Tag Archives: nuclear waste storage

Lots of Money Forever for Waste that Lasts for Forever: Nuclear Waste in Japan

Since August 2020, two local governments on the western shore of Hokkaido in Japan have said they will apply to the central government for a survey that could eventually lead to their municipalities hosting a permanent underground repository for high-level radioactive waste. The fact that these two localities made their announcements about a month apart and are situated not far from each other was enough to attract more than the usual media attention, which revealed not only the straitened financial situations of the two areas, but also the muddled official policy regarding waste produced by the country’s nuclear power plants.

The respective populations of the two municipalities reacted differently. The town of Suttsu made its announcement in August 2020, or, at least, its 71-year-old mayor did, apparently without first gaining the understanding of his constituents, who, according to various media, are opposed to the plan…. Meanwhile, the mayor of the village of Kamoenai says he also wants to apply for the study after the local chamber of commerce urged the village assembly to do so in early September 2020. TBS asked residents about the matter and they seemed genuinely in favor of the study because of the village’s fiscal situation. Traditionally, the area gets by on fishing — namely, herring and salmon — which has been in decline for years. A local government whose application for the survey is approved will receive up to ¥2 billion in subsidies from the central government… Kamoenai, already receiving subsidies for nuclear-related matters. The village is 10 kilometers from the Tomari nuclear power plant, where some residents of Kamoenai work. In exchange for allowing the construction of the plant, the village now receives about ¥80 million a year, a sum that accounts for 15 percent of its budget. According to TBS, Kamoenai increasingly relies on that money as time goes by, since its population has declined by more than half over the past 40 years.

Since Japan’s Nuclear Waste Management Organization started soliciting local governments for possible waste storage sites in 2002, a few localities have expressed interest, but only one — the town of Toyo in Kochi Prefecture — has actually applied, and then the residents elected a new mayor who canceled the application. The residents’ concern was understandable: The waste in question can remain radioactive for up to 100,000 years.

The selection process also takes a long time. The first phase survey, which uses existing data to study geological attributes of the given area, requires about two years. If all parties agree to continue, the second phase survey, in which geological samples are taken, takes up to four years. The final survey phase, in which a makeshift underground facility is built, takes around 14 years. And that’s all before construction of the actual repository begins.

Neither Suttsu nor Kamoenai may make it past the first stage. Yugo Ono, an honorary geology professor at Hokkaido University, told the magazine Aera that Suttsu is located relatively close to a convergence of faults that caused a major earthquake in 2018. And Kamoenai is already considered inappropriate for a repository on a map drawn up by the trade ministry in 2017.

If the Nuclear Waste Management Organization’s process for selecting a site sounds arbitrary, it could reflect the government’s general attitude toward future plans for nuclear power, which is still considered national policy, despite the fact that only three reactors nationwide are online.

Japan’s spent fuel is being stored in cooling pools at 17 nuclear plants comprising a storage capacity of 21,400 tons. As of March 2020, 75 percent of that capacity was being used, so there is still some time to find a final resting place for the waste. Some of this spent fuel was supposed to be recycled at the Rokkasho Reprocessing Plant in Aomori Prefecture, but, due to numerous setbacks, it doesn’t look as if it’s ever going to open, so the fuel will just become hazardous garbage.

According to some, the individual private nuclear plants should be required to manage their own waste themselves. If they don’t have the capacity, then they should create more. It’s wrong to bury the waste 300 meters underground because many things can happen over the course of future millennia. The waste should be in a safe place on the surface, where it can be readily monitored.  However, that would require lots of money virtually forever, something the government would prefer not to think about, much less explain. Instead, they’ve made plans that allow them to kick the can down the road for as long as possible.

Excerpt from PHILIP BRASOR, Hokkaido municipalities gamble on a nuclear future, but at what cost? Japan Times, Oct. 24, 2020

Forever Fukushima: Cleaning Up the Huge Mess

By the end of 2019, Japan further delayed the removal of thousands of spent fuel units that remain in cooling pools since the 2011 disaster The government and the plant operator, Tokyo Electric Power Co., are keeping a 30- to 40-year completion target.

More than 4,700 units of fuel rods remain at the three melted reactors and two others that survived the 2011 earthquake and tsunami. They pose a high risk because their storage pools are uncovered and a loss of water in case of another major disaster could cause the fuel rods to melt, releasing massive radiation. Their removal at Units 1 and 2, after repeated delays, is now postponed by up to 10 years from the initial target of 2018, with more preparation needed to reduce radiation and clear debris and other risks.

Fuel rod removal at the Unit 1 reactor pool will begin sometime in 2027-2028, after debris is cleaned up and a huge rooftop cover installed to contain radioactive dust. Fuel removal at Unit 2 pool is to begin in 2024-2026. Work at the Unit 3 reactor pool began in April 2019 and all 566 units will be removed by March 2021. TEPCO has emptied the pool at Unit 4, which was offline and only suffered building damage, and aims to have all remaining rods in reactor pools removed by 2031 for safer storage in dry casks.

TEPCO has been unable to release the 1.2 million tons of treated but still radioactive water kept in nearly 1,000 tanks at the plant, fearing public repercussions and the impact on the area’s struggling fishing and agriculture. The amount of water is growing by 170 tons daily because it is used to cool the melted fuel inside the reactors.

The Ministry of Economy, Trade and Industry recently drafted a proposal to release the water to the sea or the air, or a combination of both. TEPCO says it can only store up to 1.37 million tons, or until the summer of 2022. Time is limited because preparation is needed before any water release. TEPCO and the government say the tanks pose risks if they were to spill their contents in another major earthquake, tsunami or flood…. The water is still somewhat contaminated, but TEPCO says further treatment can remove all but radioactive tritium to levels allowed for release. Experts say tritium is not harmful to humans in small amounts and has been routinely released from nuclear plants around the world.

