Tag Archives: solar energy

The Right to Know from Space

Rebuilding an entire planet’s energy system is a big job…The most basic problem is knowing what, exactly, you are trying to rebuild. Academic-research groups, think-tanks, charities and other concerned organizations try to keep track of the world’s wind turbines, solar-power plants, fossil-fueled power stations, cement factories and so on. To this end, they rely heavily on data from national governments and big companies, but these are often incomplete. The most comprehensive database covering American solar-power installations, for instance, is thought to miss around a fifth of the photovoltaic panels actually installed on the ground.

In a paper published in Nature, a team of researchers demonstrate another way to keep tabs on the green-energy revolution. Dr Kruitwagen and his colleagues have put together an inventory of almost 69,000 big solar-power stations (defined as those with a rated capacity of 10kw of electricity or more) all over the world—more than four times as many as were previously listed in public databases. This new inventory includes their locations, the date they entered service and a rough estimate of their generating capacity…

Pictures came from two sets of satellites, Sentinel-2 and SPOT, run by the European Space Agency and Airbus respectively. These peer down on the world, recording visible light and also the infrared and ultraviolet parts of the spectrum. The images amounted to around 550 terabytes of data, spanning the period between 2016 and 2018. That is enough to fill more than a hundred desktop hard drives. Sifting through this many pictures by eye would have been impractical. That is where the second technological trend comes in. Dr Kruitwagen and his colleagues trained a machine-learning system to spot the solar panels for them.

More generally, Dr Kruitwagen hopes that his eye-in-the-sky approach—which, despite the planetary scale of the project, cost only around $15,000 in cloud-computing time—could presage more accurate estimates of other bits of climate-related infrastructure, such as fossil-fuel power stations, cement plants and terminals for ships carrying liquefied natural gas. The eventual result could be the assembly of a publicly available, computer-generated inventory of every significant bit of energy infrastructure on Earth. Quite apart from such a model’s commercial and academic value, he says, an informed public would be one better able to hold politicians’ feet to the fire. 

Excerpt from Solar-cell census: An accurate tally of the world’s solar-power stations, Economist, Oct. 30, 2021

The Dirty Secrets of Clean Energy

Solar panel installations are surging in the U.S. and Europe as Western countries seek to cut their reliance on fossil fuels. But the West faces a conundrum…: Most of them are produced with energy from carbon-dioxide-belching, coal-burning plants in China.

Concerns are mounting in the U.S. and Europe that the solar industry’s reliance on Chinese coal will create a big increase in emissions in the coming years as manufacturers rapidly scale up production of solar panels to meet demand. That would make the solar industry one of the world’s most prolific polluters, analysts say, undermining some of the emissions reductions achieved from widespread adoption. For years, China’s low-cost, coal-fired electricity has given the country’s solar-panel manufacturers a competitive advantage, allowing them to dominate global markets.

Chinese factories supply more than three-quarters of the world’s polysilicon, an essential component in most solar panels, according to industry analyst Johannes Bernreuter…Producing a solar panel in China creates around twice as much carbon dioxide as making it in Europe, said Fengqi You, professor of energy systems engineering at Cornell University.

Some Western governments and corporations are attempting to shift the solar industry away from coal…These policies would also help rebuild the West’s solar industry, which has withered under competition from higher-polluting Chinese producers, Western executives say…China has pushed down the price of panels so sharply that solar power is now less expensive than electricity generated from fossil fuels in many markets around the world. Imports of the solar cells that make up the panels are also flooding into the U.S. and Europe. Those shipments are either coming directly from China or contain key components made in China. “If China didn’t have access to coal, then solar power wouldn’t be cheap now,” said Robbie Andrew, a senior researcher at the Center for International Climate Research in Oslo. “Is it OK that we’ve had this huge bulge of carbon emissions from China because it allowed them to develop all these technologies really cheaply? We might not know that for another 30 to 40 years.”

Excerpts from Matthew Dalton, Behind the Rise of U.S. Solar Power, a Mountain of Chinese Coal, July 31, 2021

How Germany and China Saved the World from Fossil Fuels

In 2020, 132bn watts of new solar generating capacity were installed around the world; in many places solar panels are now by far the cheapest way to produce electricity. This transformation… was the result of a decisive shift in German government policy happening to coincide with China becoming the dominant force in global manufacturing.

