Category Archives: water resources

Saving the Sea of Galilee

The water level of the Sea of Galilee, on which Jesus supposedly walked, is a national obsession in Israel. Newspapers report its rise and fall next to the weather forecast. Lately the sea, which is actually a freshwater lake, has been falling. It is now a quarter empty. Small islands have emerged above its shrinking surface. 

For the past five years Israel has experienced its worst drought in nearly a century. That has reduced the flow of the Jordan river and other streams that feed into the Sea of Galilee. Less turnover in the lake’s water is leading to increased salinity and the spread of cyanobacteria (sometimes called “blue-green algae”, despite not being algae). As the pressure from fresh water eases, it allows in more salt water from subterranean streams. Climate change is expected to exacerbate these problems, perhaps one day making the lake water undrinkable.

Israel can probably cope. For most of its history the Sea of Galilee was its largest source of drinking water. But over the past decade the country has invested heavily in desalination plants and projects that allow it to reclaim effluents and brackish water. Since 2016 well over half of the water consumed by households, farms and industry has been “man-made”. Less than 70m cubic metres of water will be pumped out of the Sea of Galilee this year for consumption, down from 400m in the past. Some 50m will go to Jordan, which is also suffering from a severe drought.

In Jun 2018e the Israeli government authorised a billion-shekel ($270m) plan to pump desalinated sea water, mostly from the Mediterranean, into the Sea of Galilee. Work on a new pipeline began last month. A freshwater lake has never been replenished in this way, but the scientists monitoring the plan believe it will work similarly to rainfall and will not harm the lake’s unique ecosystem.  By 2020 the new pipeline is expected to pump enough desalinated water into the Sea of Galilee to stabilise its level. 

Excerpts from The Sea of Galilee: Walking on Desalinated Water, Economist,  Dec. 1, 2018

Future of Green Life Depends on a Toilet

Innovator Cranfield University, U.K.: Putting down the toilet lid activates a dry flush. The motion turns a set of gears that drop feces and urine into a pan, where they are separated and either combusted into ash that can be thrown away or filtered into clean water that could be used to water plants, for instance, though not drinking. It was one of the few completely standalone toilets at the expo, able to function without links to water, sewer or electric lines.

The Innovator: Helbling Group, Switzerland: Helbling’s self-contained toilet system
Similar to other models, this toilet is a mostly self-contained system that transforms waste into clean water and a form of charcoal. But its makers, who were contracted by the Gates Foundation to develop this model, also had modern design in mind: A sleek, black-and-white prototype includes a touchpad for the flush and a container that can be detached to dump out excess water. While it doesn’t have to connect to water or sewer lines, one limit is that the model still needs electricity from an outside source

Sedron Technologies makes the Janicki Omni Processor, a small-scale waste-treatment plant that can filter wet fecal matter so thoroughly that the resulting water is not only free of bacteria and viruses but also safe for drinking. At its highest capacity the plant can manage waste for up to 500,000 people, the same range as two other plants featured at the expo. A trial has been running in Dakar, Senegal, over the past three years to identify and fix technical problems.

Excerpts  from Flush With Ideas: Bill Gates Pursues the Toilet of the Future, WSJ, Nov. 9, 2018

 

The Water Barons of Australia

Australia has one of the world’s most sophisticated water-trading systems, and officials in other water-challenged places—notably California and China—are drawing on its experience to manage what the World Bank has called world’s “most precious resource.”  The system here, set up after a catastrophic drought in the 2000s saw the country’s most important river system almost run dry, aims to make sure each gallon of river water goes to higher-value activities.

But the return of severe drought to an area of eastern Australia more than twice the size of Texas is testing the system…Putting a price on water is politically unacceptable in many countries, where access to lakes and rivers is considered a basic right and water is often allocated under administrative rules instead of by markets.

