Category Archives: Alternative Energy

The Unquenchable Thirst for Oil

Demand for oil is rising and the energy industry, in America and globally, is planning multi-trillion-dollar investments to satisfy it. No firm embodies this strategy better than ExxonMobil, the giant that rivals admire and green activists love to hate. As our briefing explains, it plans to pump 25% more oil and gas in 2025 than in 2017. If the rest of the industry pursues even modest growth, the consequence for the climate could be disastrous.

To date politicians, particularly in America, have been reluctant to legislate for bold restrictions on carbon. That is in part thanks to ExxonMobil’s attempts to obstruct efforts to mitigate climate change. …ExxonMobil’s policies on climate change remain marred by inconsistencies. In October the company said it was giving $1m, spread over two years, to a group advocating a carbon tax. ExxonMobil maintains that a carbon tax is a transparent and fair way to limit emissions. But the sum is less than a tenth of its federal lobbying spending in 2018. Moreover, the carbon tax it favours would include protection for oil companies from climate lawsuits.

The firm is also working to reduce leaks of methane, a powerful greenhouse gas, from its wells, pipelines and refineries. However the American Petroleum Institute  (API) has been a main force urging Mr Trump’s administration to ease regulations on methane emissions. The API’s other efforts include lobbying against incentives for electric cars.  ExxonMobil is not alone in trying to sway the climate debate in its direction either. Shell, Total and BP are all members of the API. Marathon Petroleum, a refiner, reportedly campaigned to ease Barack Obama’s fuel-economy standards. BP spent $13m to help block a proposal for a carbon tax in Washington state in November. The Western States Petroleum Association, whose membership includes ExxonMobil and Shell, also lobbied to defeat that tax.

While oil companies plan to grow, trends in cleaner energy are moving in the wrong direction. Investments in renewables fell as a share of the total in 2017 for the first time in three years, as spending on oil and gas climbed. In 2018 carbon emissions in America grew by 3.4% as economic activity picked up, even as coal fell out of favour. Mr Woods maintains that any change to the energy supply will be gradual. “I don’t think people can readily understand just how large the energy system is, and the size of that energy system will take time to evolve,” he argues… Out at sea, ExxonMobil is working to increase production. By next year an underwater web of pipes will connect wells on the seabed to a vast vessel. From there the oil will be transferred to smaller tankers, then to the vast infrastructure that can refine and transport it until it reaches consumers in the form of fertiliser, plastic bottles, polyester or, most likely, petrol. From beneath the ocean floor to your car’s tank, for about the price of a gallon of milk.

Excerpts from  Crude Awakening, Economist,  Feb. 9, 2019; Bigger Oil, Economist,  Feb. 9, 2019

From Savior to Villain: Biofuel from Palm Oil

Globally, average palm oil yields have been more or less stagnant for the last 20  years, so the required increase in palm oil production to meet the  growing demand for biofuels  has come from deforestation and peat destruction in Indonesia.  Without fundamental changes in governance, we can expect at least a third of new palm oil  area to require peat drainage, and a half to result in deforestation.

Currently, biofuel policy results in 10.7  million tonnes of palm oil demand.  If the current biofuel policy continues we expect by 2030:
• 67 million tonnes palm oil demand due to biofuel policy.
• 4.5 million hectares deforestation.
• 2.9 million hectares peat loss.
• 7 billion tonnes of CO2 emissions over 20 years, more than total annual U.S. GHG emissions.
It must always be remembered that the primary purpose of biofuel policy in the EU and many  other countries is climate change mitigation. Fuel consumers in the European Union, Norway  and elsewhere cannot be asked to continue indefinitely to pay to support vegetable oil based
alternative fuels
that exacerbate rather than mitigate climate change.

The use of palm oil-based biofuel should be  reduced and ideally phased out entirely.  In Europe, the use of biodiesel other than that produced from approved waste or  by-product feedstocks should be reduced or eliminated.
In the United States, palm oil biodiesel should continue to be restricted from generating  advanced RINs under the Renewable Fuel Standard. Indonesia should reassess the relationship between biofuel mandate, and its  international climate commitments, and refocus its biofuel programme on advanced biofuels from wastes and residues. The aviation industry should focus on the development of advanced aviation biofuels  from wastes and residues, rather than hydrotreated fats and oils.

Excerpts from Dr Chris Malins,  Driving deforestation: The impact of expanding palm oil demand through biofuel policy, January 2018

In Feb. 28, 2019, Norway’s $1 trillion sovereign wealth fund, the world’s largest, pulled out of more than 33 palm oil companies over deforestation risks.

