Tag Archives: carbon prices

Can We Change Path? Saving Forests and Cutting Carbon

No ecosystem is more important in mitigating the effects of climate change than tropical rainforest. And South-East Asia is home to the world’s third-biggest patch of it, behind the Amazon and Congo basins. Even though humans release carbon from these forests through logging, clear-felling for agriculture and other disruptions, some are so vast and fecund that the growth of the plants within them absorbs even more from the atmosphere. The Congo basin, for instance, locks up 600m tonnes of carbon a year more than it releases, according to the World Resources Institute (WRI), an international NGO that is equivalent to about a third of emissions from all American transport.

In contrast, such is the extent of clearing for plantations in South-East Asia’s rainforests, which run from Myanmar to Indonesia, that over the past 20 years they have turned from a growing carbon sink to a significant source of emissions—nearly 500m tonnes a year. Indonesia and Malaysia, home to the biggest expanses of pristine forest, have lost more than a third of it this century. Cambodia, Laos and Myanmar, relative newcomers to deforestation, are making up for lost time.

The Global Forest Watch, which uses satellite data to track tree cover, loss of virgin forest in Indonesia and Malaysia has slowed for the fourth year in row—a contrast with other parts of the world…The Leaf Coalition, backed by America, Britain and Norway, along with such corporate giants as Amazon, Airbnb, and Unilever, aims to create an international marketplace in which carbon credits can be sold for deforestation avoided. An initial $1bn has been pledged to reward countries for protecting forests. South-East Asia could be a big beneficiary,

Admittedly, curbing deforestation has been a cherished but elusive goal of climate campaigners for ages. A big un initiative to that end, called REDD+, was launched a decade ago, with Indonesia notably due for help. It never achieved its potential. Projects for conservation must jump through many hoops before approval. The risk is often that a patch of forest here may be preserved at the expense of another patch there. Projects are hard to monitor. The price set for carbon under the scheme, $5 a tonne, has been too low to overcome these hurdles.

The Leaf Initiative would double the price of carbon, making conservation more attractive. Whereas buyers of carbon credits under REDD+ pocketed profits from a rise in carbon prices, windfalls will now go to the country that sold the credits. Standards of monitoring are much improved. Crucially, the scheme will involve bigger units of land than previous efforts, the so-called jurisdictional approach. That reduces the risk of deforestation simply being displaced from a protected patch to an unprotected one.

Excerpts from Banyan: There is hope for South-East Asia’s beleaguered tropical forests, Economist, May 1, 2021

Dumping Carbon in the Seabed

Oil companies have for decades made money by extracting carbon from the ground. Now they are trying to make money putting it back. Energy giants such as Exxon Mobil and Royal Dutch Shell are pushing carbon capture and storage (CCS)—where carbon is gathered and buried underground—as part of a drive to reduce both their own and their customers’ emissions. Executives say the service could become a new source of income when the industry is grappling with how to adapt to a lower-carbon economy.

Oil companies have long captured carbon from their operations, albeit mostly to produce more oil. Now they want to retool that skill as a service they can sell to heavy-polluting industries like cement and steel, burying their carbon in the ground indefinitely for a fee, rather than releasing it into the atmosphere. Yet critics question the environmental benefits and high cost of such projects.

In 2021, Shell, Total and Equinor launched a joint venture to store carbon in a rock formation thousands of feet beneath the seabed off the coast of Norway. The state-backed Northern Lights project is set to be the first time companies outside the oil industry will be able to pay to have their carbon gathered and stored. Most carbon-storage projects rely on government funding. Norway is covering about 80% of the $1.6 billion cost of the Northern Lights project, with the rest split equally between Shell, Equinor and Total.

Exxon has said it plans to form a new business unit to commercialize carbon capture and storage, forecasting it could become a $2 trillion market by 2040. Chevron has formed partnerships on storage projects, while BP is codeveloping storage projects in the U.K. and Australia. Oil executives’ sales pitch to carbon-intensive companies: We will provide your energy, then take back the carbon to minimize your footprint. Carbon capture and storage iss becoming a business rather than just a solution. 

