Tag Archives: radioactive waste Japan

A Costly Affair: Japan’s Nuclear Waste Legacy

The Japan Atomic Energy Agency estimates that it will cost taxpayers 36.1 billion yen ($280 million) to rectify the shoddy storage of radioactive waste in a storage pool at the Tokai Reprocessing Plant, the nation’s first facility for reprocessing spent nuclear fuel, 

Around 800 containers of transuranic radioactive waste, or “TRU waste,” were dropped into the pool from 1977 to 1991 using a wire in the now-disused plant in Tokai, a village in Ibaraki Prefecture northeast of Tokyo. They emit high levels of radiation. The waste includes pieces of metal cladding tubes that contained spent nuclear fuel, generated during the reprocessing process. The containers are ultimately supposed to be buried more than 300 meters below surface.

The agency has estimated that 19.1 billion yen will be needed to build a new storage facility for the containers, and 17 billion yen for a building that will cover the storage pool and the crane equipment to grab containers. The 794 containers each are about 80 centimeters in diameter, 90 cm tall and weigh about 1 ton, with many lying on their sides or overturned in the pool. Some have had their shape altered by the impact of being dropped. The containers were found stored in the improper manner in the 1990s. While the agency said the storage is secure from earthquakes and tsunamis, it has nonetheless decided to improve the situation. The extractions have been delayed by about 10 years from the original plan and are expected to begin in the mid-2030s.

The Tokai Reprocessing Plant was the nation’s first plant that reprocessed spent fuel from nuclear reactors to recover uranium and plutonium. Between 1977 and 2007, about 1,140 tons of fuel were reprocessed. The plant’s dismantlement was decided in 2014 and is expected to take about 70 years at a cost of 1 trillion yen.

Excerpts from Righting shoddy nuclear waste storage site to cost Japan 36 bil. yen, Kyodo News, Jan 15, 2023

Forever Fukushima: Cleaning Up the Huge Mess

By the end of 2019, Japan further delayed the removal of thousands of spent fuel units that remain in cooling pools since the 2011 disaster The government and the plant operator, Tokyo Electric Power Co., are keeping a 30- to 40-year completion target.

More than 4,700 units of fuel rods remain at the three melted reactors and two others that survived the 2011 earthquake and tsunami. They pose a high risk because their storage pools are uncovered and a loss of water in case of another major disaster could cause the fuel rods to melt, releasing massive radiation. Their removal at Units 1 and 2, after repeated delays, is now postponed by up to 10 years from the initial target of 2018, with more preparation needed to reduce radiation and clear debris and other risks.

Fuel rod removal at the Unit 1 reactor pool will begin sometime in 2027-2028, after debris is cleaned up and a huge rooftop cover installed to contain radioactive dust. Fuel removal at Unit 2 pool is to begin in 2024-2026. Work at the Unit 3 reactor pool began in April 2019 and all 566 units will be removed by March 2021. TEPCO has emptied the pool at Unit 4, which was offline and only suffered building damage, and aims to have all remaining rods in reactor pools removed by 2031 for safer storage in dry casks.

TEPCO has been unable to release the 1.2 million tons of treated but still radioactive water kept in nearly 1,000 tanks at the plant, fearing public repercussions and the impact on the area’s struggling fishing and agriculture. The amount of water is growing by 170 tons daily because it is used to cool the melted fuel inside the reactors.

The Ministry of Economy, Trade and Industry recently drafted a proposal to release the water to the sea or the air, or a combination of both. TEPCO says it can only store up to 1.37 million tons, or until the summer of 2022. Time is limited because preparation is needed before any water release. TEPCO and the government say the tanks pose risks if they were to spill their contents in another major earthquake, tsunami or flood…. The water is still somewhat contaminated, but TEPCO says further treatment can remove all but radioactive tritium to levels allowed for release. Experts say tritium is not harmful to humans in small amounts and has been routinely released from nuclear plants around the world.

