Senegale,  is expected to jump by 30 percent, officials say, as more cows survive at a healthy weight. Farms, meanwhile, can now afford to buy hundreds of European dairy cows, which produce 20 times as much milkthan native breeds.  The fortune reversal sprouts from a global collaboration at the intersection of agriculture and nuclear technology

Since 2010, America has funneled roughly $379 million to Senegal’s partner in the tsetse fly fight: the International Atomic Energy Agency,…The United States earmarked an additional $560,000 this month for upkeep of the group’s laboratories in Seibersdorf, Austria.

Rather, Jeffrey Eberhardt, whom President Trump has nominated to serve as his special representative for nuclear nonproliferation, said in a May statement that the United States has maintained its backing to “expand the benefits of peaceful nuclear uses” and expressed “a firm commitment to continuing this legacy.”

The peaceful use in Senegal is called nuclear insect sterilization.  First, scientists hatch thousands of tsetse flies in an artificial habitat about 870 miles away, in the West African nation of Burkina Faso.   Next, they send the bugs to the lab in Seibersdorf, where researchers place them in tiny ionization chambers and blast them with gamma rays, rendering the males unable to pass on a healthy seed.   Finally, they chill the flies to sleep — broken wings from panicked thrashing would sabotage the mission — before tucking them into biodegradable paper boxes and shipping them to Senegal.

Excerpts from A U.S.-funded nuclear project to zap a killer fly into extinction is saving West Africa’s cows, Washington Post, May 31, 2019
 

How to Make Money out of the Nuclear Waste Mess

Companies specializing in the handling of radioactive material are buying retired U.S. nuclear reactors from utilities and promising to clean them up and demolish them in dramatically less time than usual — eight years instead of 60, in some cases.  Turning nuclear plants over to outside companies and decommissioning them on such a fast track represents a completely new approach in the United States, never before carried to completion in this country, and involves new technology as well…

Once a reactor is shut down, the radioactive mess must be cleaned up, spent nuclear fuel packed for long-term storage and the plant itself dismantled. The most common approach can last decades, with the plant placed in a long period of dormancy while radioactive elements slowly decay.  Spent fuel rods that can no longer sustain a nuclear reaction remain radioactive and still generate substantial heat. They are typically placed in pools of water to cool, staying there for at least five years, with 10 years the industry norm, according to the Nuclear Regulatory Commission. After that, they are removed and placed in giant cylindrical casks, typically made of steel and encased in concrete.

But Holtec International, which in the past year has been buying up several retired or soon-to-be-retired nuclear plants in the U.S., has designed a cask it says can accept spent fuel after only two years of cooling.  Holtec struck a deal last year to buy Oyster Creek in Forked River, New Jersey, from its owner, Exelon Generation.  It also has deals in place to buy several plants owned by Entergy Corp., including: Pilgrim, in historic Plymouth, Massachusetts, closing May 31; Palisades, in Covert, Michigan, set to shut down in 2022 ; and two reactors expected to close within two years at Indian Point in Buchanan, New York….  NorthStar Group Services, a specialist in nuclear demolition, completed the purchase of Vermont Yankee from Entergy with plans for its accelerated decommissioning.

The companies jumping into the business believe they can make in profit….Holtec will inherit the multibillion-dollar decommissioning trust funds set up by the utilities for the plants’ eventual retirement. , The company would be able to keep anything left over in each fund after the plant’s cleanup. By Holtec’s accounting, for instance, the Pilgrim decommissioning will cost an estimated $1.13 billion, leaving $3.6 million in the fund.  Holtec and Northstar are also banking on the prospect of recouping money from the federal government for storing spent fuel during and after the decommissioning, because there is no national disposal site for high-level nuclear waste…

Holtec has come under scrutiny over its role in a mishap in August 2018 during the somewhat less aggressive decommissioning of the San Onofre plant in Southern California, where two reactors were retired in 2013 and the estimated completion date is 2030….Holtec contractors were lowering a 45-ton spent fuel cask into an underground storage vault at San Onofre when it became misaligned and nearly plunged 18 feet, investigators said. No radiation was released.  Federal regulators fined Southern California Edison, the plant’s owner, $116,000, and an investigation found that some Holtec procedures had been inadequate or not properly followed.

BOB SALSBERG , Speedy reactor cleanups may carry both risks and rewards, Associated Press, May 21, 2019