Tag Archives: satellite

Hearing the Naked Truth: Earth Observation

In the middle of last year, Ecuadorians watched with concern as 340 foreign boats, most of them Chinese, fished just outside the Exclusive Economic Zone (EEZ) around their country’s westernmost province, the Galapagos Islands. The law of the sea requires such vessels to carry GPS-based automatic identification systems (AIS) that broadcast where they are, and to keep those systems switched on. Some boats, however, failed to comply. There were more than 550 instances of vessels not transmitting their locations for over a day. This regular radio silence stoked fears that the boats concerned were sneaking into Ecuador’s waters to plunder its fish.

Both local officials and China’s ambassador to Ecuador denied this, and said all the boats were sticking to the rules. In October 2020, however, HawkEye 360, a satellite operator based in Virginia, announced it had detected vessels inside Ecuador’s EEZ on 14 occasions when the boats in question were not transmitting AIS. HawkEye’s satellites could pinpoint these renegades by listening for faint signals emanating from their navigation radars and radio communications.

HawkEye’s satellites are so-called smallsats, about the size of a large microwave oven. They are therefore cheap to build and launch. HawkEye deployed its first cluster, of three of them, in 2018. They are now in an orbit that takes them over both of Earth’s poles. This means that, as the planet revolves beneath them, every point on its surface can be monitored at regular intervals…Unlike spy satellites fitted with optical cameras, RF satellites can see through clouds. Their receivers are not sensitive enough to detect standard mobile phones. But they can pick up satellite phones, walkie-talkies and all manner of radar. And, while vessels can and do illicitly disable their AIS, switching off their communications gear and the radar they use for navigation and collision-avoidance is another matter entirely. “Even pirates don’t turn those things off,” says John Beckner, boss of Horizon Technologies….

RF data are also cheap to collect. Satellites fitted with robotic high-resolution cameras are costly. Flying microwave ovens that capture and timestamp radio signals are not. America’s National Geospatial-Intelligence Agency (NGA), one of that country’s numerous spying operations, is a big user of RF intelligence. It employs HawkEye’s data to find guerrilla camps and mobile missile-launchers, and to track both conventional warships and unconventional ones, like the weaponised speedboats sometimes deployed by Iran. Robert Cardillo, a former director of the agency who now advises HawkEye, says dozens of navies, Russia’s included, spoof AIS signals to make warships appear to be in places which they are not. RF intelligence is not fooled by this. Mr Cardillo says, too, that the tininess of RF satellites makes them hard for an enemy to destroy.

Beside matters military, the NGA also uses RFdata to unearth illicit economic activity—of which unauthorised fishing is merely one instance. Outright piracy is another. And the technique also works on land. In 2019, for example, it led to the discovery of an illegal gold mine being run by a Chinese company in a jungle in Gabon. And in 2020 the managers of Garamba National Park in the Democratic Republic of Congo began using HawkEye data to spot elephant poachers and dispatch rangers to deal with them…

Horizon also plans to compile a library of unique radar-pulse “fingerprints” of the world’s vessels, for the tiny differences in componentry that exist even between examples of the same make and model of equipment mean that signals can often be linked to a specific device. It will thus be able to determine not merely that a vessel of some sort is in a certain place, but which vessel it is, and where else it has been…

Excerpt from Espionage: Ears in the Sky, Economist, Mar. 20, 2021

The Space Rat Race

India, Japan and other space-faring countries are waking up to a harsh reality: Earth’s orbit is becoming a more dangerous place as the U.S., China and Russia compete for control of the final frontier…New Delhi is nervous because China has made no secret of its desire for influence in the Indian Ocean. China set up a naval base in Djibouti, a gateway to the ocean at the Horn of Africa. It secured a 99-year lease to the port of Hambantota in Sri Lanka. It is deeply involved in development projects in Maldives.

India has established itself as a player in the budget satellite business. It even put a probe into orbit around Mars in 2014, in a U.S.-assisted project that cost just $76 million. But it is scurrying to enhance its ability to monitor China’s activities, and the partnership with Japan is part of this.  Another sign that space is becoming a defense focus for India came on Dec. 19, when the country launched its third military communications satellite, the GSAT-7A. The satellite will connect with ground-based radar, bases and military aircraft, along with drone control networks.

