Tag Archives: militarization of space

Banning Anti-Satellite Missiles

The UN General Assembly has overwhelmingly approved the US-proposed resolution calling on states to commit to a moratorium on testing of destructive anti-satellite missiles, with 155 countries voting yes, nine voting no including Russia, China and Iran, and nine nations abstaining including India.  The UN vote to support the resolution does not commit individual nations to the moratorium, but signals that there is widespread support for the concept. Canada, New Zealand, Germany, Japan, the United Kingdom, South Korea, Switzerland, Australia and, France have now made such pledges…

France and Germany are Europe’s two biggest European space players, but Italy is also a major space operator of both civil and military satellites, and so far Rome has remained uncommitted. Luxembourg also is emerging as a European space hub and has yet to sign up.

Excerpts from THERESA HITCHENS, US call for halting kinetic anti-satellite tests gets boost from UN vote, Reuters, Dec. 9, 2022 

Why China Fears Elon Musk More than the U.S.

Chinese military observers have been increasingly concerned about the potential of SpaceX’s Starlink satellite network in helping the US military dominate space, especially so, in the wake of the Ukraine war, where Elon Musk activated Starlink satellites to restore communications that had stopped because of shelling by the Russian troops…. 

“SpaceX has decided to increase the number of Starlink satellites from 12,000 to 42,000 – the program’s unchecked expansion and the company’s ambition to use it for military purposes should put the international community on high alert,” said the article on China Military Online, the official news website affiliated with the Central Military Commission (CMC), China’s highest national defense organization headed by President Xi Jinping himself.

The article notes the SpaceX Starlink’s role during the Russia-Ukraine war, where Elon Musk provided Starlink terminals to restore communications…However, there have also been reports of Starlink aiding the Ukrainian armed forces in precision strikes against Russian tanks and positions, which has not been unnoticed by Chinese military observers.

“In addition to supporting communication, Starlink, as experts estimated, could also interact with UAVs [Unmanned Aerial Vehicles] and, using big data and facial recognition technology, might have already played a part in Ukraine’s military operations against Russia,” said the China Military Online article…..Another remarkable event was SpaceX’s swift response to a Russian jamming effort targeting its Starlink Satellite service which was appreciated by the Pentagon’s Director for Electromagnetic Warfare. Elon Musk had claimed that Russia had jammed Starlink terminals in Ukraine for hours at a time, following which he also said that after a software update, Starlink was operating normally….“And suddenly that [Russian jamming attack] was not effective anymore. From [the] EW technologist’s perspective, that is fantastic … and how they did that was eye-watering to me,” said Dave Tremper, the Director of electronic warfare  (EW)for the Office of the Secretary of Defense.

The China Military Online commentary listed the numerous instances since 2019 when Starlink has cooperated with the US military, which also included the successful data transmission test conducted by the US Air Force (USAF) on March 3, 2022…It also raised a possibility that Starlink could form a second and independent internet that threatened states’ cyberspace sovereignty.

Another concern for Chinese military analysts has been the scarcity of frequency bands and orbital slots for satellites to operate, which they believe are being quickly acquired by other countries. “Orbital position and frequency are rare strategic resources in space,” said the article, while noting, “The LEO can accommodate about 50,000 satellites, over 80% of which would be taken by Starlink if the program were to launch 42,000 satellites as it has planned.” “SpaceX is undertaking an enclosure movement in space to take a vantage position and monopolize strategic resources,” the article further added.

Excerpts from Tanmay Kadam, China ‘Deeply Alarmed’ By SpaceX’s Starlink Capabilities That Is Helping US Military Achieve Total Space Dominance, EurAsian Times, May 9, 2022

Sustainability or Lethality: Space

The United States SPACEWERX is the innovation arm of the U.S. Space Force and a part of AFWERX (the Air Force technology accelerator) whose purpose is to increase lethality at a lower cost.

The SPACEWERX has launched Orbital Prime whose purpose is to invigorate the On-orbit Servicing, Assembly, and Manufacturing (OSAM) market using Active Debris Remediation (ADR) as a use case for the foundational technologies. As the congestion of the space domain and  space debris threaten the long-term sustainability of the space domain, Orbital Prime will transition agile, affordable, and accelerated OSAM space capabilities to build the foundation for space logistics while preserving the global commons.

Excerpt from Space Prime

Tracking and Removing Polluting Space Junk

At orbital speeds a tennis-ball-sized piece of space junk packs enough energy to obliterate a satellite…Even tiny bits of debris can do damage. In May 2021 the Canadian Space Agency said an untracked piece of junk had punched a hole 5mm across in Canadarm2, a robotic limb attached to the International Space Station (ISS).

As orbiting objects multiply, the danger grows. Roughly a dozen sizeable pieces of space debris break up every year as a result of collisions, exploding rocket fuel, or the rupturing of pressurized tanks or old batteries. Solar radiation chips off bits of paint and metal…Today there 4,500 active satellites orbiting Earth and this does not include defunct satellites…There could be 100,000 active satellites in orbit by the end of the decade…

Radars operated by the US Department of Defense have improved ‘space situational awareness’…One big advance has been “Space Fence”. This is a system built in the Marshall Islands for America’s air force. It is billed as the world’s most advanced radar…In April 2021, LeoLabs, a firm in Silicon Valley, switched on its fourth debris-tracking radar station. ..LeoLabs sells data to satellite operators, space agencies, America’s armed forces and insurers keen to calculate better actuarial tables for spacecraft….