By 2012 Germany had paid out more than €200bn in subsidies for solar energy production. It had also changed the world. Between 2004 and 2010 the global market for solar panels grew 30-fold as investors in Germany and the other countries which followed its lead piled in… By 2012 the price of a panel was a sixth what it had been in 2004, and it has gone on falling ever since… In sunny places new solar-power installations are significantly cheaper than generating electricity from fossil fuels. Installed capacity is now 776gw, more than 100 times what it was in 2004.

That does not mean Germany got exactly what it wanted. Solar power is not the decentralised, communal source of self-sufficient energy the Greens dreamed of; its provision is dominated by large industrial installations. And the panels on those installations are not made by the German companies the Social Democrats wanted to support: Chinese manufacturers trounced them…But they do provide the world with a zero-carbon energy source cheaper than fossil fuels, and there is room for many more of them…

The industry boasts no giants comparable to those in aircraft manufacture or pharmaceuticals, let alone computing; no solar company has a market capitalization of more than $10bn, and no solar CEO is in danger of being recognized on the street. It is a commodity business in which the commodity’s price moves in only one direction and everyone works on very thin margins. Good for the planet—but hardly a gold mine. 

Excerpt from How governments spurred the rise of solar power, Economist Technology Quarterly, Jan 9, 2021 

Beautiful Coal and Other Maladies

President Trump hasn’t been able to bring back “beautiful, clean coal” as he promised four years ago. As mines and power plants continue to close, the question many are asking in the diminishing American coal industry is—what now?

The use of coal to generate electricity in the U.S. is expected to fall more than a third during Mr. Trump’s first term, data from the U.S. Energy Information Administration show, as a glut of cheap natural gas unlocked due to fracking and increasingly competitive wind and solar sources gained market share. More than half of that drop happened before the new coronavirus outbreak. That compares with a decline of about 35% in coal consumed for power generation during Mr. Obama’s eight years in office.

In 2019, the U.S. consumed more renewable energy than coal for the first time since the 1880s, federal data show…“Coal isn’t coming back. You can’t legislate it,” said Karla Kimrey , previously a vice president at Wyoming-based coal producer Cloud Peak Energy Inc., which filed for bankruptcy protection last year. Domestic demand has continued to drop as utilities retire coal power plants and turn to cheap natural gas and renewables to make electricity, trends that have only accelerated as economies have slowed due to the pandemic. With less demand for power, many utilities have cut back on coal generation first, as it is generally more expensive

Meanwhile the rise of “ESG” or environmental, social and governance investing is constricting the industry’s ability to obtain capital, current and former executives say.  As major investors such as JPMorgan Chase & Co. and BlackRock Inc., the world’s largest asset manager, turn away from coal over concerns about climate change, coal companies are struggling to secure the insurance they need to operate. That hurts not only companies that mine the thermal coal used to generate electricity, but also those that mine metallurgical coal to make steel.

Excerpts from Rebecca Elliott and Jonathan Randles, Trump’s Promise to Revive Coal Thwarted by Falling Demand, Cheaper Alternatives, WSJ, Sept. 17, 2020

The End of the Mindless Self-Indulgence: the Gulf States

Algeria needs the price of Brent crude, an international benchmark for oil, to rise to $157 dollars a barrel. Oman needs it to hit $87. No Arab oil producer, save tiny Qatar, can balance its books at the current price, around $40 (summer 2020)….The world’s economies are moving away from fossil fuels. Oversupply and the increasing competitiveness of cleaner energy sources mean that oil may stay cheap for the foreseeable future. 

Arab leaders knew that sky-high oil prices would not last for ever. Four years ago Muhammad bin Salman, the de facto ruler of Saudi Arabia, produced a plan called “Vision 2030” that aimed to wean his economy off oil. Many of his neighbours have their own versions. But “2030 has become 2020…” 

Still, some see an upside to the upheaval in oil-producing states. The countries of the Gulf produce the world’s cheapest oil, so they stand to gain market share if prices remain low. As expats flee, locals could take their jobs…

