Tag Archives: satellites

Hearing the Naked Truth: Earth Observation

In the middle of last year, Ecuadorians watched with concern as 340 foreign boats, most of them Chinese, fished just outside the Exclusive Economic Zone (EEZ) around their country’s westernmost province, the Galapagos Islands. The law of the sea requires such vessels to carry GPS-based automatic identification systems (AIS) that broadcast where they are, and to keep those systems switched on. Some boats, however, failed to comply. There were more than 550 instances of vessels not transmitting their locations for over a day. This regular radio silence stoked fears that the boats concerned were sneaking into Ecuador’s waters to plunder its fish.

Both local officials and China’s ambassador to Ecuador denied this, and said all the boats were sticking to the rules. In October 2020, however, HawkEye 360, a satellite operator based in Virginia, announced it had detected vessels inside Ecuador’s EEZ on 14 occasions when the boats in question were not transmitting AIS. HawkEye’s satellites could pinpoint these renegades by listening for faint signals emanating from their navigation radars and radio communications.

HawkEye’s satellites are so-called smallsats, about the size of a large microwave oven. They are therefore cheap to build and launch. HawkEye deployed its first cluster, of three of them, in 2018. They are now in an orbit that takes them over both of Earth’s poles. This means that, as the planet revolves beneath them, every point on its surface can be monitored at regular intervals…Unlike spy satellites fitted with optical cameras, RF satellites can see through clouds. Their receivers are not sensitive enough to detect standard mobile phones. But they can pick up satellite phones, walkie-talkies and all manner of radar. And, while vessels can and do illicitly disable their AIS, switching off their communications gear and the radar they use for navigation and collision-avoidance is another matter entirely. “Even pirates don’t turn those things off,” says John Beckner, boss of Horizon Technologies….

RF data are also cheap to collect. Satellites fitted with robotic high-resolution cameras are costly. Flying microwave ovens that capture and timestamp radio signals are not. America’s National Geospatial-Intelligence Agency (NGA), one of that country’s numerous spying operations, is a big user of RF intelligence. It employs HawkEye’s data to find guerrilla camps and mobile missile-launchers, and to track both conventional warships and unconventional ones, like the weaponised speedboats sometimes deployed by Iran. Robert Cardillo, a former director of the agency who now advises HawkEye, says dozens of navies, Russia’s included, spoof AIS signals to make warships appear to be in places which they are not. RF intelligence is not fooled by this. Mr Cardillo says, too, that the tininess of RF satellites makes them hard for an enemy to destroy.

Beside matters military, the NGA also uses RFdata to unearth illicit economic activity—of which unauthorised fishing is merely one instance. Outright piracy is another. And the technique also works on land. In 2019, for example, it led to the discovery of an illegal gold mine being run by a Chinese company in a jungle in Gabon. And in 2020 the managers of Garamba National Park in the Democratic Republic of Congo began using HawkEye data to spot elephant poachers and dispatch rangers to deal with them…

Horizon also plans to compile a library of unique radar-pulse “fingerprints” of the world’s vessels, for the tiny differences in componentry that exist even between examples of the same make and model of equipment mean that signals can often be linked to a specific device. It will thus be able to determine not merely that a vessel of some sort is in a certain place, but which vessel it is, and where else it has been…

Excerpt from Espionage: Ears in the Sky, Economist, Mar. 20, 2021

Everything Moving in Space Is a Weapon? Yes.

Kosmos 2542, a Russian satellite that was launched in November 2019, was “like Russian nesting dolls”. Eleven days after its launch it disgorged another satellite, labelled Kosmos 2543. Then, on July 15th, Kosmos 2543 itself spat out another object, which sped off into the void.  Merely a “small space vehicle” to inspect other satellites, said the Russians. Nonsense, said the Americans; it was a projectile. The intentl.. was to signal Russia’s ability to destroy other nations’ satellites….In January 2020, America complained that Kosmos 2542 and 2543 had tailed a spy satellite in an “unusual and disturbing” way (American satellites have also sidled up to others in the past). 