Besides using radar, debris can also be tracked optically. In collaboration with Curtin University, in Perth, Lockheed Martin runs FireOpal, a system of 20 cheap cameras aimed at the sky from various parts of Australia. For several hours at dawn and dusk, when these cameras are in the dark but sunlight still illuminates debris orbiting above, the cameras take pictures every ten seconds. The closer an object, the more it appears to move relative to the stars, allowing triangulation of its position…fire

Lasers are another option….For finding stuff in high orbits, though, neither lasers nor radars are much help. But telescopes work. ExoAnalytic Solutions, a Californian firm, tracks junk up to 170,000km away—nearly halfway to the Moon—using instruments “just laying on the shelves” at astronomy shops...Northstar Earth & Space, a new firm in Montreal, is to raise money to build, at $25m a pop, three 100kg satellites that will use telescopic cameras to track junk from orbit..

Naturally, this orbital-tracking technology has military value as well. Knowing objects’ orbits can reveal much about an adversary’s capabilities—including, perhaps, orbital combat. Movements that represent any deviation from normal patterns are most telling…To illustrate why, he points to an object that had been considered to be just a piece of debris from a Russian military launch. In May 2014 the “debris” sprang to life. Its movements since then have fuelled fears that it could be an anti-satellite weapon. Whether other such “sleepers” are hidden in plain sight among the clouds of rubbish orbiting Earth remains to be seen. 

Excerpts from Orbital housekeeping: Tracking space debris is a growing business, Economist, Sept. 18, 2021

The Moon Miners

The joint announcement by China and Russia in March 20211 on their collaboration to explore the moon has the potential to scramble the geopolitics of space exploration, once again setting up competing programs and goals for the scientific and, potentially, commercial exploitation of the moon. This time, though, the main players will be the United States and China, with Russia as a supporting player.

In recent years, China has made huge advances in space exploration, putting its own astronauts in orbit and sending probes to the moon and to Mars. It has effectively drafted Russia as a partner in missions that it has already planned, outpacing a Russian program that has stalled in recent years. In December 2020, China’s Chang’e-5 mission brought back samples from the moon’s surface, which have gone on display with great fanfare in Beijing. That made China only the third nation, after the United States and the Soviet Union, to accomplish the feat. In the coming months, it is expected to send a lander and rover to the Martian surface, hard on the heels of NASA’s Perseverance, which arrived there in February 2021..

 According to a statement by the China National Space Administration, they agreed to “use their accumulated experience in space science research and development and use of space equipment and space technology to jointly formulate a route map for the construction of an international lunar scientific research station.”

After the Soviet Union’s collapse, Russia became an important partner in the development of the International Space Station. With NASA having retired the space shuttle in 2011, Russia’s Soyuz rockets were the only way to get to the International Space Station until SpaceX, a private company founded by the billionaire Elon Musk, sent astronauts into orbit on its own rocket last year. China, by contrast, was never invited to the International Space Station, as American law prohibits NASA from cooperating with Beijing. 

China pledged to keep the joint project with Russia “open to all interested countries and international partners,” as the statement put it, but it seemed all but certain to exclude the United States and its allies in space exploration. The United States has its own plans to revisit the moon by 2024 through an international program called Artemis. With Russia by its side, China could now draw in other countries across Asia, Africa and Latin America, establishing parallel programs for lunar development….

Excerpts from China and Russia Agree to Explore the Moon Together, NYT, Mar. 10, 2021

A Lethal Combination: Pentagon and NASA

U.S. government and aerospace-industry officials are removing decades-old barriers between civilian and military space projects, in response to escalating foreign threats beyond the atmosphere. The Pentagon and the National Aeronautics and Space Administration (NASA) are joining forces to tackle efforts such as exploring the region around the moon and extending the life of satellites. Many details are still developing or remain classified.  Driving the changes are actions by Moscow and Beijing to challenge American space interests with antisatellite weapons, jamming capabilities and other potentially hostile technology. Eventually, according to government and industry officials briefed on the matter, civil-military cooperation is expected to extend to defending planned NASA bases on the lunar surface, as well as protecting U.S. commercial operations envisioned to extract water or minerals there…

Large and small contractors are maneuvering to take advantage of opportunities to merge military and nonmilitary technologies. They include established military suppliers that already have a foot in both camps, such as Northrop Grumman,  the Dynetics unit of Leidos Holdings, and Elon Musk’s Space Exploration Technologies Corp. Smaller companies such as Maxar Technologies Holdings,  closely held robotic-lander maker Astrobotic Technology, and small-satellite producer Blue Canyon Technologies, recently acquired by Raytheon Technologies, also seek to diversify in the same way…

The U.S. astronaut corps always has included many military officers, some previous NASA scientists quietly shared data with military counterparts and NASA’s now-retired Space Shuttle fleet was supposed to launch Pentagon satellites. But today, veteran industry and government experts describe the cooperation as much more extensive, covering burgeoning capabilities such as repairing and repurposing satellites in orbit, or moving them around with nuclear propulsion. Intelligence agencies are more involved than ever in leveraging civilian technology, including artificial intelligence, robotic capabilities and production know-how.

Excerpt from Pentagon, NASA Knock Down Barriers Impeding Joint Space Projects, WSJ, Feb. 1, 2021

New Fait Accompli in Space: the Artemis Accords

Seven countries have joined the United States in signing the Artemis Accords on October 13, 2020, a set of principles governing norms of behavior for those who want to participate in the Artemis lunar exploration program: Australia, Canada, Japan, Luxembourg, Italy, the United Arab Emirates and the United Kingdom….The accords outline a series of principles that countries participating in the Artemis program are expected to adhere to, from interoperability and release of scientific data to use of space resources and preserving space heritage. Many of the principles stem directly from the Outer Space Treaty and related treaties.