Remittances from energy-rich states are a lifeline for the entire region. More than 2.5m Egyptians, equal to almost 3% of that country’s population, work in Arab countries that export a lot of oil. Numbers are larger still for other countries: 5% from Lebanon and Jordan, 9% from the Palestinian territories. The money they send back makes up a sizeable chunk of the economies of their homelands. As oil revenue falls, so too will remittances. There will be fewer jobs for foreigners and smaller pay packets for those who do find work. This will upend the social contract in states that have relied on emigration to soak up jobless citizens….With fewer opportunities in the oil-producing states, many graduates may no longer emigrate. But their home countries cannot provide a good life. Doctors in Egypt earn as little as 3,000 pounds ($185) a month, a fraction of what they make in Saudi Arabia or Kuwait. A glut of unemployed graduates is a recipe for social unrest…

For four decades America has followed the “Carter Doctrine”, which held that it would use military force to maintain the free flow of oil through the Persian Gulf. Under President Donald Trump, though, the doctrine has started to fray. When Iranian-made cruise missiles and drones slammed into Saudi oil facilities in September 2019, America barely blinked. The Patriot missile-defence batteries it deployed to the kingdom weeks later have already been withdrawn. Outside the Gulf Mr Trump has been even less engaged, all but ignoring the chaos in Libya, where Russia, Turkey and the UAE (to name but a few) are vying for control.

A Middle East less central to the world’s energy supplies will be a Middle East less important to America. ..As Arab states become poorer, the nature of their relationship with China may change. This is already happening in Iran, where American sanctions have choked off oil revenue. Officials are discussing a long-term investment deal that could see Chinese firms develop everything from ports to telecoms… Falling oil revenue could force this model on Arab states—and perhaps complicate what remains of their relations with America.

Excerpts from The Arab World: Twilight of the Petrostates, Economist, July  18, 2020

An Impossible Made Possible: the Green Energy Revolution

Since the cost of renewable energy can now be competitive with fossil fuels. Government, corporate and consumer interests finally seem to be aligning.  The stock market has noticed. After years of underperformance, indexes that track clean-energy stocks bottomed out in late 2018. The S&P Global Clean Energy index, which covers 30 big utilities and green-technology stocks, is now up 37% over two years, including dividends, compared with 18% for the S&P 500.

This year’s Covid crisis will delay some renewable projects, but could speed up the energy transition in other ways. Alternative-energy spending has held up much better than spending on oil and gas. Globally, clean-energy investment is now expected to account for half of total investment in the entire energy sector this year, according to UBS.  Moreover, the crisis has pushed governments to spend money, including on renewable technologies. The massive stimulus plan announced by the European Union last month is decidedly green. The German government increased electric-car subsidies as part of its pandemic-related stimulus package rather than rolling out a 2009-style “cash-for-clunkers” program. China’s plans include clean-energy incentives, too.

Solar and wind are now mature technologies that provide predictable long-term returns. Big lithium-ion batteries, such as those that power Teslas, are industrializing rapidly. More speculatively, hydrogen is a promising green fuel for hard-to-decarbonize sectors such as long-haul transport, aviation, steel and cement.  Many big companies—the likes of Royal Dutch Shell, Air Liquide and Toyota —have green initiatives worth many hundreds of millions of dollars. They are, however, a relatively small part of these large businesses, some of whose other assets may be rendered obsolete by the energy transition… Early-stage electric-truck maker Nikola jumped on its market debut this month to a valuation at one point exceeding that of Ford.

Investors might be better off looking at the established specialists in between. Vestas is the world’s leading manufacturer of wind turbines. Orsted, another Danish company, has made the transition from oil-and-gas producer to wind-energy supplier and aspires to be the first green-energy supermajor. More speculatively, Canadian company Ballard has three decades of experience making hydrogen fuel cells.

Rochelle Toplensky, Green Energy Is Finally Going Mainstream, WSJ, June 24, 2020

Praying for Renewable Energy

In the wake of the Fukushima nuclear disaster in 2011, Fukushima prefecture itself pledged to get all its power from renewable sources by 2040.  The hoped-for transformation, however, has been “slow and almost invisible.”…Renewable generation has grown from 10% of the power supply in 2010 to 17% in 2018, almost half of which comes from old hydropower schemes. Most nuclear plants, which provided more than a quarter of the country’s power before the 2011 disaster, have been shut down… But for the most part they have been replaced not by wind turbines and solar panels but by power stations that burn coal and natural gas. The current government wants nuclear plants to provide at least 20% of electricity by 2030. It also wants coal’s share of generation to grow, and has approved plans to build 22 new coal-fired plants over the next five years. The target for renewables, by contrast, is 22-24%, below the current global average, and far lower than in many European countries.