Removing an estimated 880 tons of molten fuel from Fukushima’s three melted reactors is the toughest and unprecedented challenge. It’s six times the amount dealt with in the aftermath of the 1979 Three Mile Island partial core melt in the United States.  Removal is to begin in 2021 at Unit 2, where robotic probes have made more progress than at Units 1 and 3. A robotic arm was developed to enter the reactor from the side to reach the melted fuel, which has largely fallen to the bottom of the primary containment vessel… The first decade through 2031 is a crucial phase that will affect future progress…

Japan has yet to develop a plan to dispose of the highly radioactive melted fuel and other debris that come out of the reactors. TEPCO will compile a plan for those after the first decade of melted fuel removal. Managing the waste will require new technologies to reduce its volume and toxicity. TEPCO and the government say they plan to build a site to store waste and debris removed from the reactors, but finding one and obtaining public consent will be difficult.

Additionally, there will be an estimated 770,000 tons of solid radioactive waste by 2030, including contaminated debris and soil, sludge from water treatment, scrapped tanks and other waste. They will be sorted, treated and compacted for safe storage under a plan to be compiled by 2028.

The government says Fukushima’s decommissioning cost is estimated at 8 trillion yen ($73 billion), though adding compensation, decontamination of surrounding areas and medium-term storage facilities would bring the total to an estimated 22 trillion yen ($200 billion). The Japan Center for Economic Research, a think tank, estimates that decommissioning alone would cost 51 trillion yen ($470 billion) if the water is not released and tritium removal technology is pursued.

More than 10,000 workers will be needed annually in coming years, about one third assigned to work related to the radioactive water. 

Excerpts from MARI YAMAGUCHI,  Japan revises Fukushima cleanup plan, delays key steps, Associated Press, Dec. 27, 2019

Why Japan Likes its Monju: nuclear reactors

Monju  is a Japanese sodium-cooled fast reactor, located in Tsuruga Nuclear Power Plant, Fukui Prefecture..  Monju is a sodium cooled, MOX-fueled, loop-type reactor with three primary coolant loops…The reactor has been inoperative for most of the time since it has been built [due to accidents and resulting public suspicion].  On December 8, 1995, the reactor suffered a serious accident. Intense vibration caused a thermowell inside a pipe carrying sodium coolant to break… [T]he sodium was not radioactive. However, there was massive public outrage in Japan when it was revealed that Power Reactor and Nuclear Fuel Development Corporation (PNC), the semigovernmental agency then in charge of Monju, had tried to cover up the extent of the accident and resulting damage. This coverup included falsifying reports and the editing of a videotape taken immediately after the accident, as well as issuing a gag order that aimed to stop employees revealing that tapes had been edited.

More  Problems

On 16 February 2012 Nuclear and Industrial Safety Agenbcy reported that a sodium-detector malfunctioned.  On 30 April 2013 an operating error rendered two of the three emergency generators unusable.  On Monday 16 September 2013 before 3 a.m. the data transmission of the reactor stopped to the government’s Emergency Response Support System.

Excerpts from Wikipedia

A panel of experts set up by the Education, Culture, Sports, Science and Technology Ministry has begun discussions on what should be done about the Monju reactor. The panel is expected to reach a conclusion by the summer 2016.  Since 2012, the Nuclear Regulation Authority (NRA) has repeatedly conducted on-the-spot inspections of Monju, which is now operated by the Japan Atomic Energy Agency (JAEA). Every time these inspections were conducted, however, they have identified faulty maintenance checks of the reactor and others that violated related laws and regulations.,Monju’s maintenance and inspection program was drawn up in 2009. What is a serious issue is the program had a large number of defects.About 50,000 pieces of equipment must be inspected at the reactor. Without a carefully thought-out plan, these inspections will be far from smooth. It is crucial to review the maintenance and inspection plan, which is the foundation for ensuring safety…

Under the government’s Strategic Energy Plan, Monju is considered a key research base to reduce the volume of nuclear waste. The development of nuclear reactors similar to Monju is under way in Russia, China and India, as uranium resources can be effectively utilized with the fast breeder reactor.Can Japan afford to stop development of the fast breeder reactor and let these countries lead the way? This is indeed a crucial moment.

New organization needed to regain public trust in Monju management, The Yomiuri Shimbun, Jan 18, 2015