NASA was originally focused on having the document apply to lunar and later Martian exploration. Japan wanted to include asteroid and comet missions as well, based on that country’s program of robotic asteroid missions like the Hayabusa2 asteroids sample return spacecraft. The document now includes asteroid and comet missions, as well as activities in orbit around the moon and Mars and the Lagrange points of the Earth-moon system.

NASA is implementing the Artemis Accords as a series of bilateral agreements between the United States and other countries, which allows them to move more quickly than if NASA sought a multilateral agreement under the aegis of the United Nations…Frans von der Dunk, a professor of space law at the University of Nebraska, drew parallels with development of international civil aviation regulations, which started with bilateral agreements between the United States and United Kingdom that were later copied among other nations. “That is something that will possibly happen here as well,” he said.

The bilateral nature of the accords, though, do present restrictions. China, for instance, cannot sign on, because NASA, under the so-called “Wolf Amendment” in US law, is restricted from bilateral cooperation with China.

The accords are outside the traditional UN framework of international space law – such as the UN Committee on the Peaceful Uses of Outer Space. The requirement to sign bilateral agreements with the US can be viewed as a way of trying to impose US preferences on how to regulate space on others. Russia has already stated that the Artemis Program is too “US-centric”.  India, Germany, France and the European Space Agency (ESA) have not yet signed on to the accords.

Excerpt from Jeff Foust ,Eight countries sign Artemis Accords, Space News, Oct. 13, 2020

Government Intervention is Great: What China is Learning from the United States

A study published by the China Aerospace Studies Institute in September 2020′China’s Space Narrative: Examining the Portrayal of the US-China Space Relationship in Chinese Sources‘ used publicly available Chinese language resources to draw insights on how the Chinese view the U.S.-China space relationship. According to the study:

“Chinese sources weave a space narrative that portrays China as a modernizing nation
committed to the peaceful uses of space and serving the broader interests of advancing humankind through international space cooperation, economic development, and scientific discovery. Chinese sources minimize the military role of China’s space program.

In contrast, the same sources portray the United States as the leading
space power bent on dominating space, restricting access to space, and limiting international space cooperation to countries with similar political systems and level of economic development.

The report concludes that the United States and China are in a long-term competition in space in which China is attempting to become a global power, in part, through the use of space. China’s primary motivation for developing space technologies is national security…China’s space program is one element of its efforts to transition the current U.S.-dominated international system to a multipolar world….

Many Chinese writings on commercial space analyze the experiences of U.S. companies, with a particular focus on SpaceX. Chinese space experts call SpaceX the “major representative company” for commercial space worldwide. A report from Hong Kong media claims that Chinese investors view SpaceX as the “benchmark company” for emerging commercial space companies in the mainland. Chinese authors also follow developments in other U.S. commercial space companies, such as Digital Globe
and Rocket Lab.

Chinese authors also pay attention to the ways in which the U.S. government uses various policies and incentives to create a favorable ecosystem for the growth of new commercial space companies. Chinese writings analyze ways in which NASA has supported private companies with funding, technology transfer, consulting, and infrastructure leasing. Although their specific recommendations vary, Chinese authors view strong government oversight and intervention as crucial toward the success of the domestic commercial space industry.”

Tracking the Enemy: U.S. Space Force in Qatar

The newly formed U.S. Space Force is deploying troops to a vast new frontier: the Arabian Peninsula. Space Force now has a squadron of 20 airmen stationed at Qatar’s Al-Udeid Air Base in its first foreign deployment. The force, pushed by President Donald Trump, represents the sixth branch of the U.S. military and the first new military service since the creation of the Air Force in 1947.   Concerns over the weaponization of outer space are decades old. But as space becomes increasingly contested, military experts have cited the need for a space corps devoted to defending American interests…

In the spring of 2020, Iran’s paramilitary Revolutionary Guard launched its first satellite into space, revealing what experts describe as a secret military space program. The Trump administration has imposed sanctions on Iran’s space agency, accusing it of developing ballistic missiles under the cover of a civilian program to set satellites into orbit.

“The military is very reliant on satellite communications, navigation and global missile warning,” said Capt. Ryan Vickers, a newly inducted Space Force member at Al-Udeid. American troops, he added, use GPS coordinates to track ships passing through strategic Gulf passageways…

Isabel Debre, US Space Force deploys to vast new frontier: Arabian Desert, Associated Press, Sept. 21, 2020

Conquering Space: China’s X-37B and the United States

Ever since China claimed success in the secretive launch of an experimental spacecraft, experts have been pondering over what it could be and what it did in space.The spacecraft – mounted on a Long March 2F rocket – was launched from the Jiuquan Satellite Launch Centre in northern China on Sept. 4, 2020 and safely returned to Earth after two days in orbit…Unlike recent Chinese high-profile space missions, very few details have emerged about the vehicle and no visuals have been released. Chinese authorities have been tight-lipped about the nature of the short-duration excursion and what technologies were tested. The exact launch and landing times were not revealed, nor was the landing site although it is thought to be the Taklamakan Desert, which is in northwest China.

Three years ago, China said it would launch a space vessel in 2020 that “will fly into the sky like an aircraft” and be reusable. A reusable spacecraft – as the name implies can undertake multiple trips to space – thereby potentially lowering the overall cost of launch activity. A traditional one-off spacecraft – costing tens of millions of dollars – is practically rendered useless after a single mission.

