Tag Archives: space trash

Mining the Moon: The First Mover Advantage

The US government is starting to lay down the groundwork for diplomacy on the moon. On 15 May, 2020 NASA administrator Jim Bridenstine released a set of principles that will govern the Artemis Accords on the exploration of the moon. The accords are named after NASA’s Artemis programme, the US initiative to explore the moon, with a planned launch of astronauts to the lunar surface in 2024. Other countries are also increasingly turning towards the moon, which is concerning when a landing on the moon can send up clouds of potentially hazardous dust that travel a long way across the surface and even into orbit…

At the moment, there is little practical international law governing activities on the moon. The Outer Space Treaty of 1967 deals with general space exploration, while the more specific Moon Agreement of 1984 states that “the moon and its natural resources are the common heritage of all mankind”, prohibiting the ownership of any part of the moon or any resources from the moon….However, no nation capable of human space flight has signed the Moon Agreement, effectively rendering it moot. In fact, in April 2020, US president Donald Trump issued an executive order supporting moon mining and taking advantage of the natural resources of space.

The Artemis Accords aim to protect historic locations like the Apollo landing sites but encourage mining in other areas. They also promote transparency and communication between nations, requiring signatories to share their lunar plans, register any spacecraft sent to or around the moon and release scientific data to the public.  That transparency requirement might be a stumbling block for potential parties to the accords, says Forczyk. “I really don’t know how much countries are going to be willing to share some of their more delicate, sensitive information,” she says. “

The rest of the stipulations of the Artemis Accords are about safety: nations will be able to set “safety zones” to protect their activities on the moon, they will have to work to mitigate the effects of debris in orbit around the moon and they will agree to provide emergency assistance to any astronauts in distress.

Rather than attempting to put together an international treaty, which could be difficult to negotiate before NASA’s next crewed launch to the moon, the US will sign bilateral agreements with individual countries.

Excerpts from Leah Crane, NASA’s Artemis Accords aim to lay down the law of the land on the moon, New Scientist, May 20, 2020

A Vacuum Cleaner for Space

A Singapore-based venture company aspiring to enter the space business unveiled a life-sized model of a satellite that would retrieve space debris, with which the company plans to conduct a test run in orbit in 2019 and to make commercially viable by 2020.  “Space is filled with trash, and if things continue as they have, space exploration will no longer be sustainable. …

Most orbital debris is old satellites and satellite components. Around 750,000 pieces of space debris at least 1 centimeter in diameter are said to be in near-Earth orbit, and are interfering with countries’ and companies’ efforts to place new satellites. Astroscale’s debris retrieval satellite closes in on dead satellites, and uses magnets to draw them in. The device then enters the atmosphere, bringing the out-of-commission satellite with it, and burns up on re-entry.

For example, in 2009 an out-of-commission Russian military satellite and a satellite launched by a U.S. corporation collided. The International Space Station (ISS) is frequently forced to change course or have its crew members evacuate from their posts. In 2007, China destroyed one of its own satellites with a missile, producing large volumes of orbital shrapnel and triggering international criticism.

Also in 2007, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) drafted the Space Debris Mitigation Guidelines, which recommends that satellites that are past their usefulness promptly leave their orbits. However, satellites and satellite parts that have already become space debris have uncoordinated trajectories, and because there is no established method of retrieving such litter, various countries and companies have been searching for a solution.

The Japan Aerospace Exploration Agency (JAXA) is working on a plan to attach metallic string to space debris, through which it would pass electric currents and use the Earth’s magnetic field to slow down the debris, and then drop them into the atmosphere. Meanwhile, the RIKEN research institute announced in 2015 that it had devised a method of using high-intensity lasers to slow down “drifting” litter so that they would hurtle into the atmosphere.  Researchers both within and outside Japan have proposed various other ideas, including making space debris attach to operating satellites and catching space debris with nets.

Company to test space-debris-retrieval satellite in 2019, aim to commercialize by 2020, Mainichi Japan, July 15, 2017