The U.S. offers companies a tax credit of as much as $50 a metric ton of carbon captured, while the U.K., Norway and Australia have collectively committed billions of dollars of funding for carbon-capture projects. But There are  concerns about whether storage sites could leak carbon. In Europe, public resistance to land-based storage has led to the use of aquifers and depleted gas fields in the North Sea….In the Norway project, carbon will be transported by ship around the bottom of the country before being pumped offshore via a 68-mile pipeline and then injected into an aquifer under the seabed. BP is working on a similar concept for a project it will operate in northeast England, where carbon will be collected from a gas-power plant and various industrial sites, then stored under the North Sea. “We’ll capture the carbon, we’ll take it offshore, we’ll stuff it underground,” BP Chief Executive Bernard Looney recently said of the project. “Taking the carbon back is what I like to describe it as.”

Excerpts from Sarah McFarlane, Oil Giants Turn to Carbon Storage, Apr. 20, 2021

Banning Gasoline Cars: Better than subsidies and taxes

More than a dozen countries say they will prohibit sales of petrol-fueled cars by a certain date. On September 23rd, 2020,  Gavin Newsom, California’s governor, pledged to end sales of non-electric cars by 2035. Such bans may look like window-dressing, and that could yet in some instances prove to be the case. But in the right circumstances, they can be both effective and efficient at cutting carbon.

Fully electric vehicles are not yet a perfect substitute for petrol-consuming alternatives. They are often more expensive, depreciate faster, and have a lower range of travel and more limited supporting infrastructure, like charging stations or properly equipped mechanics. But the number of available electric models is growing, and performance gaps are closing. A recent analysis concludes that in such conditions—when electric vehicles are good but not perfect substitutes for petrol-guzzlers—a ban on the production of petrol-fueled cars is a much less inefficient way to reduce emissions than you might think.

If electric vehicles were in every way as satisfactory as alternatives, it would take little or no policy incentive to flip the market from petrol-powered cars to electric ones. If, on the other hand, electric cars were not a good substitute at all, the cost of pushing consumers towards battery-powered vehicles would not be worth the savings from reduced emissions. Somewhere in between those extremes, both electric and petrol-powered cars may continue to be produced in the absence of any emissions-reducing policy even though it would be preferable, given the costs of climate change, for the market to flip entirely from the old technology to the new. Ideally, the authors reckon, this inefficiency would be rectified by a carbon tax, which would induce a complete transition to electric vehicles. If a tax were politically impossible to implement, though, a production ban would achieve the same end only slightly less efficiently—at a loss of about 3% of the annual social cost of petrol-vehicle emissions, or about $19bn over 70 years… A shove may work as well as a nudge. 

Excerpts from Outright bans can sometimes be a good way to fight climate change, Economist, Oct. 3, 2020

The Privilege of Polluting v. Decarbonization

The Paris climate agreement of 2015 calls for the Earth’s temperature to increase by no more than 2°C over pre-industrial levels, and ideally by as little as 1.5°C. Already, temperatures are 1°C above the pre-industrial, and they continue to climb, driven for the most part by CO2 emissions of 43bn tonnes a year. To stand a good chance of scraping under the 2°C target, let alone the 1.5°C target, just by curtailing greenhouse-gas emissions would require cuts far more stringent than the large emitting nations are currently offering.

Recognising this, the agreement envisages a future in which, as well as hugely reducing the amount of CO2 put into the atmosphere, nations also take a fair bit out. Scenarios looked at by the Intergovernmental Panel on Climate Change (IPCC) last year required between 100bn and 1trn tonnes of CO2 to be removed from the atmosphere by the end of the century if the Paris goals were to be reached; the median value was 730bn tonnes–that is, more than ten years of global emissions…

If you increase the amount of vegetation on the planet, you can suck down a certain amount of the excess CO2 from the atmosphere. Growing forests, or improving farmland, is often a good idea for other reasons, and can certainly store some carbon. But it is not a particularly reliable way of doing so. Forests can be cut back down, or burned—and they might also die off if, overall, mitigation efforts fail to keep the climate cool enough for their liking. …But the biggest problem with using new or restored forests as carbon stores is how big they have to be to make a serious difference. The area covered by new or restored forests in some of the ipcc scenarios was the size of Russia. And even such a heroic effort would only absorb on the order of 200bn tonnes of CO2 ; less than many consider necessary.

The world has about 2,500 coal-fired power stations, and thousands more gas-fired stations, steel plants, cement works and other installations that produce industrial amounts of CO2. Just 19 of them offer some level of Carbon Capture and Storage (CCS), according to the Global Carbon Capture and Storage Institute (GCSI), an advocacy group. All told, roughly 40m tonnes of CO2 are being captured from industrial sources every year—around 0.1% of emissions.