The experimental vessel reached an altitude of about 350km, which is in line with China’s previous crewed flights. The spacecraft also released an unknown object into the orbit before returning to Earth…Once the testing is complete, such a vehicle could be used to launch and repair satellites, survey the Earth, as well as take astronauts and goods to and from orbit, possibly to a planned future Chinese space station.

The Chinese craft’s size and shape remain unclear but it is widely believed to be some sort of uncrewed space plane similar to the X-37B Orbital Test Vehicle operated by the US Air Force. The recent mission could be linked to the Shenlong – or divine dragon – space plane project, which has been in development for some time, according to reports. A second Chinese reusable space plane called Tengyun, or cloud climber, is also in the works. If confirmed as a space plane, China would become only the third country to have successfully launched such a vehicle into orbit after the US and the former Soviet Union. The European Space Agency is working on its own reusable orbital vehicle called Space Rider, while India is also said to be developing a space shuttle-like craft.

The X-37B, resembling a miniature space shuttle, has been in orbit since late May 2020 following its launch on its sixth assignment. Very little is known about the X-37B’s missions, prompting speculation that the planes could be used for spying activity or testing space weapons.

x-37b

According to Bleddyn Bowen, China’s spacecraft launch is “just another part of China becoming a comprehensive space power that utilizes space technology for the purposes of war, development, and prestige like all others”.

Pratik Jakhar, China claims ‘important breakthrough’ in space mission shrouded in mystery, BBC, Sept. 9, 2020

Everything Moving in Space Is a Weapon? Yes.

Kosmos 2542, a Russian satellite that was launched in November 2019, was “like Russian nesting dolls”. Eleven days after its launch it disgorged another satellite, labelled Kosmos 2543. Then, on July 15th, Kosmos 2543 itself spat out another object, which sped off into the void.  Merely a “small space vehicle” to inspect other satellites, said the Russians. Nonsense, said the Americans; it was a projectile. The intentl.. was to signal Russia’s ability to destroy other nations’ satellites….In January 2020, America complained that Kosmos 2542 and 2543 had tailed a spy satellite in an “unusual and disturbing” way (American satellites have also sidled up to others in the past). 

Anti-satellite weapons are not new. During the cold war, America and the Soviet Union developed several ways to blow up, ram, dazzle and even nuke each other’s satellites. The countries conducted two-dozen anti-satellite tests between them. Ten were “kinetic”, involving a projectile physically striking a target. But new competitors, and new technologies, mean anti-satellite warfare is a hot topic once again. China has conducted ten tests over the past 15 years, including a kinetic one in 2007 that created a great deal of space debris. India conducted its first kinetic test in 2019. America, Russia and China have all manoeuvred their satellites close to others, sometimes provocatively so. New methods of attack are being tested, including lasers and cyber-attacks.

Some satellites, such as America’s GPS constellation, blur the distinction between military and civilian assets. Over the past decade, America’s armed forces have put payloads on three commercial satellites, and plan to pay Japan to host others on its own navigation satellites….Then there is the question of what counts as an attack. Michael Schmitt, a law scholar, and Kieran Tinkler, a professor at the us Naval War College, say it is unclear whether jamming a civilian satellite would violate the general prohibition on attacking civilian objects. Blowing up a military one, meanwhile, might or might not constitute an indiscriminate (and hence illegal) attack, depending on whether it could have been disabled by other means and how much debris was produced.

Perhaps the biggest difference between space war and terrestrial war is how long the consequences can last. Much of the debris from China’s 2007 test, for instance, will still be in space at the turn of the next century. The more debris, the greater the likelihood of accidental collisions with other satellites, which generates more debris in turn. Enough debris could lead to a chain reaction known as Kessler syndrome, which could render entire swathes of near-Earth space unusable for decades…

Space Junk

The Outer Space Treaty of 1967 requires states to consult each other on actions that “would cause potentially harmful interference”, though the rule has rarely been heeded. Most countries accept that, in wartime, a body of existing laws known as international humanitarian law would apply, as on Earth—something America confirmed in its “Spacepower” doctrine, published on August 10, 2020. International humanitarian law is based on principles such as distinction (between combatants and civilians) and proportionality (between civilian harm and military advantage). But how to apply such ideas in a place with few humans is not always obvious.

The Manual on International Law Applicable to Military Uses of Outer Space (MILAMOS) is being spearheaded by McGill University, in Montreal, and a separate Woomera Manual by the University of Adelaide. Both hope to publish their documents 2020…

Russia and China would like a formal treaty banning all weapons in space. Both are keen to prevent America from deploying space-based anti-missile systems which might threaten their own nuclear forces. America and its allies resist this. They argue that it is impossible to define a space weapon—anything that manoeuvres in orbit could serve as one—and that it would be easy to cheat. The European Union has instead proposed a voluntary code of conduct. Many non-Western countries would prefer a binding treaty…. Though most are not space powers, many are likely to become so in the future, so their buy-in is important.

Excerpts from Satellite warfare: An arms race is brewing in orbit, Economist, Aug. 15, 2020

If You Control Space, You Control Everything: Space as War Domain

The North Atlantic Treaty Organization (NATO) is looking to classify space as a domain for warfare in an attempt to deter China’s growing military power.  If NATO’s proposal succeeds, the international alliance could move forward with the development and use of space weapons.  According to NATO diplomats, the international organization is preparing to release an agreement that will officially declare space as a war domain. This means that aside from land, air and sea, space could also be used for military operations during times of war.