Anti-satellite weapons are not new. During the cold war, America and the Soviet Union developed several ways to blow up, ram, dazzle and even nuke each other’s satellites. The countries conducted two-dozen anti-satellite tests between them. Ten were “kinetic”, involving a projectile physically striking a target. But new competitors, and new technologies, mean anti-satellite warfare is a hot topic once again. China has conducted ten tests over the past 15 years, including a kinetic one in 2007 that created a great deal of space debris. India conducted its first kinetic test in 2019. America, Russia and China have all manoeuvred their satellites close to others, sometimes provocatively so. New methods of attack are being tested, including lasers and cyber-attacks.

Some satellites, such as America’s GPS constellation, blur the distinction between military and civilian assets. Over the past decade, America’s armed forces have put payloads on three commercial satellites, and plan to pay Japan to host others on its own navigation satellites….Then there is the question of what counts as an attack. Michael Schmitt, a law scholar, and Kieran Tinkler, a professor at the us Naval War College, say it is unclear whether jamming a civilian satellite would violate the general prohibition on attacking civilian objects. Blowing up a military one, meanwhile, might or might not constitute an indiscriminate (and hence illegal) attack, depending on whether it could have been disabled by other means and how much debris was produced.

Perhaps the biggest difference between space war and terrestrial war is how long the consequences can last. Much of the debris from China’s 2007 test, for instance, will still be in space at the turn of the next century. The more debris, the greater the likelihood of accidental collisions with other satellites, which generates more debris in turn. Enough debris could lead to a chain reaction known as Kessler syndrome, which could render entire swathes of near-Earth space unusable for decades…

Space Junk

The Outer Space Treaty of 1967 requires states to consult each other on actions that “would cause potentially harmful interference”, though the rule has rarely been heeded. Most countries accept that, in wartime, a body of existing laws known as international humanitarian law would apply, as on Earth—something America confirmed in its “Spacepower” doctrine, published on August 10, 2020. International humanitarian law is based on principles such as distinction (between combatants and civilians) and proportionality (between civilian harm and military advantage). But how to apply such ideas in a place with few humans is not always obvious.

The Manual on International Law Applicable to Military Uses of Outer Space (MILAMOS) is being spearheaded by McGill University, in Montreal, and a separate Woomera Manual by the University of Adelaide. Both hope to publish their documents 2020…

Russia and China would like a formal treaty banning all weapons in space. Both are keen to prevent America from deploying space-based anti-missile systems which might threaten their own nuclear forces. America and its allies resist this. They argue that it is impossible to define a space weapon—anything that manoeuvres in orbit could serve as one—and that it would be easy to cheat. The European Union has instead proposed a voluntary code of conduct. Many non-Western countries would prefer a binding treaty…. Though most are not space powers, many are likely to become so in the future, so their buy-in is important.

Excerpts from Satellite warfare: An arms race is brewing in orbit, Economist, Aug. 15, 2020

Poker and Blackjack: How to Make War in Space

In March 2018, India became only the fourth country in the world—after Russia, the US, and China—to successfully destroy a satellite in orbit. Mission Shakti, as it was called, was a demonstration of a direct-ascent anti-satellite weapon (ASAT)—or in plain English, a missile launched from the ground. Typically this type of ASAT has a “kill vehicle,” essentially a chunk of metal with its own guidance system, mounted on top of a ballistic missile. Shortly after the missile leaves the atmosphere, the kill vehicle detaches from it and makes small course corrections as it approaches the target. No explosives are needed; at orbital speeds, kinetic energy does the damage…. China’s own first successful ASAT test was in 2007….

But going to war in space… doesn’t necessarily mean blowing up satellites. Less aggressive methods typically involve cyberattacks to interfere with the data flows between satellites and the ground stations.  Satellites are, after all, computers that happen to be in space, so they are vulnerable to attacks that disable or hijack them, just like their terrestrial peers.

For example, in 2008, a cyberattack on a ground station in Norway let someone cause 12 minutes of interference with NASA’s Landsat satellites. Later that year, hackers gained access to NASA’s Terra Earth observation satellite and did everything but issue commands. It’s not clear if they could have done so but chose not to. Nor is it clear who was behind the attack, although some commentators at the time pointed the finger at China. Experts warn that hackers could shut off a satellite’s communications, rendering it useless. Or they could permanently damage it by burning off all its propellant or pointing its imaging sensor at the sun to burn it out.