Removing an estimated 880 tons of molten fuel from Fukushima’s three melted reactors is the toughest and unprecedented challenge. It’s six times the amount dealt with in the aftermath of the 1979 Three Mile Island partial core melt in the United States.  Removal is to begin in 2021 at Unit 2, where robotic probes have made more progress than at Units 1 and 3. A robotic arm was developed to enter the reactor from the side to reach the melted fuel, which has largely fallen to the bottom of the primary containment vessel… The first decade through 2031 is a crucial phase that will affect future progress…

Japan has yet to develop a plan to dispose of the highly radioactive melted fuel and other debris that come out of the reactors. TEPCO will compile a plan for those after the first decade of melted fuel removal. Managing the waste will require new technologies to reduce its volume and toxicity. TEPCO and the government say they plan to build a site to store waste and debris removed from the reactors, but finding one and obtaining public consent will be difficult.

Additionally, there will be an estimated 770,000 tons of solid radioactive waste by 2030, including contaminated debris and soil, sludge from water treatment, scrapped tanks and other waste. They will be sorted, treated and compacted for safe storage under a plan to be compiled by 2028.

The government says Fukushima’s decommissioning cost is estimated at 8 trillion yen ($73 billion), though adding compensation, decontamination of surrounding areas and medium-term storage facilities would bring the total to an estimated 22 trillion yen ($200 billion). The Japan Center for Economic Research, a think tank, estimates that decommissioning alone would cost 51 trillion yen ($470 billion) if the water is not released and tritium removal technology is pursued.

More than 10,000 workers will be needed annually in coming years, about one third assigned to work related to the radioactive water. 

Excerpts from MARI YAMAGUCHI,  Japan revises Fukushima cleanup plan, delays key steps, Associated Press, Dec. 27, 2019

The Rolls Royce Nuclear Reactor

Small modular nuclear  reactors (SMRs) are relatively small and flexible: they have a power capacity of up to 300 MW(e) and their output can fluctuate in line with demand. This makes them particularly attractive for remote regions with less developed grids, but also for use as a complement to renewables and for non-electric applications of nuclear power. SMRs can be manufactured and then shipped and installed on site, so they are expected to be more affordable to build.

The Rolls Royce SMR is small enough to be transported by truck.

Globally, there are about 50 SMR designs and concepts at different stages of development. Three SMR plants are in advanced stages of construction or commissioning in Argentina, China and Russia, which are all scheduled to start operation between 2019 and 2022…Some SMR designs have features that could reduce the tasks associated with spent fuel management. Power plants based on these designs require less frequent refuelling, every 3 to 7 years, in comparison to between 1 and 2 years for conventional plants, and some are even designed to operate for up to 30 years without refuelling. Nevertheless, even in such cases, there will be some spent fuel left, which will have to be properly managed.

Excerpts from Small Modular Reactors: A Challenge for Spent Fuel Management? IAEA News, Aug. 8, 2019

A Nuclear Leaking Grave

The Bravo test, the testiong of a nuclear bomb on March 1, 1954, in the Bikini Atoll of the Marshall Islands resulted in an explosion that was 2½ times larger than expected. Radioactive ash dropped more than 7,000 square miles from the bomb site, caking the nearby inhabited islands.  “Within hours, the atoll was covered with a fine, white, powder-like substance,” the Marshall Islands health minister would later testify, according to the Atomic Heritage Foundation. “No one knew it was radioactive fallout. The children played in the ‘snow.’ They ate it.”

The 1954 explosion was part of nuclear tests conducted as the American military lurched into the nuclear age. From 1946 o 1958, 67 U.S. nuclear tests were conducted in the Marshall islands….From 1977 to 1980, loose waste and top soil debris scraped off from six different islands in the Enewetak Atoll was transported to Runit island and was mixed with concrete and buried in nuclear blast crater. 4,000 US servicemen were involved in the cleanup that took three years to complete. The waste-filled crater was finally entombed in concrete.  The Runit Dome, also called locally “The Tomb”, is a 46 cm (18 in) thick dome of concrete at sea level, encapsulating an estimated 73,000 m3 (95,000 cu yd) of radioactive debris, including some plutonium-239. …The structure, however, was never meant to last. Today, due to disrepair and rising sea tides, it is dangerously vulnerable. A strong storm could breach the dome, releasing the deadly legacy of America’s nuclear might….

Cracks have reportedly started to appear in the dome. Part of the threat is that the crater was never properly lined, meaning that rising seawater could breach the structural integrity. “The bottom of the dome is just what was left behind by the nuclear weapons explosion,” Michael Gerrard, the chair of Columbia University’s Earth Institute, told the ABC. “It’s permeable soil. There was no effort to line it. And therefore, the seawater is inside the dome. 

According to Guterres, UN Secretary General, who refers to Runit Dome as nuclear coffin: The Pacific was victimized in the past as we all know, The consequences of these have been quite dramatic, in relation to health, in relation to the poisoning of waters in some areas.”

Excerpts from Kyle Swenson , The U.S. put nuclear waste under a dome on a Pacific island. Now it’s cracking open, Washington Post, May 20, 2019 and Wikipedia

Getting Rid of Nuclear Waste for Good: A Dream Coming True?

Gerard Mourou—one of the three winners of the 2018 Nobel Prize for Physics—claims that the lifespan of radioactive waste could potentially be cut to minutes from thousands of years. Although Mourou, 74, is quick to say that the laser option for nuclear waste that he and Irvine, California-based Professor Toshiki Tajima are working on may be years away, its promise has created a flurry of excitement for the sector in France.

 Environmental group Greenpeace estimates that there’s a global stockpile of about 250,000 tons of toxic spent fuel spread across 14 countries, based on data from the International Atomic Energy Agency. Of that, 22,000 cubic meters—roughly equivalent to a three-meter tall building covering an area the size of a soccer pitch—is hazardous, according to the IAEA. A 2015 report by GE-Hitachi put the cost of disposing nuclear waste—outside of China, Russia and India—at well over $100 billion.  France produces more nuclear waste per-capita than any other country. With almost 72 percent of its electricity coming from nuclear energy—the most in the world—it generates 2 kilograms of radioactive waste per person each year. And although only a fraction of that is highly toxic, more than 60 years after getting into nuclear energy, the country still has no definitive way to cope with it.

In April 2019, France opened its third national debate on nuclear waste, bringing together policy makers, advocacy groups and scientists to discuss handling an estimated 10,000 cubic meters of radioactive waste collectively produced by the country’s 58 reactors over their lifespan. And that doesn’t include atomic material generated by the military and medical sectors.