Geography and geology provide part of the answer. Japan is densely populated and mountainous. That makes solar and onshore wind farms costlier to build than in places with lots of flat, empty land. The sea floor drops away more steeply off Japan’s coasts than it does in places where offshore wind has boomed, such as the North Sea. And although geothermal power holds promise, the most suitable sites tend to be in national parks or near privately owned hot springs.

Government policies also help stifle the growth of renewable energy. Since the end of the second world war, privately owned, vertically integrated regional utilities have dominated the electricity market. These ten behemoths provide stable power within their regions, but do little to co-ordinate supply and demand across their borders…The limited transmission between regions makes it even harder than usual to cope with intermittent generation from wind turbines and solar panels. It also reduces competition, which suits the incumbent utilities just fine…Recent reforms have attempted to promote renewables both directly and indirectly…The “feed-in tariff”, obliging utilities to pay a generous fixed price for certain forms of renewable energy—a policy that has prompted investors to pile into solar and wind in other countries. In 2016, the government fully liberalised the retail electricity market. It has also set up new regulatory bodies to promote transmission between regions and to police energy markets. In April 2020 a law came into force that requires utilities to run their generation, transmission and distribution units as separate businesses. These reforms constitute a policy of “radical incrementalism”.

Critics say the steps have been too incremental and not radical enough. Utilities continue to make it time-consuming and costly for new entrants to get access to the grid, imposing rules that are “not fair for newcomers”, according to Takahashi Hiroshi of Tsuru University. Existing power plants are favoured over new facilities, and the share of renewables is limited, on the ground that their intermittency threatens the grid’s stability.

But even if the government is timid, investors can still make a difference…. Several of Japan’s big multinationals have pledged to switch to clean power on a scale and schedule that put the government’s targets to shame. Environmental activism has made banks and businesses wary of investments in coal. Even big utilities have come to see business opportunities in renewables, especially in the government’s imminent auction of sites for offshore wind plants. Two of them, Tohoku Electric Power and Tokyo Electric Power (TEPCO), have announced plans this year to issue “green bonds” to finance renewables projects. In March 2020, TEPCO established a joint venture with Orsted, a Danish oil firm that has become a pioneer in offshore wind. 

Exceprts from Renewable Energy in Japan: No Mill Will, Economist, June 13, 2020

Can Nuclear Power Beat Climate Change?

The 2019 World Nuclear Industry Status Report (WNISR2019) assesses the status and trends of the international nuclear industry and analyzes the potential role of nuclear power as an option to combat climate change. Eight interdisciplinary experts from six countries, including four university professors and the Rocky Mountain Institute’s co-founder and chairman emeritus, have contributed to the report.

While the number of operating reactors has increased over the past year by four to 417 as of mid-2019, it remains significantly below historic peak of 438 in 2002.  Nuclear construction has been shrinking over the past five years with 46 units underway as of mid-2019, compared to 68 reactors in 2013 and 234 in 1979. The number of annual construction starts have fallen from 15 in the pre-Fukushima year (2010) to five in 2018 and, so far, one in 2019. The historic peak was in 1976 with 44 construction starts, more than the total in the past seven years.

WNISR project coordinator and publisher Mycle Schneider stated: “There can be no doubt: the renewal rate of nuclear power plants is too slow to guarantee the survival of the technology. The world is experiencing an undeclared ‘organic’ nuclear phaseout.”  Consequently, as of mid-2019, for the first time the average age of the world nuclear reactor fleet exceeds 30 years.

However, renewables continue to outpace nuclear power in virtually all categories. A record 165 gigawatts (GW) of renewables were added to the world’s power grids in 2018; the nuclear operating capacity increased by 9 GW. Globally, wind power output grew by 29% in 2018, solar by 13%, nuclear by 2.4%. Compared to a decade ago, nonhydro renewables generated over 1,900 TWh more power, exceeding coal and natural gas, while nuclear produced less.

What does all this mean for the potential role of nuclear power to combat climate change? WNISR2019 provides a new focus chapter on the question. Diana Ürge-Vorsatz, Professor at the Central European University and Vice-Chair of the Intergovernmental Panel on Climate Change (IPCC) Working Group III, notes in her Foreword to WNISR2019 that several IPCC scenarios that reach the 1.5°C temperature target rely heavily on nuclear power and that “these scenarios raise the question whether the nuclear industry will actually be able to deliver the magnitude of new power that is required in these scenarios in a cost-effective and timely manner.”

