Tag Archives: oil and gas exploration

540 Katrina Oil Spills Equal an Exxon Valdez Disaster

The federal agency overseeing oil and gas operations in the Gulf of Mexico after hurricane Katrina reported that more than 400 pipelines and 100 drilling platforms were damaged. The U.S. Coast Guard, the first responder for oil spills, received 540 separate reports of spills into Louisiana waters. Officials estimated that, taken together, those leaks released the same amount of oil that the highly publicized 1989 Exxon Valdez disaster spilled into Alaska’s Prince William Sound — about 10.8 million gallons…

While hurricanes gain speed due to the effects of climate change, the push for oil leasing in the Gulf of Mexico shows no sign of slowing down. In 2014, the Obama administration opened up 40 million new acres in the Gulf for oil and gas development. Four years later, the Trump administration announced plans to open up most of the rest, in what would be the largest expansion of offshore oil and gas drilling in U.S. history. Many of these 76 million acres are to be offered at reduced royalty rates to encourage additional near-shore drilling in Louisiana waters…

“In the Gulf, storms are predicted to be less frequent but more intense when they do come,” said Sunshine Van Bael, an ecologist at Tulane University who evaluated damage to marsh ecosystems from the BP oil spill. “One thing that storms do is, if oil has been buried underneath the marsh because it wasn’t rehabilitated, a storm could come along and whip that back up to the surface. So, the aftereffects of the oil spills might be greater [with climate change] since the storms are predicted to be more intense.”…

In 2009, a class-action lawsuit against Murphy Oil Corp. ended in a settlement requiring the company to pay $330 million to 6,200 claimants, including owners of about 1,800 homes in St. Bernard Parish. The damage occurred when one of Murphy’s storage tanks floated off its foundation during Katrina and dumped over a million gallons of crude oil into a square-mile segment of Meraux and Chalmette….

To date, more than $19 million has been paid out from the federal Oil Spill Liability Trust Fund to reimburse at least two oil companies for costs they incurred cleaning up oil they spilled during Katrina…

“We don’t normally penalize [companies] for act of God events,” Greg Langley of the Department of Environmental Quality said. “We just get right to remediation.”

Excerpts from Joan Meiners, How Oil Companies Avoided Environmental Accountability After 10.8 Million Gallons Spill, ProPublica, Dec. 27, 2019

Swept Under the Rug: Radioactive Dust and Brine in the Oil Industry

A salty substance called  “brine,” is  a naturally occurring waste product that gushes out of America’s oil-and-gas wells to the tune of nearly 1 trillion gallons a year, enough to flood Manhattan, almost shin-high, every single day. At most wells, far more brine is produced than oil or gas, as much as 10 times more. Brine collects in tanks, and workers pick it up and haul it off to treatment plants or injection wells, where it’s disposed of by being shot back into the earth

The Earth’s crust is in fact peppered with radioactive elements that concentrate deep underground in oil-and-gas-bearing layers. This radioactivity is often pulled to the surface when oil and gas is extracted — carried largely in the brine…

Radium, typically the most abundant radionuclide in brine, is often measured in picocuries per liter of substance and is so dangerous it’s subject to tight restrictions even at hazardous-waste sites. The most common isotopes are radium-226 and radium-228, and the Nuclear Regulatory Commission requires industrial discharges to remain below 60 for each. Some brine samples registered combined radium levels above 3,500, and one was more than 8,500. “It’s ridiculous that those who haul brine are not being told what’s in their trucks,” says John Stolz, Duquesne’s environmental-center director. “And this stuff is on every corner — it is in neighborhoods. Truckers don’t know they’re being exposed to radioactive waste, nor are they being provided with protective clothing.

“Breathing in this stuff and ingesting it are the worst types of exposure,” Stolz continues. “You are irradiating your tissues from the inside out.” The radioactive particles fired off by radium can be blocked by the skin, but radium readily attaches to dust, making it easy to accidentally inhale or ingest. Once inside the body, its insidious effects accumulate with each exposure. It is known as a “bone seeker” because it can be incorporated into the skeleton and cause bone cancers called sarcomas. It also decays into a series of other radioactive elements, called “daughters.” The first one for radium-226 is radon, a radioactive gas and the second-leading cause of lung cancer in the U.S. Radon has also been linked to chronic lymphocytic leukemia.