The most toxic parts are stored right now in short-term facilities in La Hague in Normandy, in Marcoule and Cadarache in southern France and in Valduc, near Dijon. At the facility in La Hague, an hour’s drive from the D-Day beaches, specially designed robots cast the most radioactive nuclear waste into glass casings before putting them in inox containers. Already the world’s largest facility for processing atomic waste, it is constantly being expanded—making a long-term solution urgent.

State-controlled nuclear entities Electricite de France SA and Orano SA, charged with nuclear waste management, and CEA, France’s Atomic Energy Agency, have spent billions on the toxic material. At least another 25 billion euros ($28 billion) is set to be plowed into an underground maze of tunnels near the village of Bure in northeastern France that could be the final resting place for the highly toxic waste starting in 2025.  Like with other deep storage sites in place, under construction or being considered in countries including the U.S., Japan, Finland and Sweden, the Bure plan has drawn protests. Greenpeace has pointed to several risks, not least of which being the chance of the toxic material seeping into the groundwater or a fire releasing radioactive gases.

Enter Mourou, with his high-intensity laser option. The physicist’s work has paved the way for the shortest and most-intense laser pulses ever created. In his Nobel Lecture on Dec. 8, Mourou laid out his vision for using his “passion for extreme light” to address the nuclear-waste problem.  The process he and Tajima are working on is called transmutation, which involves changing the composition of an atom’s nucleus by bombarding it with a laser. “It’s like karate—you deliver a very strong force in a very, very brief moment,” said Mourou…Transmutation research has been going on for three decades, with efforts in the U.K., Germany, Belgium, U.S. and Japan either failing or in various stages of study…“I can imagine that the physics might work, but the transmutation of high-level nuclear waste requires a number of challenging steps, such as the separation of individual radionuclides, the fabrication of targets on a large scale, and finally, their irradiation and disposal,” said Rodney C. Ewing, a professor in nuclear security and geological sciences at Stanford University. A radionuclide is an atom that has excess nuclear energy, making it unstable.

Excerpts from Zapping Nuclear Waste in Minutes Is Nobel Winner’s Holy Grail Quest, Bloomberg, Apr. 2, 2019

Why Texas Loves Nuclear Waste

A proposal to take in more out-of-state waste at a West Texas radioactive waste disposal site has encountered an unlikely argument against it: that it can harm the booming oil and gas industry.  Waste Control Specialists is asking state lawmakers for permission to take in more low-level radioactive waste — such as rags, syringes and protective clothing from nuclear plants or hospitals — from outside of Texas for disposal at its Andrews County facility near the Texas-New Mexico border.

Environmental groups have long opposed radioactive waste at the site, which they say could jeopardize groundwater.  Environmentalists at the hearing were joined by Tommy Taylor, director of oil and gas development for Fasken Oil and Ranch, which operates in Andrews County.  Quoting from a handbook of the International Atomic Energy Agency, Taylor said radioactive waste dumps should be sited away from “land with exportable minerals and energy resources.”  “Don’t put it in an oilfield,” he said. “The oil and gas resources of the Permian Basin are too important for the security of the state of Texas and the United States to put it at risk with storing spent fuel rod casks in this region.”

Spent fuel is not designated as low-level waste, but he said he worried that designation could change.  It’s unusual for a representative of an oil and gas company to publicly criticize at the Capitol another segment of the energy industry…

But If Waste Control Specialists becomes insolvent the state might have to take control of the facility.  The legislation poposed by Texas lawmakers lifts the cap on the amount of out-of-state, low-level waste the company can accept at the 8.9 million cubic feet-capacity site from 30 percent to 60 percent.  The company currently pays six Austin lobbyists as much as $240,000 to persuade lawmakers of the wisdom of its plans….Waste Control Specialists’ partnership with Orano USA, called Interim Storage Partners LLC, has asked the Nuclear Regulatory Commission for permission to accept used nuclear fuel — high-level waste — at the Andrews facility.  Waste Control Specialists, which already disposes of other kinds of radioactive waste at its site in Andrews County, has been trying to position itself as a short-term alternative to Yucca Mountain, the Nevada site long ago selected by the federal government for storage of radioactive waste. Yucca had been bedeviled by decades of political quarrels, even as radioactive waste has piled up at the country’s nuclear power plants.

Excerpt from Asher Price, Radioactive waste site seeks more out-of-state material, Statesman, Mar. 30, 2019

Cleaning Up the US Nuclear Weapons Complex

A report from the National Academies of Sciences published in March 2019 recommends changes in the way that the U.S. Department of Energy manages science and technology (S&T) development in order to accelerate the cleanup of radioactive waste and contaminated soil, groundwater, and facilities at U.S. nuclear weapons sites.

A portion of DOE’s technology development should focus on breakthrough solutions and technologies that can substantially reduce schedules, risks, and uncertainties in the cleanup, says Independent Assessment of Science and Technology for the Department of Energy’s Defense Environmental Cleanup Program. This effort should be managed by ARPA-E, a DOE division that has a record of investing in innovative solutions for complex technical challenges; it would require substantial new funding…DOE’s Office of Environmental Management (DOE-EM) is responsible for cleaning up 107 sites in 31 states and one territory that were used for nuclear weapons development, testing, and related activities during the Manhattan Project and Cold War. The cleanup program began in 1989 and has, over the past three decades, cleaned up 91 sites at a cost of about $170 billion. DOE-EM projects that it will spend at least another 50 years and $377 billion to complete its cleanup of the 16 remaining sites.

The new report says that these time and cost estimates are highly uncertain – and probably low – because of significant remaining technical challenges and uncertainties, and also because additional sites and facilities may be added to the cleanup program in the future. ..Currently, DOE-EM’s management of S&T development is ad hoc and uncoordinated, the report says. Most DOE-EM-related S&T development activities are focused on individual sites, are driven and managed by contractors, and have a short-term emphasis on addressing technical challenges in existing cleanup projects…The successful cleanup of the large, complex Rocky Flats site near Denver showed that technology development and deployment can have major impacts in accelerating schedules and reducing costs, the report notes. The remaining cleanup sites – which include large, complex sites such as Hanford in Washington state, the Savannah River Site in South Carolina, and the Oak Ridge Reservation in Tennessee – provide an opportunity for S&T to have similar impacts.