Climate Change: the Costs of Deep Decarbonization

Nuclear is already the largest source of low-carbon energy in the United States and Europe and the second-largest source worldwide (after hydropower). In the September 2018 report of the MIT Energy Initiative, The Future of Nuclear Energy in a Carbon-Constrained World shows that extending the life of the existing fleet of nuclear reactors worldwide is the least costly approach to avoiding an increase of carbon emissions in the power sector. Yet, some countries have prioritized closing nuclear plants, and other countries have policies that undermine the financial viability of their plants. Fortunately, there are signs that this situation is changing. In the United States, Illinois, New Jersey, and New York have taken steps to preserve their nuclear plants as part of a larger decarbonization strategy. In Taiwan, voters rejected a plan to end the use of nuclear energy. In France, decisions on nuclear plant closures must account for the impact on decarbonization commitments. In the United Kingdom, the government’s decarbonization policy entails replacing old nuclear plants with new ones. Strong actions are needed also in Belgium, Japan, South Korea, Spain, and Switzerland, where the existing nuclear fleet is seriously at risk of being phased out.

What about the existing electricity sector in developed countries—can it become fully decarbonized? In the United States, China, and Europe, the most effective and least costly path is a combination of variable renewable energy technologies—those that fluctuate with time of day or season (such as solar or wind energy), and low-carbon dispatchable sources (whose power output to the grid can be controlled on demand). Some options, such as hydropower and geothermal energy, are geographically limited. Other options, such as battery storage, are not affordable at the scale needed to balance variable energy demand through long periods of low wind and sun or through seasonal fluctuations, although that could change in the coming decades.

Nuclear energy is one low-carbon dispatchable option that is virtually unlimited and available now. Excluding nuclear power could double or triple the average cost of electricity for deep decarbonization scenarios because of the enormous overcapacity of solar energy, wind energy, and batteries that would be required to meet demand in the absence of a dispatchable low-carbon energy source.  One obstacle is that the cost of new nuclear plants has escalated, especially in the first-of-a-kind units currently being deployed in the United States and Western Europe. This may limit the role of nuclear power in a low-carbon portfolio and raise the cost of deep decarbonization. The good news is that the cost of new nuclear plants can be reduced through…modular construction shifting  labor from construction sites to productive factories and shipyards…and seismic isolation to protect the plant against earthquakes, which simplifies the structural design of the plant.

Excerpts from John Parsons, A fresh look at nuclear energy, Science, Jan. 2019

Cleaning Up Dirty Shipping

Making shipping cleaner is made more urgent by the decision of the International Maritime Organisation (IMO), the United Nations body responsible for the world’s shipping, to reduce the amount of sulphur allowed in bunker fuel from 3.5% to 0.5% by 2020. Sulphur is nasty stuff. When burned, it forms sulphates, which cause acid rain and pollute the air. A paper published in February 2017 in Nature Communications, by Mikhail Sofiev of the Finnish Meteorological Institute, found that the imo’s new rule could stop between 139,000 and 396,000 premature deaths a year.

The trouble is that sulphates also scatter sunlight and help to form and thicken clouds, which reflect solar radiation away from Earth. As a result, shipping is thought to reduce rather than increase man-made global warming—by 7% throughout the 20th century, according to one study. Dr Sofiev’s research showed that this cooling effect could fall by 80% after 2020, with the new low-sulphur standard in place…

The obvious way to offset the loss of sulphur-related cooling is by steep cuts to shipping’s planet-cooking carbon-dioxide emissions. The IMO wants these to fall by half, compared with 2008 levels, by 2050, regardless of how many vessels then ply the seas. But unlike desulphurisation, which is both imminent and legally binding, the CO2 target looks fuzzy and lacks any enforcement mechanism. An attempt to begin fleshing it out, at a meeting of  IMO member states which concluded in London on October 26, 2018 foundered.

One way to cut fuel consumption is to reduce drag by redesigning hulls and propellers. This is happening. In the past five or so years many ships’ propellers have been fitted with tip fins analogous to the turbulence-reducing upturned winglets on aeroplanes.  Further percentage points can be shaved away by smoothing hulls. This means, in particular, stopping barnacles and other creatures growing on them. Tin-based antifouling paints are now banned as toxic to sea life, so paintmakers are returning to an 18th-century solution to the fouling problem—copper.   Hulls can be scraped smooth, too, but restrictions on littering waters with paint chips and species from foreign parts have made such cleaning problematic. This may change, though, thanks to an underwater drone described by its Norwegian maker, ecosubsea, as “a cross between a vacuum cleaner and a lawnmower”. Rather than scour hulls with a metal brush, ecosubsea’s robots blast water at an angle almost parallel with the hull’s surface, which mostly spares paint from abrasion but hits marine growth perpendicularly, and thus hard. 

Many have hopes of returning to wind propulsion, and engineers have devised various modern versions of the sail. None has yet succeeded. A system developed by SkySails, a firm in Hamburg, for example, relied on kites to pull ships along. It was installed on five ships from 2008-11, but proved fiddly to use and maintain…

Some hope to cut marine emissions by employing batteries and electric motors. For transoceanic shipping this looks a long-shot. But local shipping might benefit. Norway, for instance, has started to introduce battery-powered ferries. And a Dutch company called Port-Liner is building electric canal barges for transporting shipping containers. The technology is expensive. Without taxpayer subsidy it would hardly be a runner—a fact also true of the Norwegian ferries.