Although NATO’s partner countries currently own 65% of the satellites in space, China is reportedly preparing to launch a massive project that involves releasing constellations of satellites in low Earth orbit.  China Aerospace Science and Industry Corp (CASIC)  is planning to put in orbit 150 or more Hongyun satellites by 2023. Some of these satellites will provide commercial services like high-speed internet while others would be controlled by the Chinese military. These militarized satellites can be used to coordinate ground forces and to track approaching missiles.

“You can have warfare exclusively in space, but whoever controls space also controls what happens on land, on the sea and in the air,” according to Jamie Shea, a former NATO official. “If you don’t control space, you don’t control the other domains either.”

Excerpts from Inigo Monzon , NATO Prepares For Space Warfare By Militarizing Low Earth Orbit, International Business Times, June 24, 2019

The Space Rat Race

India, Japan and other space-faring countries are waking up to a harsh reality: Earth’s orbit is becoming a more dangerous place as the U.S., China and Russia compete for control of the final frontier…New Delhi is nervous because China has made no secret of its desire for influence in the Indian Ocean. China set up a naval base in Djibouti, a gateway to the ocean at the Horn of Africa. It secured a 99-year lease to the port of Hambantota in Sri Lanka. It is deeply involved in development projects in Maldives.

India has established itself as a player in the budget satellite business. It even put a probe into orbit around Mars in 2014, in a U.S.-assisted project that cost just $76 million. But it is scurrying to enhance its ability to monitor China’s activities, and the partnership with Japan is part of this.  Another sign that space is becoming a defense focus for India came on Dec. 19, when the country launched its third military communications satellite, the GSAT-7A. The satellite will connect with ground-based radar, bases and military aircraft, along with drone control networks.

China’s success in landing a craft on the far side of the moon on Jan. 3, 2019 came as a fresh reminder of its growing prowess. In late December, China also achieved global coverage with its BeiDou Navigation Satellite System. Only the U.S., Russia and the European Union had that capability.China aims to launch a Mars explorer in 2020 and complete its own Earth-orbiting space station around 2022.  In the back of Indian and Japanese officials’ minds is likely a stunning test China conducted in 2007. Beijing successfully destroyed one of its own weather satellites with a weapon, becoming only the third nation to pull off such a feat, after the Soviet Union and the U.S.

In December 2018, President Donald Trump ordered the Department of Defense to create a Space Command, widely seen as a precursor to a full-fledged Space Force.  There were 1,957 active satellites orbiting Earth as of Nov. 30, 2018 according to the Union of Concerned Scientists, a nonprofit U.S. advocacy group. America had the most by far, with 849, or 43% of the total. China was No. 2, with 284, followed by Russia with 152.  Japan and India had a combined 132 — 75 for the former and 57 for the latter.

Excerpts fromNUPUR SHAW India and Japan awaken to risks of superpower space race, Nikkei Asian Review, Jan. 8, 2019

The First to Shoot…from Space

North Korea’s preparations to launch a more advanced reconnaissance satellite with a high-resolution scanning capability threaten to push Asia’s space race deeper into the military theater.  The Kwangmyongsong-5 Earth-exploration satellite, likely to be packaged with a separate communications satellite, will technically allow North Korea to transmit data down to the ground for the first time, thus offering real-time intelligence for potential ballistic-missile strikes.

This is well short of the technological capacity needed to deploy orbital weapon systems, but will cause some unease among Asian power-brokers China, Japan and India as they pour money into the last strategic frontier of outer space.  Space programs in Asia have largely been driven by competition for the US$300 billion global commercial transponders market, which is expected to double by 2030 if demand holds.

A shift toward miniature satellites of less than 20 kilograms, mostly used by governments and smaller companies, has drawn nations as diverse as Singapore, Pakistan, Vietnam and South Korea into a field led by Japan and China, with India a more recent player.

Japan placed two satellites in different orbits for the first time on December 2017, displaying a technical edge aimed at reducing launch costs for commercial clients. India announced this week that it had successfully tested a GSLV Mark III rocket that can lift a 4-ton satellite into orbit. In 2017, it managed to launch 104 satellites of varying sizes in just one operation. China has loftier ambitions, including a lunar landing some time in 2018, after sending a roving module down a steep crater on the moon in 2013. About 40 Chinese launches are likely in 2018, mainly to boost communications.  India and Japan are both locked in undeclared space races with China that go well beyond commercial rivalries and have muddied the debate over North Korea’s shadowy aims….

“Militarization” refers to any systems that enhance the capability of forces in a conventional setting, such as intelligence, communications and surveillance. “Weaponization” is the physical deployment of weapons in outer space or in a ground mode where they can be used to attack and destroy targets in orbit.  The United Nations Treaty on Outer Space prohibits the deployment of weapons of mass destruction in space, but the US has blocked efforts to ban space weapons outright. In 2007, Washington said it would “preserve its rights, capabilities, and freedom of action in space.”

Excerpts from  ALAN BOYD,  Asia’s Space Race Gathers Pace, Asia Times, Jan. 6, 2018

The Quiet Revolution in Space

National security critically depends on space, and the Defense Advanced Research Projects Agency (DARPA) is focused today on creating the capabilities needed to help make that environment a real-time operational domain, DARPA Director Dr. Arati Prabhakar…

“The questions we ask ourselves at DARPA about the space domain … is what would it take to make the space domain robust for everything that we need militarily and for intelligence, and what would it take to make space a real-time operational domain, which it’s not at all today,” the director said, noting that many other nation-states now are active in orbit and space is a domain where conflict is becoming a real possibility.