The report identifies seven examples of technologies and alternative approaches that could substantially reduce costs and speed cleanup schedules – these include changes in waste chemistry and nuclear properties to facilitate treatment and disposal, and changes in human involvement in cleanup activities to increase efficiencies and reduce worker risks. 

Excerpts from Breakthrough Solutions and Technologies Needed to Speed Cleanup of U.S. Nuclear Weapons Sites, National Academies Press Release, Mar. 4, 2019

Nuclear Priesthood: the future of nuclear waste

As  the world increasingly buries its nuclear waste, a growing number of experts are trying to come up with a way to warn future generations of what, exactly, will be lying under their feet.    Deciding where to create nuclear waste storage sites, demarcating them clearly and then writing it all down seems like the obvious solution. After all, mankind started writing down its history 5,500 years ago and the likelihood of us stopping to do so seems slim.   But the question then becomes: what should we write this crucial piece of information on?  Stone and paper deteriorate. USB sticks and servers do, too.  Some government entities, like ANDRA, the French National Agency in charge of managing radioactive waste, have started to record their archive on permanent paper.  Also known as acid-free paper due to its composition, it can remain chemically and physically stable for a long period of time — unlike traditional paper, which starts to yellow and decay over time when exposed to light or heat.

The agency has also built sapphire discs, made out of sapphire and etched with platinum on one side. These can contain up to 40,000 pages of pictures and text and could, theoretically, last for some two million years.   Language, after all, is a living, changing entity. That’s why it took us decades to decode Egyptian hieroglyphs and why you might have gotten a headache reading Shakespeare’s Old English masterpieces in class. So who’s to say that French scientists 1,000 years from now will be able to understand la langue de Moliere’s current form?  The OECD’s Nuclear Energy Agency (NEA) has since created a working group whose task it is to set the best practices on Radioactive Waste Repository Metadata Management so that all the information is not only stored properly but is also easily accessible as national nuclear waste programmes evolve…

In a report, the researchers led by Thomas Sebeok of the University of Indiana recommended the creation of a nuclear priesthood, inspired by the Catholic Church, which would relay information down the generations through “a mixture of iconic, indexical and symbolic elements” and “a high degree of redundancy of messages.”..

The problem with art, explained Peter Galison, professor of the History of Science and of Physics at Harvard University and author of the Containment documentary, is that if a message is too artistic, then it might not be properly understood as different people may have different interpretations of it….For instance, you know for sure what the skull pictogram means. If you’re thinking death, you’re right. Yet this symbol, Blanquer said, “comes from alchemists.”  “The skull represents Adam and the crossing bones the promise of resurrection,” he revealed. So in the span of just a few centuries this particular pictogram has evolved from meaning resurrection to meaning death.

As waste can be buried either near or deep under the surface, the signal should be seen both above but also under the ground. The researchers employed by the US Department of Energy in the mid-1980s (who came up with the nuclear priesthood, remember!), had also envisioned different monuments to get the point across: fields of pikes, threatening statues of thunderbolts, or enormous blocs of granite positioned into a tight grid….
The Finnish project of Onkalo took the problem completely differently: what if we came up with a way that would allow us to simply not tell future generations?  Its solution? Digging a deep geological repository for spent nuclear fuel.  “The entire concept of Posiva (the company which manages the project), is that 100 to 120 years after it’s been closed, the site will not be signalled. The 500 meters to the storage site in the geological layer will be filled with rock and the entire thing will be isolated and invisible in the natural landscape.”

Excerpts from What will a nuclear waste warning look like in 100,000 years’ time?, Euronews, Nov. 16, 2018

Nuclear Waste Above Sea Level: Pilgrim

Pilgrim Nuclear Power Station (PNPS) is the only nuclear power plant operating in Massachusetts. …On October 13, 2015, plant owners announced that it would close by June 1, 2019, citing “market conditions and increased costs,” which would have included tens of millions of dollars of necessary safety upgrades.

Up to 2015,all of the nuclear reactor fuel rods from the Pilgrim Nuclear Power Station were submerged in a deep pool of water, which was running out of space.  In 2015, the company started to use casks to store the waste. Cask storage is used at many nuclear plants in the United States to deal with excess nuclear reactor waste. The casks, 18 feet tall and 11 feet wide, are designed to withstand a truck bomb or a tornado-borne projectile moving at 360 miles per hour.

The plant in 2018 had 17 steel-reinforced concrete cylinders filled with the radioactive waste on a concrete pad about 25 feet above sea level and about 200 feet from shore.  It announced it was planning to move these 360,000-pound casks to a new pad on an existing parking lot that’s about 75 feet above mean sea level and 700 feet from shore to avoid risks associated with sea-level rise due to climate change.

The Future of Nuclear Waste: Czech Republic

Czech plans for dealing with nuclear waste have been put under the spotlight once again thanks to a European Commission warning calling for the country to outline its plans for deal with nuclear waste. The Czech Republic was last week one of five states which the Commission said had failed to pass on their long-term nuclear waste plans by the original deadline of August 2015. The other countries include, somewhat ironically, largely non-nuclear Austria, Italy, Portugal, and Croatia.

The Czech Republic has around 10,000 tonnes of high radioactive nuclear waste, mostly stemming from the spent fuel of its nuclear power plants which begin operating in the mid-1980s, but also from other civil activities. The spent fuel is stored on site at nuclear power plants but the barrels containing it will wear out long before the contents become safe.

The Czech Republic set out a strategy to deal with high radioactive nuclear waste already in 2002 with the main focus on finding a deep storage site. The preliminary search has been focused on seven localities which are reckoned to be geologically suitable as well as near the Dukovany nuclear power plant. But there have been vociferous public protests at most of the sites causing the current government to back down and promise that no steps will be taken in the face of opposition. Even so, a timeline for choosing a deep repository has already been set with the selection of a site due to take place in 2025, construction started in 2050, and the final facility ready by 2065.