Another common mode of attack is to jam or spoof satellite signals. There is nothing fancy about this: it’s easier than hacking, and all the gear required is commercially available.  Jammers, often mounted on the back of trucks, operate at the same frequency as GPS or other satellite communication systems to block their signals. …There are strong suspicions that Russia has been jamming GPS signals during NATO exercises in Norway and Finland, and using similar tactics in other conflicts. “Russia is absolutely attacking space systems using jammers throughout the Ukraine,” says Weeden. Jamming is hard to distinguish from unintentional interference, making attribution difficult (the US military regularly jams its own communications satellites by accident). A recent report from the US Defense Intelligence Agency (DIA) claims that China is now developing jammers that can target a wide range of frequencies, including military communication bands. North Korea is believed to have bought jammers from Russia, and insurgent groups in Iraq and Afghanistan have been known to use them too.

Spoofing, meanwhile, puts out a fake signal that tricks GPS or other satellite receivers on the ground…. Russia also seems to use spoofing as a way of protecting critical infrastructure,,,.As well as being hard to pin on anyone, jamming and spoofing can sow doubt in an enemy’s mind about whether they can trust their own equipment when needed. The processes can also be switched off at any time, which makes attribution even harder.

The 2019 Defense Intelligence Agency (DIA) report suggests that China will have a ground-based laser that can destroy a satellite’s optical sensors in low Earth orbit as early as next year (and that will, by the mid-2020s, be capable of damaging the structure of the satellite). Generally, the intention with lasers is not to blast a satellite out of the sky but to overwhelm its image sensor so it can’t photograph sensitive locations. The damage can be temporary, unless the laser is powerful enough to make it permanent…In 2006, US officials claimed that China was aiming lasers at US imaging satellites passing over Chinese territory.

“It’s happening all the time at this low level,” says Harrison. “It’s more gray-zone aggression. Countries are pushing the limits of accepted behavior and challenging norms. They’re staying below the threshold of conflict.”..

The suspicion is that China is practicing for something known as a co-orbital attack, in which an object is sent into orbit near a target satellite, maneuvers itself into position, and then waits for an order. Such exercises could have less aggressive purposes—inspecting other satellites or repairing or disposing of them, perhaps. But co-orbiting might also be used to jam or snoop on enemy satellites’ data, or even to attack them physically….Russia, too, has been playing about in geostationary orbit. One of its satellites, Olymp-K, began moving about regularly, at one point getting in between two Intelsat commercial satellites. Another time, it got so close to a French-Italian military satellite that the French government called it an act of “espionage.” The US, similarly, has tested a number of small satellites that can maneuver around in space.

As the dominant player in space for decades, the US now has the most to lose. The DIA report points out that both China and Russia reorganized their militaries to give space warfare a far more central role. In response, the US military is starting to make satellites tougher to find and attack. For instance, the NTS-3, a new experimental GPS satellite scheduled for launch in 2022, will have programmable, steerable antennas that can broadcast at higher power to counter jamming. It’s designed to remain accurate even if it loses its connection with ground controllers, and to detect efforts to jam its signal.

Another solution is not just to make single satellites more resilient, but to use constellations in which any one satellite is not that important. That’s the thinking behind Blackjack, a new DARPA program to create a cheap network of military communications satellites in low Earth orbit.

Excerpts from Niall Firth How to fight a war in space (and get away with it), MIT Technology Review, June 26, 2019

The Space Rat Race

India, Japan and other space-faring countries are waking up to a harsh reality: Earth’s orbit is becoming a more dangerous place as the U.S., China and Russia compete for control of the final frontier…New Delhi is nervous because China has made no secret of its desire for influence in the Indian Ocean. China set up a naval base in Djibouti, a gateway to the ocean at the Horn of Africa. It secured a 99-year lease to the port of Hambantota in Sri Lanka. It is deeply involved in development projects in Maldives.

India has established itself as a player in the budget satellite business. It even put a probe into orbit around Mars in 2014, in a U.S.-assisted project that cost just $76 million. But it is scurrying to enhance its ability to monitor China’s activities, and the partnership with Japan is part of this.  Another sign that space is becoming a defense focus for India came on Dec. 19, when the country launched its third military communications satellite, the GSAT-7A. The satellite will connect with ground-based radar, bases and military aircraft, along with drone control networks.