Many water markets that do exist only allow landowners to buy and sell water rights. Australia since 2007 has allowed anyone to trade water parcels, putting supply under the influence of market forces in a system now valued at about $21 billion. Water may be freely bought and sold by irrigators, farmers, water brokers or investors through four exchanges—H2OX, Waterfind, Water Exchange and Ruralco—which allow real-time pricing…

As Australia rewrote the rules of its water market over the last decade to deal with its own drought crises, many farmers chose to sell their water licenses and rely on one-off purchases to keep farming.  The tactic worked until winter rains failed to arrive this year, turning fertile areas into dust bowls. Where a megaliter of water in June last year, before the drought took hold, cost around 3,000 Australian dollars (U.S. $2,166), the price is now closer to A$5,000, according to Aither Water, an advisory firm. The high cost has left smaller farmers praying for rain…

Australia’s drought is splitting agriculture-producing regions into those who have water and those who don’t.  Large investors—including Canadian and U.S. funds—bought high-price water licenses to set up agribusiness ventures in profitable almonds, cotton and citrus, with an eye to growing Asian markets. Others have set up dedicated water investment funds, with prices at the highest levels seen since the drought last decade.

In a country where boom-and-bust cycles, through drought and flood, have historically made water a political flashpoint, some rural Australian lawmakers and farmers want the government to divert water to help parched farms…In August 2018, Victoria state auctioned 20 gigaliters of water that had been earmarked for the environment, putting it on the market for dairy and fruit regions around Cohuna…Some water traders and environmentalists criticized the move as political interference—and said it risked undermining the water market by giving priority to farmers and disrupting forward trades and planning by other irrigators….Euan Friday, a water manager for farm and water investment company Kilter Rural, said the market is doing what it is supposed to do, and warned that the country’s fragile rivers—much smaller than the major rivers of North America—would be facing a dire situation without it. Supported by Australian pension funds, Kilter Rural has invested $130 million in buying water rights and redeveloping farmland.

Excerpt from Australia Model Water Market Struggles with Drought, WSJ, Nov. 8, 2018

Flowering the Sahara

The installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect,  could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.

Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms…

This highlights that, in addition to avoiding anthropogenic greenhouse gas emissions from fossil fuels and the resulting warming, wind and solar energy could have other unexpected beneficial climate impacts when deployed at a large scale in the Sahara, where conditions are especially favorable for these impacts. Efforts to build such large-scale wind and solar farms for electricity generation may still face many technological (e.g., transmission, efficiency), socioeconomic (e.g., cost, politics), and environmental challenges, but this goal has become increasingly achievable and cost-effective

Exceprts from Yan Li, Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation, Science, Sept. 7, 2018

Geopolitical Quintet: Legal Status of Caspian Sea

Caspian Sea…is the world’s largest body of inland water—or what some would call a rather salty lake. The confusion has fuelled disputes over its legal status for nearly 30 years, as lakes and seas fall under different international legal regimes.

The Caspian sits at a strategic spot between Europe and Asia, and contains lucrative stores of oil, gas and fish, including the caviar-producing sturgeon. The Soviet Union and Iran had a clearly defined maritime border but, after the Soviet collapse, the appearance of independent Azerbaijan, Kazakhstan and Turkmenistan muddied the waters.

On August 12th the five littoral countries at last signed an agreement the Convention on the Legal Status of the Caspian Sea. The Caspian, says a Russian official, is to be treated as neither sea nor lake, but instead subject to a “special legal status”. While leaving some of the thorniest issues unresolved, the pact clarifies the maritime borders, enabling new oil, gas and pipeline projects to go ahead.

All five countries are to have 15 mile-wide territorial waters extending from their shores and another ten miles of exclusive fishing rights. The rest of the surface water will be common territory, but non-signatory states (e.g., the United States) may not deploy armed forces there. For Russia, this helps preserve its military dominance by retaining freedom of movement for its warships. (Russia has used the Caspian to launch missiles into Syria.)

The seabed and its resources, meanwhile, will be divided separately between the signatories. Russia, Kazakhstan and Azerbaijan already have agreements that split up the northern Caspian. Carving up the rest of the seabed will require further negotiations. The agreement also allows pipelines to be constructed with the consent only of the countries whose sectors they pass through. That might unblock a much-discussed Trans-Caspian Pipeline from Turkmenistan to Azerbaijan which Russia has long opposed.

Exceprts from Big Lake Small Sea: Russia’s Neighborhood, Economist, Aug. 18, 2018, at 44

How Rivers Die

Kapuas, Indonesia’s longest river support somes 3m people…One reason that the water is so murky is deforestation. Since the 1970s logging has enriched locals while stripping away the vegetation that held the soil in place. The Centre for International Forestry Research (CIFOR) found that between 1973 and 2010 over 100,000 square kilometres of forest was lost on Kalimantan, or a third of the original coverage. A national moratorium that began in 2011 has done little to still the axes. As a result, torrential tropical rains wash lots of loose earth into the Kapuas.