Oil fields across the country — from the Bakken in North Dakota to the Permian in Texas — have been found to produce brine that is highly radioactive. “All oil-field workers,” says Fairlie, “are radiation workers.” But they don’t necessarily know it.

The advent of the fracking boom in the early 2000s expanded the danger, saddling the industry with an even larger tidal wave of waste to dispose of, and creating new exposure risks as drilling moved into people’s backyards. “In the old days, wells weren’t really close to population centers. Now, there is no separation,” says City University of New York public-health expert Elizabeth Geltman. In the eastern U.S. “we are seeing astronomically more wells going up,” she says, “and we can drill closer to populations because regulations allow it.” As of 2016, fracking accounted for more than two-thirds of all new U.S. wells, according to the Energy Information Administration. There are about 1 million active oil-and-gas wells, across 33 states, with some of the biggest growth happening in the most radioactive formation — the Marcellus. …

There is little public awareness of this enormous waste stream, the disposal of which could present dangers at every step — from being transported along America’s highways in unmarked trucks; handled by workers who are often misinformed and underprotected; leaked into waterways; and stored in dumps that are not equipped to contain the toxicity. Brine has even been used in commercial products sold at hardware stores and is spread on local roads as a de-icer

But a set of recent legal cases argues a direct connection to occupational exposure can be made… Pipe cleaners, welders, roughnecks, roustabouts, derrickmen, and truck drivers hauling dirty pipes and sludge all were exposed to radioactivity without their knowledge and suffered a litany of lethal cancers. An analysis program developed by the Centers for Disease Control and Prevention determined with up to 99 percent certainty that the cancers came from exposure to radioactivity on the job, including inhaling dust and radioactivity accumulated on the workplace floor, known as “groundshine.”

“Almost all materials of interest and use to the petroleum industry contain measurable quantities of radionuclides,” states a never-publicly released 1982 report by the American Petroleum Institute, the industry’s principal trade group, passed to Rolling Stone by a former state regulator. Rolling Stone discovered a handful of other industry reports and articles that raised concerns about liability for workers’ health. A 1950 document from Shell Oil warned of a potential connection between radioactive substances and cancer of the “bone and bone marrow.” In a 1991 paper, scientists with Chevron said, “Issues such as risk to workers or the general public…must be addressed.”

“There is no one federal agency that specifically regulates the radioactivity brought to the surface by oil-and-gas development,” an EPA representative says. In fact, thanks to a single exemption the industry received from the EPA in 1980, the streams of waste generated at oil-and-gas wells — all of which could be radioactive and hazardous to humans — are not required to be handled as hazardous waste. In 1988, the EPA assessed the exemption — called the Bentsen and Bevill amendments, part of the Resource Conservation and Recovery Act — and claimed that “potential risk to human health and the environment were small,” even though the agency found concerning levels of lead, arsenic, barium, and uranium, and admitted that it did not assess many of the major potential risks. Instead, the report focused on the financial and regulatory burdens, determining that formally labeling the “billions of barrels of waste” as hazardous would “cause a severe economic impact on the industry.”…

There is a perception that because the radioactivity is naturally occurring it’s less harmful (the industry and regulators almost exclusively call oil-and-gas waste NORM — naturally occurring radioactive material, or TENORM for the “technologically enhanced” concentrations of radioactivity that accumulate in equipment like pipes and trucks.”…

In Pennsylvania, regulators revealed in 2012 that for at least six years one hauling company had been dumping brine into abandoned mine shafts. In 2014, Benedict Lupo, owner of a Youngstown, Ohio, company that hauled fracking waste, was sentenced to 28 months in prison for directing his employees to dump tens of thousands of gallons of brine into a storm drain that emptied into a creek that feeds into the Mahoning River. While large bodies of water like lakes and rivers can dilute radium, Penn State researchers have shown that in streams and creeks, radium can build up in sediment to levels that are hundreds of times more radioactive than the limit for topsoil at Superfund sites. Texas-based researcher Zac Hildenbrand has shown that brine also contains volatile organics such as the carcinogen benzene, heavy metals, and toxic levels of salt, while fracked brine contains a host of additional hazardous chemicals. “It is one of the most complex mixtures on the planet,” he says…

“There is nothing to remediate it with,” says Avner Vengosh, a Duke University geochemist. “The high radioactivity in the soil at some of these sites will stay forever.” Radium-226 has a half-life of 1,600 years. The level of uptake into agricultural crops grown in contaminated soil is unknown because it hasn’t been adequately studied.