China’s success in landing a craft on the far side of the moon on Jan. 3, 2019 came as a fresh reminder of its growing prowess. In late December, China also achieved global coverage with its BeiDou Navigation Satellite System. Only the U.S., Russia and the European Union had that capability.China aims to launch a Mars explorer in 2020 and complete its own Earth-orbiting space station around 2022.  In the back of Indian and Japanese officials’ minds is likely a stunning test China conducted in 2007. Beijing successfully destroyed one of its own weather satellites with a weapon, becoming only the third nation to pull off such a feat, after the Soviet Union and the U.S.

In December 2018, President Donald Trump ordered the Department of Defense to create a Space Command, widely seen as a precursor to a full-fledged Space Force.  There were 1,957 active satellites orbiting Earth as of Nov. 30, 2018 according to the Union of Concerned Scientists, a nonprofit U.S. advocacy group. America had the most by far, with 849, or 43% of the total. China was No. 2, with 284, followed by Russia with 152.  Japan and India had a combined 132 — 75 for the former and 57 for the latter.

Excerpts fromNUPUR SHAW India and Japan awaken to risks of superpower space race, Nikkei Asian Review, Jan. 8, 2019

Tracking the Oil

The oil he industry counts on a small group of little-known companies whose main job is to count the number of tankers leaving ports, at best using data gathered from satellites, at worst using simple binoculars. They then guess how much crude is being carried by measuring the depth of the vessels in the water.

Swiss-based Petro-Logistics S.A., one of those companies, calls its work “the art and science of tanker tracking,” with the aim being to discover what oil producers “are really doing as distinct to what they say they are doing,” according to a statement on its website. While the information produced by companies such as Petro-Logistics and U.K.-based Oil Movements serves as a main input for estimates by consultants, traders and official bodies, it’s not the only measurement stick in use.

The matter becomes even more complex for oil moved within pipelines. Russia, for instance, exports roughly 30 percent of its crude via pipeline, according to official data. That flow is most often measured by independent groups using infra-red photography, which provides only a rough approximation of output.

The Organization of Petroleum Exporting Countries traditionally has published a measure of production based on what the group calls “secondary sources,” in effect consultants who calculate flows from a variety of sources, including tanker tracking data. The cartel also publishes production figures based on what OPEC countries release publicly.

The IEA and the U.S. government also publish estimates, as do many news organizations, including Bloomberg. The most recent addition to this flood of information is the Joint Organisations Data Initiative (JODI), a project begun in 2002 that’s backed by some of the world’s richest countries.Although all of these sources rely on tanker-tracking data as a base of their data, each group also incorporates its own market intelligence and different methodologies to come up with their data

Excerpt from the Art and Science of Tanker Tracking, Bloomberg, Mar. 14, 2016

Brazil as Space Power

The Brazilian government is ending a decade-long project to operate Ukraine’s Cyclone-4 rocket from Brazilian territory following a government review that found too many open questions about its cost and future market success, the deputy chief of the Brazilian Space Agency (AEB) said.  It remains unclear whether the decision will force Brazil to pay Ukraine any financial penalties for a unilateral cancellation of a bilateral agreement. Over the years, the work to build a launch facility for Ukraine’s Cyclone at Brazil’s Alcantara spaceport has suffered multiple stops and starts as one side or the other fell short on its financial obligations to the effort…

Noronha de Souza said the idea of making a profit in the launch business is now viewed as an illusion. The project, he said, was unlikely ever to be able to support itself on commercial revenue alone.  “Do you really believe launchers make money in any part of the world? I don’t believe so. If the government doesn’t buy launches and fund the development of technology, it does not work,” he said.  “Everybody talks about SpaceX [of Hawthorne, California] like it’s magic, somehow different. It’s no different. Their connections with NASA have been important. If NASA had stopped the funding, where would they be? I really appreciate what they are doing, but I doubt whether launch bases can make money and survive on their own without government support.”…