But the aged 2002 strategy is now being updated with public consultation part of the process. Environmentalists on one side argue that the existing framework focused primarily on the search for a deep repository should be overhauled and that the country should take its time and keep its options option with technological advancement likely offering other options for radioactive waste in the near future. 

Excerpts from BRUSSELS CALLS FOR CZECH STRATEGY FOR RADIOACTIVE WASTE, Radio Prague, July 24, 2017

Nuclear Waste Specialists

U.S. District Judge Sue L. Robinson of Delaware on June 21,2017 sided with the federal government in blocking a $367 million merger between EnergySolutions and the radioactive site’s parent company. Waste Control Specialists calls the deal essential for its long-term viability.The details of Robinson’s opinion were sealed.

The U.S. Department of Justice sued in November 2017 to block the merger of rival companies, arguing it would essentially create a monopoly on radioactive waste disposal.  “Substantial evidence showed that head-to-head competition between EnergySolutions and Waste Control Specialists led to better disposal services at lower prices,” Acting Assistant Attorney General Andrew Finch of the Justice Department’s Antitrust Division said in a statement. “Today’s decision protects competition in an industry that is incredibly difficult to enter.”…

Waste Control Specialists, which currently stores low-level radioactive waste in Andrews County*** has a pending application with the U.S. Nuclear Regulatory Commission to store tens of thousands of metric tons of spent nuclear fuel currently filling up reactor sites across the country. The company has pitched the massive expansion as a solution to a problem that has bedeviled policymakers for decades….

“The WCS site is not a safe place to store deadly high-level radioactive waste,” Karen Hadden, executive director of the Sustainable Energy and Economic Development Coalition, said in a statement. “Texans and those along transport routes shouldn’t have to suffer the health, safety, security, financial and environmental risks that transport and storage of the nation’s most dangerous radioactive waste would bring.”

Critics allege that millions in donations by Harold Simmons, owner of Waste Control Specialists, to Texas Governor Rick Perry and other politicians influenced political support for the controversial project…..Critics also cite WCS’ safety record. One 22-ton shipment of low-level radioactive material from a diffusion plant in Illinois failed to arrive at the WCS Andrews facility in late July 2001. Lost for almost a month, the material turned up dumped on a cattle ranch north of Dallas.

Excerpts from  JIM MALEWITZ, Amid Texas nuclear waste site’s financial woes, judge blocks merger,  The Texas Tribune, June 21, 2017 + Wikipedia

***The plant is located 5 miles east of Eunice, New Mexico, and 35 miles west of Andrews. The surrounding area on both sides of the state border, “nuclear alley”, also includes:

–the National Enrichment Facility (owned and operated by the Urenco Group) in Eunice
–the deep geological repository Waste Isolation Pilot Plant (WIPP; managed by the United States Department of Energy), and
–the proposed first commercial uranium de-conversion facility in the United States, a project of International Isotopes, Inc.

Nuclear Waste: Ukraine

A consortium of four German companies has been awarded a contract to improve infrastructure for managing radioactive waste, the rehabilitation of contaminated areas and the decommissioning of nuclear power plants in Ukraine.  The consortium – comprising Brenk Systemplanung, DMT, Plejades and TÜV Nord EnSys – was awarded the contract for the project, which is within the framework of the European Union-funded Instrument for Nuclear Safety Cooperation (INSC). The INSC is designed to support non-EU countries in improving nuclear safety. The contract will run for an initial two-year period and have a maximum budget of €1.5 million ($1.6 million).

According to the tender notice, the main objectives of the contract are to support the Ukrainian State Corporation ‘Radon’ in establishing an emergency response system for “radiation incidents involving unauthorized radioactive materials that are not related to nuclear power plant operation”. It also calls for the establishment of integrated, automated monitoring systems for radiation and environmental protection at Radon facilities, as well as the remediation of radioactive waste storage sites resulting from the Chernobyl nuclear power plant accident and situated outside the exclusion zone.

In a statement yesterday, DMT said it will jointly lead with TÜV Nord EnSys Hannover the assessment of some 50 radioactive waste storage sites.

Excerpts from German consortium awarded Ukrainian waste contract, World Nuclear News, Mar. 2, 2016

Nuclear Waste: play for time

The problem now, however, is civilian waste from power plants that came online in the 1960s, 1970s and 1980s. Nuclear power generates a fifth of America’s electricity; its 99 reactors account for almost a third of all nuclear power generated worldwide. Five more are under construction—the first to be approved since the 1970s—partly thanks to federal loan guarantees intended to boost clean energy production. The waste they generate has been stored safely, but it will stay dangerously radioactive for tens of thousands of years. That requires a longer-term plan than leaving it outside, however well encased in concrete.

Under the 1982 Nuclear Waste Policy Act, the federal government pledged to dispose of nuclear waste—both civilian and military—permanently. Several possible plans were drawn up, many involving burying the waste in salt deposits deep under ground. To pay for this eventual cost, a levy was added to the bills of consumers of nuclear power.

But politics got in the way. In 1987 Congress determined that only one place, Yucca Mountain in Nevada, would be considered. This, says Richard Stewart of New York University Law School, was the result of a stich-up between two congressmen who did not want their states to host waste dumps. Tom Foley, the then House majority leader, and Jim Wright, the Speaker, blocked proposals for sites in their home states of Washington and Texas.

Nevadans nickname the 1987 amendment the “screw Nevada” bill, and they have fiercely resisted implementation. Some $15 billion has been spent on building the repository at Yucca Mountain, but no waste has been moved there. Nevadans are quick to point to the damage done to their state by nuclear-weapons tests. Since 2010, the Department of Energy has formally ruled the facility out. In a lawsuit in 2013, the government was forced to stop collecting the levy on nuclear power until a plan exists for a permanent site. It has also been forced to pay utility companies for the costs of storing waste temporarily, since it did not start collecting waste fuel in 1998, as the original law dictated.

Some hope Yucca Mountain might be reopened by a new president. “The only aspect of used fuel in this country that has been problematic is the politics”, says John Keeley of the Nuclear Energy Institute, an industry lobby group. In January the Nuclear Regulatory Commission, the regulator, concluded that the site is safe for the disposal of waste. But the worries of Nevadans—that moving spent fuel on railways might lead to spills, or that radioactivity could leak into the environment—remain.