Through a national security lens, she added, nothing needed from an intelligence or military perspective can be done effectively without access to space. Something as simple as navigation completely depends on GPS in nearly every part of the world and in every operating regime.

In an era of declining budgets and adversaries’ evolving capabilities, quick, affordable and routine access to space is increasingly critical for national and economic security. Today’s satellite launch systems require scheduling years in advance for a limited inventory of available slots and launches often cost hundreds of millions of dollars each. The Defense Advanced Research Projects Agency created its Experimental Spaceplane, or XS-1, program to help overcome these challenges and reduce the time to get capabilities to space. DARPA artist-concept graphics  “Because of the demands on launch, from the day you know you have to put an asset on orbit to the time you can plan on a launch today is still unacceptably long,” Prabhakar said.

Commercial capabilities will help, she added, “but if in a time of war we imagine if we could go to space not in a month or next week but tomorrow, think about how that would completely change the calculus for an adversary that’s thinking about [using an antisatellite] weapon to take out one of our satellites

”With that ambition in mind, DARPA is now starting Phase 2 of its Experimental Spaceplane, or XS-1.“It’s a reusable first stage that’s designed to be able to put 3,000 or 5,000 pounds into low earth orbit … at a very low cost point — a few million dollars — but very significantly the objective on the DARPA program is by the end of the program to fly that spacecraft 10 times in 10 days,” Prabhakar said, “something that’s inconceivable with any of the spacecraft we have today.”

A second piece of the puzzle is what can be done in orbit, she added, referring to low earth orbit, or LEO, an orbit around Earth whose altitude is between 99 and 1,200 miles.

“We’re doing some amazing work with geo[synchronous]-robotics and rethinking [geostationary Earth orbit]-architectures once you have an asset that would allow you to extend the life or do inspection or simple repairs at GEO, which is something you can’t do today.  GEO [geostationary orbit]is a stable region of space 22,370 miles from Earth.  And because GEO is a stable environment for machines — but hostile for people because of high radiation levels — DARPA thinks the key technology there is space robotics.  DARPA’s Phoenix program seeks to enable GEO robotics servicing and asset life extension while developing new satellite architectures to reduce the cost of space-based systems.

The program’s goal is to develop and demonstrate technologies that make it possible to inspect and robotically service cooperative space systems in GEO and to validate new satellite assembly architectures. Phoenix has validated the concept that new satellites could be built on orbit by physically aggregating “satlets” in space, according to DARPA.

Satlets are small independent modules that can attach together to create a new low-cost, modular satellite architecture, DARPA says. Satlets incorporate essential satellite functionality — power supplies, movement controls, sensors and others — and share data, power and thermal management capabilities. DARPA now is working to validate the technical concept of satlets in LEO [Low earth orbit an orbit around Earth whose altitude is between 99 and 1,200 miles.]

Excerpts from  Cheryl Pellerin Director: DARPA Space Projects Critical to Shifting Trajectories , US DOD News, Nov. 22, 2016

 

How to Make Space Friendly for Military Use

From the DARPA website

The volume of Earth’s operational space domain is hundreds of thousands times larger than the Earth’s oceans. It contains thousands of objects hurtling at tens of thousands of miles per hour. The scales and speeds in this extreme environment are difficult enough to grasp conceptually, let alone operationally, as is required for commanders overseeing the nation’s increasingly critical space assets.

Current [US] space domain awareness tools and technologies were developed when there were many fewer objects in space. Only a few nations could even place satellites in orbit, and those orbits were easily predictable without advanced software tools. That situation has changed dramatically in the past decade with a developing space industry flooding once lonely orbits with volleys of satellite constellations. Despite this much more complex and chaotic environment, commanders with responsibility for space domain awareness often rely on outdated tools and processes—and thus incomplete information—as they plan, assess, and execute U.S. military operations in space.

To help address these technical and strategic challenges, DARPA is launching the first of two planned efforts under the Agency’s new Hallmark program, which has the overarching goal to provide breakthrough capabilities in U.S. space command and control. This first effort, the Hallmark Software Testbed (Hallmark-ST), has as its primary goal the creation of an advanced enterprise software architecture for a testbed for tools that will integrate a full spectrum of real-time space-domain systems and capabilities. The testbed would be used to expedite the creation and assessment of a comprehensive set of new and improved tools and technologies that could be spun off into near-term operational use for the Defense Department’s Joint Space Operations Center (JSpOC) and Joint Interagency Combined Space Operations Center (JICSpOC).

“For example, an intuitive user interface incorporating 3-D visualization technology would present complex information in novel ways and provide commanders with unprecedented awareness and comprehension. An advanced testbed featuring playback and simulation capabilities would significantly facilitate research and development activities, experiments, and exercises to evaluate new technologies for their impact on space command and control capabilities.”

The enterprise architecture would be the backbone of a long-term testbed, the Hallmark Space Evaluation and Analysis Capability (SEAC), anticipated to be located in Northern Virginia.