While the Cyclone-4 project is about to end, Brazil has maintained as a strategic goal the development of a space-launch vehicle from the Brazilian military-owned Alcantara facility. As such it is continuing work with the German Aerospace Center, DLR, on a small solid-fueled vehicle, called VLM-1 for Microsatellite Launch Vehicle, that began as a launcher for suborbital missions and has evolved to a small-satellite-launch capability…

AEB is a purely civilian agency funded through the Science and Technology Ministry. Until a few years ago, the Brazilian military had not been a player in the nation’s space policy. That is starting to change with the Brazilian Defense Ministry’s establishment of space-related operational requirements.  Among those requirements is a radar Earth observation satellite, which AEB has penciled into its program for around 2020. Aside from allowing the use of its Alcantara site, the Brazilian military is not yet financing any AEB work, but the military is expected to pay for launches of its satellites once the development is completed

AEB is finishing design of a small multimission satellite platform whose first launch will be of the Amazonia-1 Earth observation payload, with a medium-resolution imager of 10-meter-resolution, similar to the capacity of today’s larger China-Brazil CBERS-4 satellite, which is in orbit.

Brazil and Argentina’s CONAE space agency will be dividing responsibility for an ocean-observation satellite system, using the same multimission platform, called Sabia-Mar. The first Sabia-Mar is scheduled for launch in 2017, with a second in 2018, according to AEB planning.

Excerpts from Peter B. de Selding Brazil Pulling Out of Ukrainian Launcher Project,  Space News, Apr. 16, 2015

Russia has rushed to take advantage of the cancellation of space agreement between Brazil and Ukraine. [Russia] wants bot build  joint projects and space programs on the long term with BRICS Group member countries, particularly Brazil.  Brazil attempts to build its own cosmodrome, and unfortunately for the loss of Ukraine and its technology, the Brazilian-Ukrainian Project for the use of the Cyclone rocket in coastal launchings is practically minimalized…Russia proposed its variant of work, consisting in principle on the installation, already existent, of several satellite navigation stations Glonass and tbe idea of helping Brasilia in some way to the construction of the cosmodrome.

Excerpt from  Odalys Buscarón Ochoa, Russia Interested in Space Coop with BRICS Countries, Prensa Latina, Apr. 24, 2015

Satellites for Africa

Africa’s demand for bandwidth is doubling every year, outpacing the laying of terrestrial telecom fibre links and encouraging commercial satellite operators to launch more units into orbit.   The arrival of submarine cables on Africa’s eastern shore just five years ago (see e.g. Eastern Africa Submarine Cable System (EASSy)) was largely expected to herald the end of satellite connections, which had been the region’s only link to the outside world for decades.  But the opposite is happening with Africa’s political geography – notably its many landlocked countries, such as Zambia, South Sudan and Rwanda – bringing undersea cable plans back to earth.

“If you are to provide connectivity to the masses, fibre is not the way to do it. Do you think that it would make economical sense to take fibre to every village in Kenya?” said Ibrahima Guimba-Saidou, a senior executive for Africa at Luxembourg-based satellite operator SES SA “Satellite is still around and will continue to be around because it’s the best medium to extend connectivity to the masses.”  Hundreds of millions of people on the continent still have no access to the Internet, he said….

SES, one of the world’s largest commercial satellite operators, expects to launch its Astra2G satellite in 2014 after sending three others dedicated to Africa into orbit in the last year. Nine of its 56 satellites orbiting the earth are allocated for Africa.  Europe’s biggest satellite operator Eutelsat plans to fire off its tri-band EUTELSAT 3B this month after launching another to extend sub-Saharan Africa coverage in 2013.

The demand for Internet and data services in Africa has been driven by affordable mobile broadband connections. Mobile broadband users could grow by nearly eight times to 806 million by the end of 2018, according to Informa estimates.  New services such as digital television, onboard Internet connection for passenger aircraft, and delivering education and health services electronically will also drive demand.