Over the past decade, levelized cost estimates for utility-scale solar dropped by 88%, wind by 69%, while nuclear increased by 23%. New solar plants can compete with existing coal fired plants in India, wind turbines alone generate more electricity than nuclear reactors in India and China. But new nuclear plants are also much slower to build than all other options, e.g. the nine reactors started up in 2018 took an average of 10.9 years to be completed. In other words, nuclear power is an option that is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options.

Excerpts from WNISR2019 Assesses Climate Change and the Nuclear Power Option, Sept. 24, 2019

Furthest from their Minds: greenhouse gases in Afirca

When sub-Saharan Africa comes up in discussions of climate change, it is almost invariably in the context of adapting to the consequences, such as worsening droughts. That makes sense. The region is responsible for just 7.1% of the world’s greenhouse-gas emissions, despite being home to 14% of its people. Most African countries do not emit much carbon dioxide. Yet there are some notable exceptions.

Start with coal-rich South Africa, which belches out more carbon dioxide than Britain, despite having 10m fewer people and an economy one-eighth the size. Like nearly all of its power plants, many of its vehicles depend on coal, which is used to make the country’s petrol (a technique that helped the old apartheid regime cope with sanctions). A petrochemical complex in the town of Secunda owned by Sasol, a big energy and chemicals firm, is one of the world’s largest localised sources of greenhouse gases.  Zambia is another exception. It burns so much vegetation that its land-use-related emissions surpass those of Brazil, a notorious—and much larger—deforester.

South Africa and Zambia may be extreme examples, but they are not the region’s only big emitters . Nigerian households and businesses rely on dirty diesel generators for 14GW of power, more than the country’s installed capacity of 10GW. Subsistence farmers from Angola to Kenya use slash-and-burn techniques to fertilise fields with ash and to make charcoal, which nearly 1bn Africans use to cook. This, plus the breakneck growth of extractive industries, explains why African forests are disappearing at a rate of 0.5% a year, faster than in South America. Because trees sequester carbon, cutting them counts as emissions in climate accounting.

Other African countries are following South Africa’s lead and embracing coal…A new coal-fired power plant ….Lamu in Kenya is one of many Chinese-backed coal projects in Africa…Africa’s sunny skies and long, blustery coastlines offer near-limitless solar- and wind-energy potential. But what African economies need now are “spinning reserves”, which can respond quickly to volatile demand, says Josh Agenbroad of the Rocky Mountain Institute, a think-tank in Colorado. Fossil fuels deliver this; renewables do not…. Several countries are intrigued by hybrid plants where most electricity is generated by solar panels, but diesel provides the spinning reserves…

Excerpts from  Africa and Climate Change: A Burning Issue, Economist,  Apr. 21, 2018, at 41.

Eco-Peace for the Middle East?

EcoPeace, a joint Israeli, Jordanian and Palestinian NGO thinks it just might. In December it presented an ambitious, if far from fully developed, $30 billion plan to build a number of desalination plants on the Mediterranean shore of Israel and the Gaza Strip. At the same time, large areas in Jordan’s eastern desert would host a 200 square km (75 square mile) solar-energy plant, which would provide power for desalination (and for Jordan) in exchange for water from the coast. “A new peaceful economy can be built in our region around water and energy” says Gidon Bromberg, EcoPeace’s Israeli director. Jordan and the Palestinian Authority are already entitled to 120 million cubic meters of water a year from the Jordan river and West Bank aquifers but this is not enough to meet demand, particularly in Jordan, which regularly suffers from shortages….

The main drawback to making fresh water from the sea is that it takes lots of energy. Around 25% of Jordan’s electricity and 10% of Israel’s goes on treating and transporting water. Using power from the sun could fill a sizeable gap, and make Palestinians less dependent on Israeli power. Renewables supply just 2% of Israel’s electricity needs, but the government is committed to increasing that share to 17% by 2030. Jordan, which has long relied on oil supplies from Arab benefactors, is striving for 10% by 2020.,,, Over the past 40 years there has been a series of plans to build a Red Sea-Dead Sea canal that would have irrigated the Jordan Valley and generated power, none of which have been built.

Beyond many logistical and financial obstacles, the plan’s boosters also have to navigate a political minefield.

Excerpts from Utilities in the Middle East: Sun and Sea, Economist, Jan. 16, 2016, at 54