Excerpts from Hallmark Envisions Real-Time Space Command and Control,  www. darpa. mil, June 17, 2016

See also Hallmark Software Testbed (Hallmark-ST)/Solicitation Number: DARPA-BAA-16-40, June 17, 2016 Federal Business Opportunities

The X-37B Drone: 4th Mission

The unmanned X-37B spacecraft was launched May 20 2015  atop a United Launch Alliance Atlas 5 rocket from Florida’s Cape Canaveral Air Force Station. The liftoff will begin the reusable space plane’s fourth mission, which is known as OTV-4 (short for Orbital Test Vehicle-4).  Most of the X-37B’s payloads and specific activities are classified, so it’s not clear what the space plane will be doing once it leaves Earth. This secrecy has led to some speculation that the vehicle might be some sort of space weapon. Air Force officials have repeatedly rejected that notion, saying that the X-37B flights simply test a variety of new space technologies.

For example, the space plane is carrying a type of ion engine called a Hall thruster on OTV-4, Air Force officials said. This Hall thruster is an advanced version of the one that powered the first three Advanced Extremely High Frequency military communications satellites, the officials added.  NASA is also flying an experiment on OTV-4. The agency’s Materials Exposure and Technology Innovation in Space investigation will see how exposure to the space environment affects nearly 100 different types of materials. The results should aid in the design of future spacecraft, NASA says.

The X-37B looks like a miniature version of NASA’s now-retired space shuttle. The robotic, solar-powered space plane is about 29 feet long by 9.5 feet tall (8.8 by 2.9 meters), with a wingspan of 15 feet (4.6 meters) and a payload bay the size of a pickup-truck bed. Like the space shuttle, the X-37B launches vertically and lands horizontally, on a runway.

Excerpts from Mike Wall, Air Force Gets X-37B Space Plane Ready for Its Next Mystery,  SPACE.COM, May 18, 2015

To Conquer Space – China

After decades hiding deep in China’s interior, the country’s space-launch programme is preparing to go a bit more public. By the tourist town of Wenchang on the coast of the tropical island of Hainan, work is nearly complete on China’s fourth and most advanced launch facility…Secrecy remains ingrained—soldiers at a gate politely but firmly decline to say what they are guarding.

The decision to build the base on Hainan was made for technical reasons: its proximity to the equator, at a latitude of 19 degrees north, will allow rockets to take better advantage of the kick from the Earth’s rotation than is currently possible with launches from China’s other bases which were built far inland at a time of cold-war insecurity. That will allow a bigger payload for each unit of fuel—a boon for China’s space ambitions, which include taking a bigger share of the commercial satellite-launch market, putting an unmanned rover on Mars around 2020, completing a manned space station around 2022 and possibly putting a person on the moon in the coming decade, too. By 2030 China hopes to test what could be one of the world’s highest-capacity rockets, the Long March 9.have no explanation for the apparent delay. Secrecy is a difficult habit to shake off.

Excerpt from Space: Ready for launch,  Economist, Jan. 10, 2015, at 40

Militarization of Space: Japan

Japan is shifting its space program toward potential military uses in a new policy hailed on as a “historic turning point” by Prime Minister Shinzo Abe, who wants to strengthen defence and boost exports.  The move comes as emerging powers such as China and India join the United States to expand space activities for commercial and security purposes.

Last year, Abe eased a postwar curb on arms exports and on allowing troops to fight overseas, as part of a more robust military and diplomatic posture for Japan…

The new measures will see Tokyo increase its fleet of global-positioning satellites to seven over the next decade, up from one now, to make Japan independent of other countries for uses from navigating vehicles to guiding weapons systems. Japan will also step up the number of its information gathering satellites, which collect pictures of vessels and military facilities and measure sea surface temperatures for submarine detection, from four now.  “The security environment surrounding Japan is getting tougher, and the importance of space is getting bigger for safeguarding our security,” the government said in a report.

Japan is targeting sales of five trillion yen ($42 billion) of space-related hardware over the next decade by stimulating domestic demand and helping manufacturers win overseas orders, the report said.  It did not give a comparative figure for the past 10 years. But such sales are estimated to total a little more than 300 billion yen annually now, a Cabinet Secretariat official said.  Japan’s major satellite manufacturers include Mitsubishi Electric Corp and NEC Co

Japan reorients space effort to bolster security, drive exports, Reuters, Jan. 9, 2014

Militarization of Japan: the Fourth Force

Japan will add a new division to its military or Self-Defense Forces in 2019, to protect equipment in orbit from space debris as well as other attacks, a source familiar with Japan-U.S. relations said, according to a report by the South China Morning Post.

Japan revised a law regarding its non-military activities in space in 2008, allowing the creation of a “space force,” which will initially be responsible for monitoring dangerous debris floating within close vicinity of the Earth, as well as protect satellites from collisions or attacks, according to the report, which added that the U.S. has been informed of the development by the Japanese Defense Ministry. There are around 3,000 fragments of space debris currently at risk of smashing into reconnaissance or communication satellites around the Earth.  Japan will assist the U.S. military with the information it obtains through this program, and looks to strengthen bilateral cooperation in space, or the “fourth battlefield,” the report said.  The “fourth force” will initially use radar and telescope facilities in the Okayama prefecture that the defense ministry acquired from the Japan Space Forum, which also owns the Spaceguard Center radar facility in Kagamino and a telescope facility in Ihara.

Units from Japan’s Air Self-Defense Force are currently being considered by the defense ministry to make up parts of the new space force. And, the Japanese ministries of defense, education, culture, sports, science and technology, along with the Japan Aerospace Exploration Agency, or JAXA, will jointly acquire the radar and telescope facilities from the Japan Space Forum, a Tokyo-based think tank that coordinates aerospace-related activities among government, industry and academia.