Recent experience doesn’t help. America already operates one of the world’s few deep storage sites for radioactive waste—near Carlsbad, in New Mexico. It stores waste mostly from nuclear-weapons production. In February 2014 the facility suffered two crippling accidents. One was apparently caused by workers packaging waste with the wrong sort of cat litter. The plant-based “Swheat Scoop” brand they used, unlike the mineral-based kind they were meant to, did not absorb radioactivity very well. The facility has not accepted any new waste since.

Excerpts from Nuclear Waste: Faff and fallout, Economist, August 29, 2015, at 23

Ukraine – Nuclear Power and Waste

UKRAINE, More than 3,000 spent nuclear fuel rods are kept inside metal casks within towering concrete containers in an open-air yard close to a perimeter fence at Zaporizhia, the Guardian discovered on a recent visit to the plant, which is 124 miles (200km) from the current front line.“

With a war around the corner, it is shocking that the spent fuel rod containers are standing under the open sky, with just a metal gate and some security guards waltzing up and down for protection,” said Patricia Lorenz, a Friends of the Earth nuclear spokeswoman who visited the plant on a fact-finding mission.“I have never seen anything like it,” she added. “It is unheard of when, in Germany, interim storage operators have been ordered by the court to terror-proof their casks with roofs and reinforced walls.”  

Industry experts said that ideally the waste store would have a secondary containment system such as a roof.  Ukraine’s conflict in Donbass is 124 miles away from the plant, but Gustav Gressel, a fellow at the European Council of Foreign Relations thinks the front line is too far away – for now – to be at risk from fighting.

However, locals still fear for the potential consequences if the conflict was to spread in the plant’s direction. Just three decades ago, an explosion at the Chernobyl nuclear power plant north of Kiev released a radioactive cloud that poisoned vast tracts of land…

Plant security at Zaporizhia is now at a ‘high readiness’ level, while air force protection and training exercises have been stepped up. Officials say that if fighting reaches the plant, there are plans for the closure of access roads and deployment of soldiers.  But they say that no containment design could take the stresses of military conflict into account. “Given the current state of warfare, I cannot say what could be done to completely protect installations from attack, except to build them on Mars,” Sergiy Bozhko , the chairman of the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) told the Guardian…..

However, a dry storage container with a resilient roof and in-house ventilation would offer greater protection….

“Nuclear energy is the only possible option for us to replace the generated electricity that we lost [from coal and gas],” a government source told the Guardian. “After the start of open war with Russia, it was understood that all our other strategies in the energy sphere would become impossible.” Some 60% of Ukraine’s electricity is now produced by 15 ageing reactors – concentrated in four giant plants. Nine of these will reach the end of their design lifetimes in the next five years, and three have already.  Most of Ukraine’s nuclear fleet depends on Russia’s Rosatom to supply its enriched uranium fuel – and to whisk away the resulting radioactive waste for storage…

But as fear and loathing in the war-torn region grow, government sources say that in the long term, Ukraine aims to forge a three-way split in nuclear fuel supply contracts between US-company Westinghouse, European companies, such as Areva, and Rosatom. This creates its own safety issues….

Last December (2014), the US firm signed a memo with Ukraine to “significantly increase fuel deliveries” to Ukrainian plants, though the details are sketchy. A similar deal was signed with the French nuclear company Areva on 24 April.  But fears of Russian retaliation have dogged past plans to shift supply or disposal contracts to the West, and market diversification will be a slow process….

The US has provided technology, training and hundreds of millions of dollars to help Ukraine’s push for fuel diversification, according to a US diplomatic cable from 2009, published by Wikileaks.  Westinghouse has also lobbied the Ukrainian government at ministerial level to commit to buying their fuel for at least five reactors. Plant managers say that it will be used in Zaporizhia by 2017.

Excerpts from Nuclear waste stored in ‘shocking’ way 120 miles from Ukrainian front line, Guardian, May 6, 2015

Costs of Demolishing Nuclear Reactors

/The International Energy Agency (IEA) said late in 2014  (pdf) that almost 200 of the 434 reactors in operation around the globe would be retired by 2040, and estimated the cost of decommissioning them at more than $100 billion.  But many experts view this figure as way too low, because it does not include the cost of nuclear waste disposal and long-term storage and because decommissioning costs – often a decade or more away – vary hugely per reactor and by country…. The IEA’s head of power generation analysis, Marco Baroni, said that even excluding waste disposal costs, the $100 billion estimate was indicative, and that the final cost could be as much as twice as high. He added that decommissioning costs per reactor can vary by a factor of four.Decommissioning costs vary according to reactor type and size, location, the proximity and availability of disposal facilities, the intended future use of the site, and the condition of the reactor at the time of decommissioning….

The U.S. Nuclear Regulatory Commission estimates that the cost of decommissioning in the United States – which has some 100 reactors – ranges from $300 million to $400 million per reactor, but some reactors might cost much more.  France’s top public auditor and the nuclear safety authority estimate the country’s decommissioning costs at between 28 billion and 32 billion euros ($32-37 billion).  German utilities – such as E.ON, which last month said it would split in two, spinning off power plants to focus on renewable energy and power grids – have put aside 36 billion euros. .  Britain’s bill for decommissioning and waste disposal is now estimated at 110 billion pounds ($167 billion) over the next 100 years, double the 50 billion pound estimate made 10 years ago.  Japanese government estimates put the decommissioning cost of the country’s 48 reactors at around $30 billion, but this is seen as conservative. Russia has 33 reactors and costs are seen ranging from $500 million to $1 billion per reactor.