Illegal gold-mining compounds the problem. Locals tear up the riverbed with diggers or blast the banks with high-pressure hoses, then sieve the mud for gold. Mercury, which the miners use to separate gold from sediment, but which is poisonous to humans and fish alike, leaks into the river.

The riverbank is punctuated with corrugated-iron towers, which emit birdsong from loudspeakers. These are designed to lure swiftlets, who make their nests with saliva. The nests of swiftlets  are considered a delicacy and aphrodisiac by many Chinese.* Deane, a shop owner, built his tower last December after seeing others do the same. He sells the nests to a wholesaler for about 15m rupiah ($1,025) a kilogram…

In Kapuas Hulu, an upstream district, half the population rely on the river for drinking water. A quarter have no toilet. Even where bathrooms do exist along the river, they are often floating cubicles with a hole in the floorboards. Cows and goats, living in wooden riverside cages, also defecate straight into the Kapuas

The Kapuas passes through seven districts. Midstream ones, such as Sintang and Sanggau, earn hefty tax revenues by encouraging palm-oil plantations. But downstream districts suffer from the resulting silt, traffic and run-off without receiving any of the benefits. The same problem occurs at a village level. Mr Hadi says that fishing by sprinkling poisonous leaves on the water (the stricken fish float to the surface) is forbidden but other village heads do not enforce the rules…

A study by CIFOR on the income of villagers living near the Kapuas river found that the best-paid palm-plantation workers earned 50% more than the most successful fishermen. (Gold miners made three times as much—and spent more on education.)…But the environmental damage is plain to see. The river here is brown, clouded by silt. A study published in 2016 found that levels of phosphates in the water, from fertilisers and villagers washing themselves with soap, are highest near urban areas and palm plantations.

Down in Pontianak, the river water is darker still, occasionally brightened by oil slicks. Water bottles and instant-noodle packets cling together to form plastic islands.

Excerpts from  Indonesia’s Longest River,  Economist, Aug. 25, 2018

*According to Wikipedia: Authentic bird’s-nest soup is made from nests of some species of swiftlet.  Instead of twigs, feathers and straw, these swiftlets make their nest only from strands of their gummy saliva, which hardens when exposed to air. Once the nests are harvested, they are cleaned and sold to restaurants. Eating swiftlet nest material is believed to help maintain skin tone, balance qi (“life energy”) and reinforce the immune system… (Dictionary of Traditional Chinese Medicine, The History of Chinese Medicine and the Nutrition Table).

An Epiphany Moment: useful waste-water

Fledgling companies, many backed by private equity, are rushing to help shale drillers deal with one of their trickiest problems: what to do with the vast volumes of wastewater that are a byproduct of fracking wells.

When producers blast a mix of water, sand and chemicals to release oil and gas from rock formations miles underground, they not only unlock oil and gas, but also massive quantities of briny water long buried beneath the surface. Drillers in the Permian Basin in New Mexico and Texas currently generate more than 1,000 Olympic-size swimming pools full of this murky, salty water every day. Handling it amounts to up to 25% of a well’s lease operating expense, according to analysts.

Investors have expressed interest in this corner of the U.S. shale industry as oil production in the Permian soars to record levels. Analysts said the region could produce more than five million barrels of oil a day by 2023, more than the current daily production of Iran.

Sensing a chance for a big return, private-equity firms have invested more than $500 million into wastewater-disposal companies such as Solaris Water Midstream LLC, WaterBridge Resources LLC, Goodnight Midstream LLC and Oilfield Water Logistics LLC. There are roughly a dozen of these water-focused companies that analysts said could each be worth hundreds of millions of dollars.

These companies are building pipelines to transport the wastewater and dispose of it deep underground, hoping to displace the trucks that currently do the job. Some companies have a longer-term plan: recycling the wastewater to sell it back to drillers to reuse. Most of the companies are currently private;….

Apache Corp. , one of the largest producers in the Permian, wants to reuse more water to reduce the millions of barrels it must dispose of and limit the freshwater it purchases for fracking, according to a company presentation earlier this year. Apache recycled more than 22 million barrels of water from 2013 to 2016 in just one subsection of the Permian.

Excerpts from The Next Big Bet in Fracking: Water, WSJ, Aug. 12, 2018