Japan and the U.S. have reportedly been working on a space force since 2007, when China tested its satellite destruction capabilities by launching a missile against one of its own satellites and destroyed it.  In May, at a space development cooperation meeting held in Washington, the Japanese and U.S. governments agreed to increase cooperation in using satellites for monitoring space debris, marine surveillance, and to protect one another’s space operations. Japan also pledged to share information acquired by JAXA with the U.S. Strategic Command.

Excerpts from Alroy Menezes, Japan’s ‘Space Force’ To Protect Satellites In Orbit, International Business Times, Aug. 4, 2014

Space – the Wild West

Space is a current and future battleground without terrain, where invisible enemies conceivably could mount undetectable attacks to devastating effect if the right deterrent and defensive plans aren’t pursued now, the assistant defense secretary for global strategic affairs told a think tank audience on Sept. 17, 2013  Madelyn R. Creedon spoke to a Stimson Center gathering whose audience included analysts focused on the question of deterrence in space. The center released a publication this week titled “Anti-satellite Weapons, Deterrence and Sino-American Space Relations,” presenting a number of essays examining various perspectives on space deterrence.

Creedon noted that in Defense Department parlance, deterrence is “the prevention of action by the existence of a credible threat of unacceptable counteraction and/or the belief that the cost of action outweighs the perceived benefits.” In other words, she said, if deterrence is effective, an adversary has or believes he has more to lose than to gain by attacking.  Deterrence remains a core defense strategy for the United States, she added, and the nation’s nuclear deterrent is “still alive and well.”  Creedon acknowledged that one classic approach to considering space deterrence — that is, preventing potential enemies from attacking U.S. or partner satellites and other military or economic assets in space — is to try to apply lessons learned during the Cold War. Then, the United States and the Soviet Union kept an uneasy diplomatic truce and piled up enough nuclear weapons to guarantee mutually assured destruction.

But one flaw to comparing the two deterrent challenges, she said, is that an attack that disables a satellite, unlike one from a nuclear warhead that flattens a major city, doesn’t threaten a nation’s existence. Another is that the two superpowers spent decades constructing an elaborate, mirrored, deterrent Cold War architecture and protocols, while space is still, comparatively, “the Wild West.” A third is that an attack in space or cyberspace may rely on digital rather than conventional weapons, and so could occur without warning or even detection.

“If there is an attack against a space asset, it isn’t visible,” she said. “You can’t watch it on CNN, and unless you’re directly affected by the capability that the space assets provide, you’re probably completely oblivious that the attack happened.”

She said DOD is developing and implementing what safeguards it can implement in space using four mutually supportive elements to deter others from taking action against U.S. assets:

— Working to internationalize norms and establish a code of conduct to enhance stability;

— Building coalitions to enhance security;

— Adding resilience to U.S. space architectures; and

— Preparing for an attack on U.S. and allied space assets using defenses “not necessarily in space.”

“We believe this four-element approach … will bolster deterrence,” Creedon said.

The department is working with the State Department and international partners to define elements of good behavior in space, she said. “States must remain committed to enhance the welfare of humankind by cooperating with others to maintain the long-term sustainability, safety, security and stability of the outer-space environment,” she added.  Creedon said work is underway to build deterrent coalitions and increase space awareness. She said the “Five Eyes” nations, which include the United States, United Kingdom, Canada, Australia and New Zealand, are extending their intelligence cooperation to expand their collective space situational awareness…

The United States is meanwhile working to lower the benefit to potential attackers by employing more satellites, participating in satellite constellations with other countries and purchasing payload space on commercial satellites when feasible.  Creedon said the U.S. approach to space deterrence is similar to its strategy in any domain: take “prudent preparations to survive, and to operate through, and, hopefully, prevail in any conflict.”

By Karen Parrish, Official Describes Evolution of Space Deterrence, American Forces Press Service, Sept. 19, 2013

Just Hit See-Me: the new military satellites

The Seeme Program from DARPA website:

DARPA’s SeeMe (Space Enabled Effects for Military Engagements) program aims to give mobile individual US warfighters access to on-demand, space-based tactical information in remote and beyond- line-of-sight conditions. If successful, SeeMe will provide small squads and individual teams the ability to receive timely imagery of their specific overseas location directly from a small satellite with the press of a button — something that’s currently not possible from military or commercial satellites.

The program seeks to develop a constellation of small “disposable” satellites, at a fraction of the cost of airborne systems, enabling deployed warfighters overseas to hit ‘see me’ on existing handheld devices to receive a satellite image of their precise location within 90 minutes. DARPA plans SeeMe to be an adjunct to unmanned aerial vehicle (UAV) technology, which provides local and regional very-high resolution coverage but cannot cover extended areas without frequent refueling. SeeMe aims to support warfighters in multiple deployed overseas locations simultaneously with no logistics or maintenance costs beyond the warfighters’ handheld devices.

The SeeMe constellation may consist of some two-dozen satellites, each lasting 60-90 days in a very low-earth orbit before de-orbiting and completely burning up, leaving no space debris and causing no re-entry hazard. The program may leverage DARPA’s Airborne Launch Assist Space Access (ALASA) program, which is developing an aircraft-based satellite launch platform for payloads on the order of 100 lbs. ALASA seeks to provide low-cost, rapid launch of small satellites into any required orbit, a capability not possible today from fixed ground launch sites.

Raytheon Company was awarded a $1.5 million Defense Advanced Research Projects Agency (DARPA) contract for phase one of the agency’s Space Enabled Effects for Military Engagements (SeeMe) program. During the next nine months, the company will complete the design for small satellites to enhance warfighter situational awareness in the battlespace.  Raython News Release, Dec. 13, 2012