Excerpt, Global nuclear decommissioning cost seen underestimated, may spiral, Reuters, Jan, 19, 2015

Nuclear Waste Management in Russia Gets Better

Russia could be moving closer to shutting down its infamous and highly contaminated Mayak Chemical Combine– Russia’s only spent nuclear fuel reprocessing facility – as the government builds a new pilot spent fuel storage and reprocessing facility in the closed city of Zheleznogorsk, near Krasnoyarsk, called RT-2. The Zheleznogorsk facility was once home to one of Russia’s 13 weapons grade plutonium production reactors…The pilot facilities at Zheleznogorsk – known as Krasnoyarsk-26 during the Soviet era – fall under the purview of an industry division called the National Operator, as established by Russia’s 2011 law “On handling spent nuclear fuel and radioactive waste.  The law further stipulates that all spent nuclear fuel and radioactive waste produced prior to 2011 is the government’s financial responsibility, where beyond 2011, the bills go to individual nuclear power plants.

Alexander Nikitin, Chairman of the Environmental Right’s Center (ERC) Bellona in St. Petersburg, who has visited the Zheleznogorsk site twice this year, said after the AtomEco conference held late last month in Moscow that the facility is designed to hold and reprocess two of Russia’s thorniest types of spent nuclear fuel: that produced by VVER-1000 reactors and the spent fuel that comes from RBMKs [Reaktor Bolshoy Moshchnosti Kanalniy], “High Power Channel-type Reactor” is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union.]  Russia has neither been able to store or reprocess fuel from the Chernobyl-type RBMK – one of the oldest, and most fatally flawed reactor lines in Russia’s civilian line up.

The Zheleznogorsk facility will also be capable of storing spent fuel from VVER-1000 reactors in wet storage. The spent RMBK fuel will be held at RT-2 in dry storage.  Spent VVER-1000 fuel is already arriving at Zheleznogorsk from reactors at the Balakovo, Kalinin, Novovoronezh and Rostov nuclear power plants. RBMK fuel will come from the Leningrad, Kursk, and Smolensk plants.

In all, RT-2 is designed to hold some 50,000 tons of spent nuclear fuel. Russia currently hosts some 23,000 tons of spent nuclear fuel, the majority of it stored on site at the reactors that produced it.

The reclamation of fuel from Soviet built reactors in former Soviet satellite states, which Russia is obligated to take back and either reprocess or store, is also slowing down… In the case of Hungary, for example, the local government has found it more economical to store the fuel itself than to repatriate it to Russia, easing up somewhat the amount of foreign spent fuel flowing to the country.

But Russia’ state nuclear corporation, Rosatom, has finally – and publically – reached the conclusion that Mayak and its legacy of overwhelming radiological pollution is no longer viable…

Nikitin, was told during his visits to RT-2 that the pilot facilities are slated to push through their first batches of reprocessed VVER 1000 and RBMK fuel – while producing no residual radioactive waste – by 2018.  If the test runs prove successful, RT-2 could move on to industrial scale storage and reprocessing   But Nikitin and Rosatom have their doubts about the rosy predictions of the National Operator. For one, Nikitin is skeptical of the value of reprocessing RMBK fuel..

Charles Digges,New spent nuclear fuel storage and reprocessing site in Siberia could end contamination from Mayak,  Bellona,  Nov. 14, 2013

The Fault Lines of Nuclear Waste Storage

A bipartisan quartet of senators dropped a draft of a long-awaited bill on April 25, 2013 that would change how the United States stores nuclear waste.  The draft bill would enable the transfer of spent nuclear fuel currently housed at commercial nuclear facilities to intermediate storage sites. It also would allow states and local governments to apply to host the nation’s long-term waste repository.It also proposes creating a new federal agency to manage nuclear waste, taking that responsibility from the Energy Department (DOE). The president would appoint the head of that agency, which would be subject to Senate confirmation…The bill largely implements findings by the Blue Ribbon Commission on America’s Nuclear Future, an expert panel convened by President Obama in 2010. Some of the suggestions that made it into the draft bill will likely run into opposition.

Chiefly, Republicans will not be keen on moving nuclear waste to interim storage sites before a permanent repository has been identified.  The draft legislation calls for a pilot project to take in waste from high-risk areas — such as waste stored near fault lines — by 2021. After that, any nuclear waste could be sent to interim storage units so long as “substantial progress” is being made to site and select a permanent repository.  An alternative proposal by Feinstein and Alexander would require proposals for the pilot program to be submitted no later than six months after the bill becomes law.  But GOP lawmakers worry that interim storage sites would turn into de facto permanent ones without identifying a permanent facility.  They point to the recent flap regarding the Yucca Mountain site as a cautionary tale.  Obama pulled the plug on Nuclear Regulatory Commission reviews of DOE’s application to use the Nevada site in 2009.

Republicans viewed it as a political move — Obama campaigned on shuttering Yucca, and Senate Majority Leader Harry Reid (D-Nev.) opposes the site. They also said it was illegal because federal law identifies Yucca as the nation’s lone permanent repository.  Republicans, therefore, want to ensure a permanent site is selected before transporting waste to interim facilities to avoid a similar political kerfuffle.  GOP lawmakers might also oppose the draft bill’s call for a “consent-based” process that lets states and local governments apply to host the nation’s permanent repository.  Again, they say it’s a legal issue. Since a 1982 federal law fingers Yucca as the nation’s sole permanent nuclear waste dump, some Republicans argue there can be no others.  That’s the line House Republicans have taken.  They say any legislation coming over from the Senate that doesn’t identify Yucca as the nation’s permanent repository won’t move. And Senate legislation has almost no chance of including such a component considering Reid’s virulent opposition to Yucca.

Murkowski and the bill’s other backers have tried to minimize the Yucca issue by contending that more than one permanent storage site is likely necessary to handle the nation’s volume of nuclear waste.  The Alaska Republican has said she doesn’t want to give up on Yucca, but that she wants to do something about nuclear waste. She said the matter is urgent, pointing to leaking nuclear waste containers at the Hanford Nuclear Reservation in Washington state….

Zack Colman, Senators float nuclear waste storage draft bill, The Hill, April 25,  2013

Haunted by Sellafield, nuclear waste storage in the UK

The government’s long-term hopes of burying nuclear waste in the UK has suffered a major blow after Cumbria county council voted against plans for a £12bn underground site.  Three local authorities – Cumbria county council, Allerdale borough council and Copeland borough council – were set to vote on the search for a site, which would have been the first of its kind in the UK.