The private sector has several initiatives to extend the capacity from submarine cables inland using terrestrial cables, but until that bottleneck is addressed, satellite operators are innovating to plug that black hole. One operator, O3B, or Other 3 Billion, has launched four of the next-generation medium earth orbit (MEO) satellites and plans two other launches in 2014 to make an orbital constellation of 12.  At a height of 8,000 kms (5,000 miles), the MEO units allow for faster speeds than traditional stationary satellites at 36,000 kms.  O3B’s tests have delivered capacity five times better than what traditional satellites can manage, making its technology suitable for both voice and interactive applications, said Omar Trujillo, vice president for Africa and Latin America….”A lot of applications for mining, oil and gas, will continue to be done by satellite,” he said. “The main market may not be international links for Nairobi or Johannesburg but will be communication for some of these remote areas that have had very low demand before, but now have fast-growing demand.

Excerpts from Helen Nyambura-Mwaura AFRICA INVESTMENT-Africa’s hunger for data sends satellites into orbit, Reuters, Apr. 17, 2014

Space – the Wild West

Space is a current and future battleground without terrain, where invisible enemies conceivably could mount undetectable attacks to devastating effect if the right deterrent and defensive plans aren’t pursued now, the assistant defense secretary for global strategic affairs told a think tank audience on Sept. 17, 2013  Madelyn R. Creedon spoke to a Stimson Center gathering whose audience included analysts focused on the question of deterrence in space. The center released a publication this week titled “Anti-satellite Weapons, Deterrence and Sino-American Space Relations,” presenting a number of essays examining various perspectives on space deterrence.

Creedon noted that in Defense Department parlance, deterrence is “the prevention of action by the existence of a credible threat of unacceptable counteraction and/or the belief that the cost of action outweighs the perceived benefits.” In other words, she said, if deterrence is effective, an adversary has or believes he has more to lose than to gain by attacking.  Deterrence remains a core defense strategy for the United States, she added, and the nation’s nuclear deterrent is “still alive and well.”  Creedon acknowledged that one classic approach to considering space deterrence — that is, preventing potential enemies from attacking U.S. or partner satellites and other military or economic assets in space — is to try to apply lessons learned during the Cold War. Then, the United States and the Soviet Union kept an uneasy diplomatic truce and piled up enough nuclear weapons to guarantee mutually assured destruction.

But one flaw to comparing the two deterrent challenges, she said, is that an attack that disables a satellite, unlike one from a nuclear warhead that flattens a major city, doesn’t threaten a nation’s existence. Another is that the two superpowers spent decades constructing an elaborate, mirrored, deterrent Cold War architecture and protocols, while space is still, comparatively, “the Wild West.” A third is that an attack in space or cyberspace may rely on digital rather than conventional weapons, and so could occur without warning or even detection.

“If there is an attack against a space asset, it isn’t visible,” she said. “You can’t watch it on CNN, and unless you’re directly affected by the capability that the space assets provide, you’re probably completely oblivious that the attack happened.”

She said DOD is developing and implementing what safeguards it can implement in space using four mutually supportive elements to deter others from taking action against U.S. assets:

— Working to internationalize norms and establish a code of conduct to enhance stability;

— Building coalitions to enhance security;

— Adding resilience to U.S. space architectures; and

— Preparing for an attack on U.S. and allied space assets using defenses “not necessarily in space.”

“We believe this four-element approach … will bolster deterrence,” Creedon said.

The department is working with the State Department and international partners to define elements of good behavior in space, she said. “States must remain committed to enhance the welfare of humankind by cooperating with others to maintain the long-term sustainability, safety, security and stability of the outer-space environment,” she added.  Creedon said work is underway to build deterrent coalitions and increase space awareness. She said the “Five Eyes” nations, which include the United States, United Kingdom, Canada, Australia and New Zealand, are extending their intelligence cooperation to expand their collective space situational awareness…

The United States is meanwhile working to lower the benefit to potential attackers by employing more satellites, participating in satellite constellations with other countries and purchasing payload space on commercial satellites when feasible.  Creedon said the U.S. approach to space deterrence is similar to its strategy in any domain: take “prudent preparations to survive, and to operate through, and, hopefully, prevail in any conflict.”

By Karen Parrish, Official Describes Evolution of Space Deterrence, American Forces Press Service, Sept. 19, 2013

Space Weapons and Space Law

“Policy, law and understanding of the threat to space is lagging behind the reality of what is out there,” warned Mark Roberts, a former Ministry of Defence official who was in charge of government space policy and the UK’s “offensive cyber portfolio”.….