Why so little? There are no fundamental technological hurdles; but the heavy industrial kit needed to do CCS at scale costs a lot. If CO2 emitters had to pay for the privilege of emitting to the tune, say, of $100 a tonne, there would be a lot more interest in the technology, which would bring down its cost. In the absence of such a price, there are very few incentives or penalties to encourage such investment. The greens who lobby for action on the climate do not, for the most part, want to support CCS. They see it as a way for fossil-fuel companies to seem to be part of the solution while staying in business, a prospect they hate. Electricity generators have seen the remarkable drop in the price of wind and solar and invested accordingly.

Equinor, formerly Statoil, a Norwegian oil company, has long pumped CO2 into a spent field in the North Sea, both to prove the technology and to avoid the stiff carbon tax which Norway levies on emissions from the hydrocarbon industry. As a condition on its lease to develop the Gorgon natural-gas field off the coast of Australia, Chevron was required to strip the CO2 out of the gas and store it. The resultant project is, at 4m tonnes a year, bigger than any other not used for EOR. But at the same time, what the Gorgon project stores in a year, the world emits in an hour.

In Europe, the idea has caught on that the costs of operating big CO2 reservoirs like Gorgon’s will need to be shared between many carbon sources. This is prompting a trend towards clusters that could share the storage infrastructure. Equinor, Shell and Total, two more oil companies, are proposing to turn CCS into a service industry in Norway. For a fee they will collect CO2 from its producers and ship it to Bergen before pushing it out through a pipeline to offshore injection points. In September Equinor announced that it had seven potential customers, including Air Liquide, an industrial-gas provider, and ArcelorMittal, a steelmaker.

Similar projects for filling up the emptied gasfields of the North Sea are seeking government support in the Netherlands, where Rotterdam’s port authority is championing the idea, and in Britain, where the main movers are heavy industries in the north, including Drax.

The European Union has also recently announced financial support for CCS, in the form of a roughly €10bn innovation fund aimed at CC S, renewables and energy storage. The fund’s purpose is not to decarbonise fossil-fuel energy, but rather to focus on CCS development for the difficult-to-decarbonise industries such as steel and cement.

Excerpts from, The Chronic Complexity of Carbon Capture, Economist, Dec. 7, 2019

Taxing Carbon Emissions: EU

The European Union wants to slash greenhouse-gas emissions to 80% below 1990 levels by 2050. It is on course to cut just half that amount. To get back on track, on February 15th, 2017 the European Parliament voted for a plan to raise the cost for firms to produce carbon. It has prompted growing calls for the bloc to tax the carbon emissions embodied in the EU’s imports. At best, such a levy will barely curb emissions. At worst, it could cause a trade war.

The EU’s latest reforms try to put up the price of carbon by cutting the emissions allowances firms are granted. They include the EU’s first border tax on carbon, levied on cement imports.

Under the EU’s reforms, steelmakers in Europe would pay up to €30 ($32) to emit a tonne of carbon, but foreign producers selling in the EU would not have to pay a cent. Putting an equivalent tax on these imports is a neat solution to this problem. “It’s wonderful in theory,” says Jean Chateau, an economist at the OECD, a club of rich countries. But “in reality it’s very problematic.”

One big problem is how to calculate the carbon in imports. This is not easy even for simple steel sheets; for items made of several bits of metal from different sources, it is hellishly complex. Some countries might even refuse to provide the information. And any method brought in for foreign firms, if not applied to local ones, could fall foul of WTO rules,..

A global carbon price would produce far greater economic benefits than border taxes, but would require closer international co-operation. A trade war is not the way to get there.

Excerpts from Steely defences: Carbon tariffs and the EU’s steel industry, Economist,  Feb. 18, at 62

What is the Cost of Carbon?

The market price of carbon is €4.90 ($6.70) per tonne of CO2 in the EU, $11.50 in California. Big oil companies charge $34 or more. That is closer to the “social cost of carbon”—the damage from an extra tonne of CO2—than to the market price. America’s administration recently estimated the social cost at $37 a tonne. These prices change behaviour. A huge amount of attention is paid to government action. But the sort of carbon price some companies are using for planning would, if it became a market price, have a much bigger impact than any of the policies that governments are now talking about.

Companies and Emissions: Carbon Copy, Economist, Dec. 14, 2013, at 70