Copeland borough councillors voted six-to-one in favour of moving to onto the next stage of the search process. But Cumbria county council took an opposing view, rejecting the proposals by seven votes to three, and in the process ending the county council’s four-year formal involvement in the consultation process.  “As a decision to continue with the process needed the agreement of both the district and county councils, Cumbria county council’s decision has removed both districts from consideration,” councillors said in a statement. The vote triggered huge cheers from environmental campaigners outside the council chamber in Carlisle.

Ed Davey, Secretary of State for Energy and Climate Change, said the decision was “disappointing”….

More than 32,000 people had signed a petition against the £12bn underground storage facility.However, the issue of how to handle nuclear waste remains live in Cumbria.  Sellafield’s nuclear storage facilities remain the largest in the UK, and the ten members of the county council’s cabinet also agreed that the council will encourage the Government to invest in improvements to the existing surface storage facilities at the site while a permanent solution for the country’s higher activity radioactive waste is found.

Campaigners {West Cumbria Friends of the Earth, Greenpeace) argued the underground dump would harm the Lake District national park and its tourism industry. They also claim that studies show Cumbria’s geology is unlikely to be safe for radioactive waste.

Excerpts, Cumbria rejects radioactive waste disposal programme, http://www.channel4.com/news/, Jan. 30, 2012

The Lack of Nuclear Waste Confidence

In documents filed Wednesday (Jan. 2, 2012)  with the Nuclear Regulatory Commission (NRC), a wide range of national and grassroots environmental groups said it would be impossible for the NRC to adequately conduct a court-ordered assessment of the environmental implications of long-term storage of spent nuclear reactor fuel in the two short years the federal agency envisions for the process.

In June 2012, the U.S. Court of Appeals for the D.C. Circuit vacated the NRC’s 2010 Waste Confidence Decision and Temporary Storage Rule and remanded them to the agency for study of the environmental impacts of storing spent fuel indefinitely if no permanent nuclear waste repository is licensed or if licensing of a repository is substantially delayed. Spent nuclear fuel remains highly dangerous for prolonged periods. It has long-lived radioactive materials in it that can seriously contaminate the environment and harm public health if released. Additionally, spent nuclear fuel contains plutonium-239, a radiotoxic element that can be used to make nuclear weapons if separated from the other materials in the fuel. Plutonium-239 has a half-life of over 24,000 years.

In their filings, the 24 groups said a full review of the three issues outlined in June 2012 by the U.S. Court of Appeals for the D.C. Circuit – long-term storage risks for spent nuclear fuel, spent fuel pool fire risks, and spent fuel pool leakage risks – would take at least the seven years originally projected by the NRC staff, and likely considerably longer. Current federal law requires that the NRC conduct a comprehensive environmental impact statement (EIS) study before issuing a revised Waste Confidence Decision; the 24 groups submitted their comments about the appropriate “scoping” of the EIS.

In the absence of an adequate EIS review, the NRC has “no choice but to continue to suspend all licensing and re-licensing actions” for U.S. nuclear reactors, according to the 24 organizations. All licensing and re-licensing actions were previously suspended by the NRC until an EIS and revised Waste Confidence Decision have been issued.  The 24 groups jointly filing the comments today with the NRC are the Alliance for Nuclear Accountability, Beyond Nuclear, Blue Ridge Environmental Defense League, Center for a Sustainable Coast, Citizens Allied for Safe Energy, Citizens Environmental Alliance, Don’t Waste Michigan, Ecology Party of Florida, Friends of the Earth, Georgia Women’s Action for New Directions, Hudson River Sloop Clearwater, Missouri Coalition for the Environment, New England Coalition, Nevada Nuclear Waste Task Force, NC WARN, Nuclear Information and Resource Service, Nuclear Watch South, Physicians for Social Responsibility, Public Citizen, Riverkeeper, San Luis Obispo Mothers for Peace, SEED Coalition, Sierra Club Nuclear Free Campaign, and Southern Alliance for Clean Energy.

The expert declarations were made by: Dr. Arjun Makhijani, president of the Institute for Energy and Environmental Research; Dr. Gordon Thompson, executive director for the Institute for Resource and Security Studies; and Phillip Musegaas, Esq., Hudson River program director for Riverkeeper, Inc.

Highlights of the 24-group filings include the following:

•The “hurry-up” two-year timeframe for environmental review falls far short of the 2019 estimate of NRC’s own technical staff for data collecting and analysis on the impacts of long-term storage of spent nuclear fuel. The NRC currently lacks sufficient information to reach scientifically, well-founded conclusions about the impacts of such storage. The agency also lacks information regarding the impacts associated with the eventual disposal of spent nuclear fuel. According to Dr. Makhijani, the NRC will not be able to gather this information within its truncated, self-imposed two-year timeframe.

•The short timeframe provided for environmental review will also not permit post-Fukushima information about U.S. reactors to be fully collected and evaluated. Under the schedule established by the NRC staff in March 2012, reactor licensees are not due to supply post-Fukushima seismic information until September 2013 for reactor sites in the eastern and central U.S. and March 2015 for western reactor sites. According to the groups’ filing with the NRC today: “Given the significant role played by seismic events in accidents ranging from spent fuel pool leaks to pool fires and their potential effects on long-term storage sites, this information is crucial to the NRC’s ability to take a ‘hard look’ at all three topics remanded by the Court.”

•Despite the Court’s order to consider impacts associated with the failure to ever establish a permanent repository for spent nuclear fuel, the NRC proposed only to consider the impacts associated with failing to secure a repository by the end of this century. Dr. Makhijani and Dr. Thompson argue that the NRC should consider the environmental impacts of failing to establish a repository until 2250, requiring approximately 300 years of onsite storage.

•The NRC should consider alternatives to minimize the risks of storage of spent nuclear fuel and high level waste, including placement below ground level, elimination of the current practice of high-density storage of spent fuel in pools, and more robust designs for storage casks.

•The environmental impact statement should assess the radiological risk arising from a range of conventional accidents or attacks, including those conducted by terrorists.

24 Groups: NRC Rushing Nuclear “Waste Confidence” Process, Not Satisfying Court-Ordered Requirements, PRNewswire, Jan. 3, 2013