The disabling of satellites would have a disastrous impact on society, knocking out GPS navigation systems and time signals. Banks, telecommunications, power and many infrastructures could fail, Roberts told the conference….Agreements such as the 1967 Outer Space treaty and the 1979 Moon treaty are supposed to control the arms race in space. Some states have signed but not ratified them, said Maria Pozza, research fellow at the Lauterpacht Centre for International Law at Cambridge University.  Existing treaties do not specify where air space ends and outer space begins – although 100km (62 miles) above the Earth is becoming the accepted limit.

The Navstar constellation of satellites was used to provide surveillance of Iraq during the Gulf war in 1991. Was that, asked Pozza, an aggressive use of space, a “force-multiplier”? Satellites may have also been used to photograph and locate al-Qaida bases, Osama bin Laden or even assess future strikes against Syria.

The Chinese government has recently moved to support a 2012 EU code of conduct for space development, which, Pozza said, was a softer law. The draft Prevention of the Placement of Weapons in Outer Space treaty has not yet been agreed. “Are we dismissing the possibility of a hard law or giving it a good chance?” Pozza asked.

The Chinese tested an anti-satellite weapon in 2007 that destroyed a defunct orbiting vehicle and showered debris across near Earth orbits. Other satellites have been jammed by strong radio signals. BBC transmissions to Iran were disrupted during this year’s elections through ground signals ostensibly sent from Syria.

In 2011, hackers gained control of the Terra Eos and Landsat satellites, Roberts said. The orbiting stations were not damaged. “The threat can now be from a laptop in someone’s bedroom,” he added.

Professor Richard Crowther, chief engineer at the UK Space Agency, said scientists were now exploring the possibility of robotic systems that grapple with and bring down disused satellites or laser weapons to clear away debris in orbit.  Both technologies, he pointed out, had a potential dual use as military weapons. 3D printing technologies would, furthermore, allow satellite operators to develop new hardware remotely in space.

The UK is formulating its space security policy, group captain Martin Johnson, deputy head of space policy at the MoD, said. Fylingdales, the Yorkshire monitoring station, has been cooperating for 50 years with the USA to enhance “space awareness” and early warning systems. The UK, Johnson said, was now working with the EU to develop a complementary space monitoring system.

Excerpt, Owen Bowcott, legal affairs correspondent, The Guardian, Sept. 11, 2013

Just Hit See-Me: the new military satellites

The Seeme Program from DARPA website:

DARPA’s SeeMe (Space Enabled Effects for Military Engagements) program aims to give mobile individual US warfighters access to on-demand, space-based tactical information in remote and beyond- line-of-sight conditions. If successful, SeeMe will provide small squads and individual teams the ability to receive timely imagery of their specific overseas location directly from a small satellite with the press of a button — something that’s currently not possible from military or commercial satellites.

The program seeks to develop a constellation of small “disposable” satellites, at a fraction of the cost of airborne systems, enabling deployed warfighters overseas to hit ‘see me’ on existing handheld devices to receive a satellite image of their precise location within 90 minutes. DARPA plans SeeMe to be an adjunct to unmanned aerial vehicle (UAV) technology, which provides local and regional very-high resolution coverage but cannot cover extended areas without frequent refueling. SeeMe aims to support warfighters in multiple deployed overseas locations simultaneously with no logistics or maintenance costs beyond the warfighters’ handheld devices.

The SeeMe constellation may consist of some two-dozen satellites, each lasting 60-90 days in a very low-earth orbit before de-orbiting and completely burning up, leaving no space debris and causing no re-entry hazard. The program may leverage DARPA’s Airborne Launch Assist Space Access (ALASA) program, which is developing an aircraft-based satellite launch platform for payloads on the order of 100 lbs. ALASA seeks to provide low-cost, rapid launch of small satellites into any required orbit, a capability not possible today from fixed ground launch sites.

Raytheon Company was awarded a $1.5 million Defense Advanced Research Projects Agency (DARPA) contract for phase one of the agency’s Space Enabled Effects for Military Engagements (SeeMe) program. During the next nine months, the company will complete the design for small satellites to enhance warfighter situational awareness in the battlespace.  Raython News Release, Dec. 13, 2012