Tag Archives: water pollution

The Starving Manatees of Florida

Florida manatees are dying at a record pace, prompting a federal investigation and calls to relist the aquatic mammals as endangered. So far this year, 800 manatees have died in Florida, more than double the average for the same period over the past five years, according to state data. Their estimated population numbered 5,733 in 2019, the most recent year in which wildlife officials conducted a count….

At the heart of the problem is deteriorating water quality that has depleted the seagrasses that manatees eat, researchers say. It highlights a broader threat to other marine species, they say, and to Florida’s economy, which relies heavily on visitors drawn to the state’s coastline. Manatees, which typically measure about 10 feet in length and weigh more than 1,000 pounds, have faced numerous perils in recent years, including collisions with watercraft and exposure to red tide, a harmful algal bloom. Now, researchers say, they are experiencing starvation.

Excerpt from Arian Campo-Flores, Manatees Are Dying in Florida, and the U.S. Wants to Know Why, WSJ, June 23, 2021

How to Find the True Cost of Water

At current rates of consumption, the demand for water worldwide will be 40% greater than its supply by 2030, according to the UN. Portfolio managers are realizing that physical, reputational and regulatory water risk could hurt their investments, particularly in thirsty industries such as food, mining, textiles and utilities.

One worry is that shocks to supply could drown or dry out a company’s assets. In recent years Coca-Cola has been forced to close plants in India because of drought. In 2019 floods in America’s Midwest caused disruptions at the facilities of two food giants, Cargill and Tyson Foods. A survey by CDP, a non-profit firm, found that 783 big listed companies had faced a total of $40bn of water-related losses in 2018.

Another concern is that the price a company pays for water could rocket. The market price of water does not reflect the environmental and social costs of using it. Government subsidies also mean that companies often do not pay for its true cost. As aquifers are depleted, though, subsidies could become more costly and unpopular, forcing governments to retract them. S&P Global Trucost, a data provider, reckons that if Fortune 500 companies paid the true cost of water, based on estimates of scarcity, rather than current prices, their profit margins would shrink by a tenth. Margins for food, drink and tobacco firms would fall by three-quarters.

Disclosures of water risk are even patchier than those of greenhouse-gas emissions…Established names like Bloomberg and S&P Global are plugging the gap, as are startups. The result is that investors can approach management armed with data rather than questions. “We are getting rid of the black box that companies hide in.” 

Ceres, a non-profit firm, scores businesses on everything from direct water management to risks in the supply chain. Those seeking more detail can use visual tools, such as Bloomberg’s “maps” function, which plots a company’s facilities over a heat map based on water stress. (California is the same color as swathes of sub-Saharan Africa; far-eastern Russia looks a lot like western Europe.) Firms like Aquantix go further, and try to predict the financial cost of water risk.

The accuracy of such forecasts is not yet proven. For Andrew Mason of Aberdeen Standard Investments, though, they are still useful. They show companies that investors care about water risk and encourage them to share data. “This is where carbon was ten or 15 years ago,” he says.

Excerpt from An expanding pool: Investors start to pay attention to water risk, Economist, Jan. 9, 2021

How to Own a Foreign Country: the Strategy of Gulf States in Egypt and Sudan

Nile has become a battleground. Countries that sit upriver and wealthy Gulf states are starting to use the Nile more than ever for water and electricity. That means less water for the 250 million-plus small farmers, herders and city dwellers in the Nile basin.  Dams funded by foreign countries including China and oil-rich neighbors like Saudi Arabia and other Gulf states are tapping the river to irrigate industrial farms and generate electricity. Crops grown using Nile water are increasingly shipped out of Africa to the Middle East, often to feed livestock such as dairy cows

Exporting crops to feed foreign animals while borrowing money to import wheat is “almost insane,” Sudan’s new prime minister, Abdalla Hamdok, said in an interview. “It’s exporting water, basically. We could be growing wheat and getting rid of half our import bill,” he said. Mr. Hamdok’s predecessor, dictator Omar al-Bashir, is in prison after an uprising sparked by rising prices for food….