The problem of shifting emissions around rather than eliminating them also applies to the idea of powering ocean-going vessels using fuel-cells. These generate electricity by reacting hydrogen and oxygen together. Given that electric propulsion more usually disguises emissions than eliminates them, some suggest the most practical approach to reducing shipping’s contribution to global warming is to switch to low-carbon fuel systems rather than conducting a futile search for no-carbon fuels. One alternative is diesel-electric propulsion.  Liquefied natural gas (lng) is another option. 

Excerpts  from Marine Technology of the Future: In Need for a Cean Up, Economist,  Nov. 3, 2018, at 75

The New Oil – Lithum

As demand heats up for lithium, a group of companies are hastening efforts to shine a light into the long-opaque market for the battery material that metal-industry cheerleaders call the “new oil.” … Auto makers, battery companies, and smartphone and laptop providers have been racing to lock down supplies of lithium from major producers such as Albemarle Corp of United States, the world’s biggest miner of lithium by volume, and Chilean company Sociedad Quimica y Minera de Chile, the No. 2 producer. Some of the world’s notable lithium users include Apple Inc., Samsung Electronics Co. and TeslaInc.

The surge in demand has sparked efforts to bring transparency to prices for lithium. …Because lithium isn’t traded on any exchange—unlike gold or silver, for instance—buyers have long been at a disadvantage in negotiations with producers, according to market watchers. In opaque markets, producers often have greater access to information about fast-moving market dynamics, such as unintended mine outages or suddenly sagging demand. That is especially the case with lithium, a metal mined by a relatively small group of big suppliers in countries from Chile to Australia…Big lithium miners “may say they support transparency, but they really don’t,” said Chris Berry, founder of New York commodity consultant House Mountain Partners. “Keeping prices secret between themselves and their end users is good for them.”

Excerpts  from Scott Patterson Lithium Boom Raises Question: What Is Its Price? WSJ,  Nov. 27, 2018

Flowering the Sahara

The installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect,  could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.

Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms…

This highlights that, in addition to avoiding anthropogenic greenhouse gas emissions from fossil fuels and the resulting warming, wind and solar energy could have other unexpected beneficial climate impacts when deployed at a large scale in the Sahara, where conditions are especially favorable for these impacts. Efforts to build such large-scale wind and solar farms for electricity generation may still face many technological (e.g., transmission, efficiency), socioeconomic (e.g., cost, politics), and environmental challenges, but this goal has become increasingly achievable and cost-effective

Exceprts from Yan Li, Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation, Science, Sept. 7, 2018

Mini-Green Grids

A forested village in Jharkhand state, eastern India, Narotoli is home mainly to adherents of Sarna, a nature-worshipping tribal religion. In more ways than one, it has long been off-grid… In 2018, it became one of the last in India to benefit from a push by Narendra Modi, the prime minister, to supply electricity to all the country’s villages. But the national power lines are so “reliably unreliable”, says an Indian executive, that they might as well be washing lines.

In 2016, before the national grid arrived, however, Mlinda, a social enterprise, had set up a “mini-grid”, a bank of batteries charged by solar panels and hooked up to homes, to guarantee round-the-clock power independent of the national network.  The power generated by the plant is expensive (though it costs less than villagers often pay for alternatives such as kerosene for lighting and diesel for irrigation pumps). The worry is that demand for electricity may not be enough to justify the installation cost. …But Mlinda and other mini-grid installers see them as more than a way to satisfy existing demand for electricity: they are a way to catalyse development. The installers advise villagers on irrigation, farming and marketing to help them develop businesses that require reliable electricity, which in turn justifies the expense of installation.

Vijay Bhaskar of Mlinda says a big mistake in development has been to assume that, once people are hooked up to electricity, businesses will automatically flourish. People have to be taught how to make the most of power, he says. “Bringing energy is the easy part. The hard part is finding productive ways to make use of it.”  According to one British expert, “mini-grid operators are not sellers of kilowatt-hours; they are stimulators of rural development.” Jaideep Mukherjee, the boss of Smart Power India, an NGO supported by the Rockefeller Foundation, says their job is to “demonstrate the benefits, train and then propagate”.

An independent study for Mlinda found that GDP per person in eight villages with mini-grids rose by 10.6% on average over the first 13 months, compared with 4.6% in a group of similar villages without them.  Mini-grids are being set up at the rate of just 100 or so a year, from Myanmar to Mozambique. But the International Energy Agency (IEA), a forecaster, says hundreds of thousands of them could connect 440m people by 2030, with the right policies and about $300bn of investment.

African countries used to focus almost exclusively on expanding national electricity networks. Now some, including Nigeria and Togo, have started to prioritise mini-grids. ..

Most mini-grids are green, unlike diesel, kerosene and coal- and gas-fired electricity. That is a welcome feature, though not the main aim, since the contribution of places like Narotoli to global warming is minuscule.

Excerpts from Mini-girds and development: Empowering Villages, Economist, July 14, 2018, at 61