“Not much research has been done on this,” says Bill Burgos, an environmental engineer at Penn State who co-authored a bombshell 2018 paper in Environmental Science & Technology that examined the health effects of applying oil-field brine to roads. Regulators defend the practice by pointing out that only brine from conventional wells is spread on roads, as opposed to fracked wells. But conventional-well brine can be every bit as radioactive, and Burgos’ paper found it contained not just radium, but cadmium, benzene, and arsenic, all known human carcinogens, along with lead, which can cause kidney and brain damage.

Brine as dust suppressant

Ohio, because of its geology, favorable regulations, and nearness to drilling hot spots in the Marcellus, has become a preferred location for injection wells. Pennsylvania has about a dozen wells; West Virginia has just over 50. Ohio has 225. About 95 percent of brine was disposed of through injection as of 2014. Government scientists have increasingly linked the practice to earthquakes, and the public has become more and more suspicious of the sites. Still, the relentless waste stream means new permits are issued all the time, and the industry is also hauling brine to treatment plants that attempt to remove the toxic and radioactive elements so the liquid can be used to frack new wells.

Excerpts from America’s Radioactive Secret, Rolling Stone Magazine, Jan. 21, 2020

How Companies Buy Social License: the ExxonMobil Example

The Mobil Foundation sought to use its tax-exempt grants to shape American laws and regulations on issues ranging from the climate crisis to toxic chemicals – with the explicit goal of benefiting Mobil, documents obtained by the Guardian newspaper show.  Recipients of Mobil Foundation grants included Ivy League universities, branches of the National Academies and well-known civic organizations and environmental researchers.  Benefits for Mobil included – in the foundation’s words – funding “a counterpoint to so-called ‘public interest’ groups”, helping Mobil obtain “early access” to scientific research, and offering the oil giant’s executives a forum to “challenge the US Environmental Protection Agency (EPA) behind-the-scenes”….

A third page reveals Mobil Foundation’s efforts to expand its audience inside environmental circles via a grant for the Environmental Law Institute, a half-century-old organization offering environmental law research and education to lawyers and judges.  “Institute publications are widely read in the environmental community and are helpful in communicating industry’s concerns to such organizations,” the entry says. “Mobil Foundation grants will enhance environmental organizations’ views of Mobil, enable us to reach through ELI activities many groups that we do not communicate with, and enable Mobil to participate in their dialogue groups.”

The documents also show Mobil Foundation closely examining the work of individual researchers at dozens of colleges and universities as they made their funding decisions, listing ways that foundation grants would help shape research interests to benefit Mobil, help the company recruit future employees, or help combat environmental and safety regulations that Mobil considered costly.  “It should be a wake-up call for university leaders, because what it says is that fossil fuel funding is not free,” said Geoffrey Supran, a postdoctoral researcher at Harvard and MIT.  “When you take it, you pay with your university’s social license,” Supran said. “You pay by helping facilitate these companies’ political and public relations tactics.”

In some cases, the foundation described how volunteer-staffed not-for-profits had saved Mobil money by doing work that would have otherwise been performed by Mobil’s paid staff, like cleaning birds coated in oil following a Mobil spill.  In 1987, the International Bird Rescue Research Center’s “rapid response and assistance to Mobil’s West Coast pipeline at a spill in Lebec, CA not only defused a potential public relations problem”, Mobil Foundation said, “but saved substantial costs by not requiring our department to fly cross country to respond”.d of trustees at the Woods Hole Oceanographic Institution (recipient of listed donations totalling over $200,000 from Mobil) and a part of UN efforts to study climate change.