The most dramatic change to the Nile in decades is rising in Ethiopia, where the Blue Nile originates. Ethiopia, which has one of the world’s fastest-growing economies, turned to China to help finance the $4.2 billion Grand Ethiopian Renaissance Dam project to generate electricity. While the dam, located just miles from the Sudan border, won’t supply water for farms and cities, its massive reservoir will affect the flow of water.

Downstream, Egypt is worried that Ethiopia will try to quickly fill the reservoir beginning in 2020. The issue is “a matter of life and death for the nation,” Egyptian President Abdel Fattah Al Sisi said in televised remarks in 2017. “No one can touch Egypt’s share of water.” A spokesman for Ethiopia’s Ministry of Foreign Affairs said in a September press conference that “any move that does not respect Ethiopia’s sovereignty and its right to use the Nile dam has no acceptance.”  Sharing of the Nile’s waters has long been governed by international treaties, with Egypt claiming the vast majority. Since Ethiopia wasn’t included in those treaties, it was never provided an allotment of water. Ethiopia’s massive dam has thrown a wrench into past agreements…

Sudan is stuck in the middle. Much of the water that flows through the country is already allocated. “Sudan actually doesn’t have that much free water available,” says Harry Verhoeven, author of “Water, Civilisation and Power in Sudan.”  By early 2015, Saudi Arabia doubled its investment in Sudan’s agriculture sector to $13 billion, equaling about one-third of all foreign investment in Sudanese industry….The contrast between verdant export crops watered by the Nile and parched villages was visible in the area where protests started in December 2019, during a nationwide wheat shortage.   The protesters were angry about food prices, poor job prospects, social strictures and Sudan’s moribund economy, Mr. Alsir says. “We’re surrounded by farms,” he says. “But we’re not getting any of it.

Past a rocky expanse next to the village flows a deep canal, green with weeds, dug a decade ago by a Saudi-owned company called Tala Investment Co. It runs from the Nile about 10 miles to Tala’s farm, which leases its land from the government.  Tala grows crops for export and maximizes profits using Sudan’s “cheap manpower,” the company’s website says….The alfalfa is shipped 400 miles overland to Port Sudan and then across a nearly 200-mile stretch of the Red Sea to Jeddah in Saudi Arabia, then is used for animal feed….

The Aswan dam  In Egypt is primarily used to generate electricity. But a sprawling desert farm, the Toshka project to the west, taps the reservoir. That is where Saudi Arabia and the U.A.E. have made some of their biggest agricultural investments in Egypt in the past decade.  The strategy there is straightforward, says Turki Faisal Al Rasheed, founder of Saudi agriculture company Golden Grass Inc., which has explored purchasing farms in Egypt and Sudan. “When you talk about buying land, you’re not really buying land,” he says. “You’re buying water.”

Even with all that water dedicated to growing crops, Egypt  is rapidly outstripping its resources.  This is because he country’s population is forecast to grow 20% to 120 million by 2030, and to 150 million by 2050.  Access to water in Egypt is increasingly uncertain. The country’s annual per capita water use dipped below 24,000 cubic feet in recent years and is expected to fall below 18,000 cubic feet by 2030, a level defined as “absolute water scarcity,” according to the United Nations. The comparable figure in the U.S. is 100,000 cubic feet, enough to fill an Olympic swimming pool.  Saudi Arabia and the U.A.E. control about 383,000 acres of land in Egypt, an expanse nearly twice the size of New York City, according to Land Matrix. The main crops are corn, potatoes, wheat, alfalfa, barley and fruit such as grapes that are exported back home.

Mr. Sisi is now looking for new places to grow food. In 2015 he launched a program to expand arable land by more than 1.5 million acres in the country, part of which will tap into the Nubian aquifer, an irreplaceable ancient store of water beneath the Sahara. Saudi and U.A.E. companies have bid for lands in the project, according to the New Egyptian Countryside Development Co., which is managing the project.  Mr. Al Rasheed, the Saudi farm owner in Egypt, says that for him and others from the Gulf, farming along the Nile is about building regional influence as much as ensuring food supplies. “Food is the ultimate power,” he says.