China’s success in landing a craft on the far side of the moon on Jan. 3, 2019 came as a fresh reminder of its growing prowess. In late December, China also achieved global coverage with its BeiDou Navigation Satellite System. Only the U.S., Russia and the European Union had that capability.China aims to launch a Mars explorer in 2020 and complete its own Earth-orbiting space station around 2022.  In the back of Indian and Japanese officials’ minds is likely a stunning test China conducted in 2007. Beijing successfully destroyed one of its own weather satellites with a weapon, becoming only the third nation to pull off such a feat, after the Soviet Union and the U.S.

In December 2018, President Donald Trump ordered the Department of Defense to create a Space Command, widely seen as a precursor to a full-fledged Space Force.  There were 1,957 active satellites orbiting Earth as of Nov. 30, 2018 according to the Union of Concerned Scientists, a nonprofit U.S. advocacy group. America had the most by far, with 849, or 43% of the total. China was No. 2, with 284, followed by Russia with 152.  Japan and India had a combined 132 — 75 for the former and 57 for the latter.

Excerpts fromNUPUR SHAW India and Japan awaken to risks of superpower space race, Nikkei Asian Review, Jan. 8, 2019

Killing Machines: Tiny Spy Satellites

As long as we’ve been launching spy satellites into space, we’ve been trying to find ways to hide them from the enemy. Now, thanks to the small satellite revolution—and a growing amount of space junk—America has a new way to mask its spying in orbit…

The National Reconnaissance Office, the operator of many of the U.S.’s spy sats, refused to answer any questions about ways to hide small satellites in orbit.  In 2014, Russia launched a trio of communications satellites. Like any other launch, spent stages and space debris were left behind in space. Air Force Space Command dutifully catalogued them, including a nondescript piece of debris called Object 2014-28E.  Nondescript until it started to move around in space, that is. One thing about orbits; they are supposed to be predictable. When something moves in an unexpected way, the debris is not debris but a spacecraft. And this object was flying close to the spent stages, maneuvering to get closer.  This fueled speculation that the object could be a prototype kamikaze-style sat killer. Other less frantic speculation postulated that it could be used to examine other sats in orbit, either Russia’s or those operated by geopolitical foes. Either way, the lesson was learned…

Modern tracking radar is supposed to map space junk better than ever before. But small spy satellites that will hide in the cloud of space debris may go undetected, even by the most sophisticated new radar or Earth-based electronic signals snooping.

Excerpts from Joe Pappalardo, Space Junk Could Provide a Perfect Hiding Spot for Tiny Spy Satellites, Popular Mechanics, Nov. 30, 2018

What is Stratobus: a drone + satellite

StratoBus, a surprising vehicle halfway between a drone and a satellite, will be able to carry out a wide range of missions, including observation, security, telecommunications, broadcasting and navigation… and it offers a lifespan of five years.   The StratoBus project is led by Thales Alenia Space, along with partners Airbus Defence & Space, Zodiac Marine and CEA-Liten. It embodies a new concept for an autonomous airship, operating at an altitude of about 20 kilometers. This is in the lower reaches of the stratosphere, but well above air traffic and jet streams. StratoBus will be able to carry payloads up to 200 kg. The project is part of the creation of an airship company by the Pégase competitiveness cluster in southern France…

The platform itself is a high-altitude airship measuring 70 to 100 meters long and 20 to 30 meters in diameter. It will feature a number of technological innovations, in particular to make sure it captures the Sun’s rays in all seasons: a power generation system (coupling the solar panels to a solar power amplification system patented by Thales), an ultra-light reversible fuel cell for energy storage, etc.  The StratoBus platform will require continuous significant energy input to offset the wind: two electric motors will automatically adjust their output power depending on wind speed (up to 90 km/h).

STRATOBUS – HALFWAY BETWEEN A DRONE AND A SATELLITE, Thalesgroup.com, Mar. 10, 2014