Wise ultimately co-authored two UN Intergovernmental Panel on Climate Change reports, serving as a lead author on one. One report chapter Wise co-authored prominently recommended, among other things, burning natural gas (an ExxonMobil product) instead of coal as a way to combat climate change.

Excerpts from How Mobil pushed its oil agenda through ‘charitable giving’, Guardian, June 12, 2019

A Gasfield and the Cows Next to it

High levels of a radioactive material and other contaminants have been found in water from a West Australian fracking site* but operators say it could be diluted and fed to beef cattle.  The revelations illustrate the potential risks associated with the contentious gas extraction process known as fracking, or hydraulic fracturing, as the Turnbull government pressures states to ease restrictions on the industry and develop their gas reserves.

The findings were contained in a report by oil and gas company Buru Energy that has not been made public. It shows the company also plans to reinject wastewater underground – a practice that has brought on seismic events when used in the United States.

Buru Energy has been exploring the potentially vast “tight gas” resources of the Kimberly region’s Canning Basin. The work was suspended when the WA government last year introduced a fracking moratorium, subject to the findings of a scientific inquiry.

In a submission to the inquiry obtained by the Lock the Gate Alliance, Buru Energy said a “relatively high concentration” of Radium-228…The samples exceeded drinking water guidelines for radionuclides. However Buru Energy said samples collected from retention ponds were below guideline levels and the water posed “no risk to humans or animals”.  Water monitoring also detected elevated levels of the chemical elements barium, boron and chloride….Buru Energy said while the water was not suitable for human consumption, the “reuse of flowback water for beef cattle may also be considered”.  The water did not meet stockwater guidelines but this could be addressed “through dilution with bore water”.

The company’s development in the Yulleroo area of the basin could lead to 80 wells operating over 20 years….The company insists its fracking fluids are non-toxic and to illustrate its safety, executive chairman Eric Streitberg drank the fluid at the company’s 2016 annual general meeting.

Excerpt from  Nicole Hasham Radioactive water reignites concerns over fracking for gas, Sydney Morning Herald, June 24, 2018

*Fracking, which involves injecting water mixed with chemicals and sand deep underground in order to fracture rock and release oil and gas, generates large amounts of wastewater. … In some cases, improper handling of this waste water has resulted in the release of radioactive fracking waste that has contaminated streams and rivers, Science Magazine, Apr 9, 2015

For Voices against Fracking in WA, Dont Frack WA

Oil Shale: Costs and Benefits

[A] second shale revolution is in prospect, in which cleaner and more efficient ways are being found to squeeze the oil and gas out of the stone. The Jordanian government said on June 12th that it had reached agreement with Enefit, an Estonian company, and its partners on a $2.1 billion contract to build a 540MW shale-fuelled power station. Frustratingly for Jordan, as it eyes its rich, oil-drenched Gulf neighbours, the country sits on the world’s fifth-largest oil-shale reserves but has to import 97% of its energy needs.

In Australia, Queensland Energy Resources, another oil-shale company, has just applied for permission to upgrade its demonstration plant to a commercial scale. Production is expected to start in 2018. Questerre Energy, a Canadian company, also said recently that it would start work on a commercial demonstration project, in Utah in the United States.

In all these projects, the shale is “cooked” cheaply, cleanly and productively in oxygen-free retorts to separate much of the oil and gas. In Enefit’s process the remaining solid is burned to raise steam, which drives a generator. So the process produces electricity, natural gas (a big plus in Estonia, a country otherwise dependent on Russian supplies) and synthetic crude, which can be used to make diesel and aviation fuel. The leftover ash can be used to make cement. Enefit’s chief executive, Sandor Liive, says his plants, the first of which started production in December 2012, should be profitable so long as oil prices stay above $75 a barrel (North Sea Brent oil was around $113 this week).

Although the new methods of exploiting the rock are cleaner than old ones, environmentalists still have plenty to worry about. Oil shale varies hugely in quality. Estonia’s is clean, Jordan’s has a high sulphur content, Utah’s is laden with arsenic. Like opencast coal mining, digging up oil shale scars the landscape. Enefit has solved that in green-minded Estonia, by landscaping and replacing the topsoil. Other countries may be less choosy.