Excerpts from Justin Scheck &Scott Patterson, ‘Food Is the Ultimate Power’: Parched Countries Tap the Nile River Through Farms, WSJ, Nov. 25, 2019

The Fight Against Toxic Algae

Signs posted around the Grand Lake, Ohio read: “Danger: Avoid all contact with the water.”  When dangerously high levels of toxins from blue-green algae in Grand Lake, Ohiio were publicized in 2009, many residents and tourists stopped using the 13,000-acre lake in northwest Ohio. Hotel revenue and home values sank for several years as algae bloomed in the state’s largest inland lake.

Greenish water still laps at Grand Lake’s shores, but recent water samples show that the amount of algae-feeding nutrients entering the lake is down significantly. State, federal and private donations covered more than $10 million in projects aimed at improving water quality. More people are boating on the lake again. Grand Lake could now serve as an example for communities with algae problems across the nation, experts say.

Algal blooms are on the rise, from Lake Erie to the Florida Everglades. In August 2019, the Environmental Protection Agency listed algae-related beach closures or health advisories in 23 states, and it said other blooms may not have been reported. In 2010, the EPA found that 20% of 50,000 lakes surveyed had been affected by phosphorous and nitrogen pollution, which feeds algae.e  Cleaning up bodies of water choked with toxic algae has proved difficult. The project to repair Grand Lake, once one of the most polluted by algae in the nation, is one of the clearest successes. It shows cleanup is possible, but also expensive and time-consuming.

“It’s not restored yet, but it’s on the road to recovery,” said Stephen Jacquemin, an associate professor of biology at Wright State University-Lake Campus in Celina.  Beginning in 2012, wetlands areas were built around the lake, which was hand dug in the 1830s. The thick stands of bulrushes and other plants have reduced phosphorous and nitrogen levels in water entering the wetlands before reaching the lake by as much as 90%, Dr. Jacquemin said.  Three wetland areas, which cost a total of about $6 million to build, are constructed as a series of interconnected pools that allow particulates to settle out and plants and microbes to remove nutrients.

Areal View of Artificial Wetlands, Great Lake Ohio

 The state’s Department of Natural Resources has also dredged the lake bottom to remove nutrient-loaded sediment, and tried to clean up one of Grand Lake’s beaches near St. Marys by building a rock jetty and installing aerators and a curtain to filter water. Recent water tests there showed levels below 6 parts per billion of the toxin microcystin, under Ohio’s threshold of 20 parts per billion for avoiding contact with water.

As Green Algae Forces Beaches to Close, Ohio Lake Offers Hope, WSJ, Sept. 18, 2019

How to Manage Water Like Money and Fail: Australia

Australia’s Darling River…provided fresh water to farmers seeking to tame Australia’s rugged interior.  No longer. The Darling River hasn’t flowed for eight months, with long stretches completely dried up. A million fish died there in January 2019.  Kangaroos, lizards and birds became sick or died after drinking from toxic pools of stagnant water.  Australia’s water-trading market is drawing blame. The problems with the system, created more than a decade ago, have arisen as similar programs are being considered in the U.S.

Water crises are unfolding across the world as surging populations, industrial-scale farming and hotter temperatures deplete supplies.  Australia thought it had the answer: a cap-and-trade system that would create incentives to use water efficiently and effectively in the world’s driest inhabited continent. But the architects of water trading didn’t anticipate that treating water as a commodity would encourage theft and hoarding.   A report produced for a state resources regulator found the current situation on the Darling was caused by too much water being extracted from the river by a handful of big farmers. Just four license holders control 75% of the water extracted from the Barwon-Darling river system.