Some of the world’s biggest energy firms have also experimented with mining and processing oil shale, only to give up, after finding that it took so much energy that the sums did not add up. However, Shell says it is making progress with a new method it is trying, also in Jordan, in which the shale is heated underground with an electric current to extract the oil.

These rival technologies have yet to prove their reliability at large scale—and they are far from cheap. Mr Liive reckons it will cost $100m to get a pilot project going in Utah (where his firm has bought a disused oil-shale mine), and another $300m to reach a commercial scale. A fall in the oil price could doom the industry, as happened in the 1980s when a lot of shale mines went out of business…America this week loosened its ban on crude exports. If the second shale revolution succeeds, it will have a lot more oil to sell.

Oil shale: Flaming rocks, Economist, June  28, 2014, at 58

Australia the Big Brother of Timor-Leste

The future finances of the young, poor nation of Timor-Leste, formerly East Timor, have become embroiled in allegations of skulduggery by Australia nearly a decade ago. Timor-Leste has taken its big, wealthy neighbour to arbitration over a 2006 agreement on the exploitation of oil and gas in the sea between them. Speaking on a visit to Singapore this week, Timor-Leste’s oil minister, Alfredo Pires, claimed to have “irrefutable proof” that, during negotiations in 2004, Australia’s secret services had illegally obtained information. His lawyer claims the Timorese prime minister’s offices were bugged. Whatever the truth, leaders in Timor-Leste feel Australia took advantage of them. In 2004 the tiny nation was still recovering from the devastation that followed its vote for independence from Indonesia in a UN-organised referendum in 1999. The Indonesian army and supporting militias had sought revenge in a rampage of killing and destruction.

Ever since, Timor-Leste’s hopes of prosperity have rested on offshore oil and gas reserves. But most are located in the Timor Gap, under waters also claimed by Australia. Cash-strapped and desperate for revenue to start flowing, leaders saw no option but to agree to treaties with Australia that many in Timor-Leste see as unfair. In all, three linked treaties covering the Timor Gap were signed, but the maritime boundaries were never agreed upon.

The first, the Timor Sea Treaty, signed in 2002, gives Timor-Leste 90% of the revenue from a Joint Petroleum Development Area (JPDA). This meant that revenues could start flowing.  The JPDA was a compromise between Australia’s insistence the maritime boundary be the deepest point as agreed with Indonesia in 1972, and Timor-Leste’s hope to use the “median line”, halfway across the sea. Only 20% of one of the largest fields, Greater Sunrise, is within the JPDA.

Then another treaty[Treaty between Australia and Timor-Leste on Certain Maritime Arrangements in the Timor Sea (CMATS)] was signed in 2006, after two years of tortuous negotiations, during which the alleged spying took place. This one gives each country an equal share of revenue from Greater Sunrise on condition that they waive their rights to assert sovereignty, or pursue any legal claim over the border, for 50 years.  It is this treaty that rankles with the Timorese. If the median line were the border, Greater Sunrise and many other fields would fall in Timorese waters. Mr Pires says that the uncertainty about the maritime boundary makes it hard to plan for the long term or to attract investment. Despite its growing oil wealth (its petroleum fund already contains $13 billion) Timor-Leste remains one of Asia’s poorest countries. It is pinning its hopes on the Tasi Mane project, an ambitious plan to build a gas plant to process gas from Greater Sunrise, and a refinery and associated petrochemical industry. That is a gamble as long as the sovereignty issue is unresolved and an impasse persists over the route of a gas pipeline from Greater Sunrise. Timor-Leste wants a pipeline to Tasi Mane to bring jobs and income. Australia wants a pipeline to Darwin. The bugging allegation and arbitration proceedings seem intended to force Australia to the negotiating table. Leaders in Timor-Leste hope to break the logjam and perhaps to win a better deal.

Timor-Leste and Australia: Bugs in the pipeline, Economist, June 8, 2013, at 44

Response of Australia