The national government, concerned that its water-trading experiment hasn’t turned out as intended, in August 2019 requested an inquiry by the country’s antitrust regulator into water trading.  Anticorruption authorities are investigating instances of possible fraud, water theft and deal making for water licenses. In one case, known as Watergate, a former agriculture minister allegedly oversaw the purchase of a water license at a record price from a Cayman Islands company co-founded by the current energy minister. The former agriculture minister said he was following departmental advice and had no role in determining the price or the vendor. The energy minister said he is no longer involved with the company and received no financial benefit from the deal.

Since 2007, Australia has allowed not only farmers but also investors who want to profit from trading to buy and sell water shares. The water market is now valued at some $20 billion.    But making water valuable had unintended consequences in some places. “Once you create something of real value, you should expect people to attempt to steal it and search for ways to cheat,” says Mike Young, a University of Adelaide professor. “It’s not rocket science. Manage water like money, and you are there.”  Big water users have stolen billions of liters of water from rivers and lakes, according to local media investigations and Australian officials, often by pumping it secretly and at night from remote locations that aren’t metered. A new water regulator set up in New South Wales investigated more than 300 tips of alleged water thefts in its first six months of operation.  In 2018, authorities charged a group of cotton farmers with stealing water, including one that pleaded guilty to pumping enough illegally to fill dozens of Olympic-size swimming pools.  Another problem is that water trading gives farmers an incentive to capture more rain and floodwater, and then hoard it, typically by building storage tanks or lining dirt ditches with concrete. That enables them to collect rain before it seeps into the earth or rivers.

The subsequent water shortages, combined with trading by dedicated water funds and corporate farmers, have driven up prices. Water in Australia’s main agricultural region, the Murray-Darling river basin, now trades at about $420 per megaliter, or one million liters, compared with as low as $7 in previous years.  David Littleproud, Australia’s water-resources minister, says 14% of water licenses are now owned by investors. “Is that really the intent of what we want this market to be?” he asks. “Water is a precious commodity.”

Excerpts from Rachel Pannett , The U.S. Wants to Adopt a Cap-and-Trade Plan for Water That Isn’t Working, WSJ, Sept. 4, 2019

Not Sharing, even a Glass of Water: the Water Crisis in India

The southern city of Chennai—India’s fifth largest with a population of around 10 million—has been meeting only two-thirds of its water needs for weeks, the product of years of drought and decades of failure to manage the region’s water resources.   Residents have been scrambling around the clock to get water—spending hours chasing government tankers or paying private companies to deliver water.  Recent light rains broke a 200-day streak without rain. But the first month of India’s annual monsoon brought one-third less rain than the 50-year average, the driest June in five years, according to the India Meteorological Department.

The acute water shortage in one of India’s largest cities has been building for decades through a mix of population growth, poor planning and increasingly erratic monsoon rains….

The situation in Chennai reflects a larger water crisis spreading across India. Half the country’s population—600 million people—live in areas where water resources are highly or extremely stressed. About 100 million people living in 21 of India’s biggest cities may see their groundwater exhausted by the end of next year, according to a 2018 study by NITI Aayog, an Indian government policy think tank.  By 2030, demand for water will be double the country’s supply, the report said. And the impact will go far beyond the areas actually affected by water shortages: Almost one-third of the country’s agricultural output comes from areas most affected by water shortages…

The scarcity has led to clashes between neighbors. “No one is ready to share even a glass of water,” she said.

Excerpts from Vibhuti Agarwal and Krishna Pokhare Indians Hunt Through the Night for Water as a Megacity Runs Dry, WSJ, July 6, 2018

The Unquenchable Thirst: water mismanagement

Most of the drinking water consumed in Beijing has travelled 1,432km (895 miles), roughly the distance from New York to Orlando, Florida. Its journey begins in a remote and hilly part of central China at the Danjiangkou reservoir, on the bottom of which lies the drowned city of Junzhou. The water gushes north by canal and pipeline, crosses the Yellow river by burrowing under it, and arrives, 15 days later, in the water-treatment plants of Beijing. Two-thirds of the city’s tap water and a third of its total supply now comes from Danjiangkou.

This winter and spring, the reservoir was the capital’s lifeline. No rain or snow fell in Beijing between October 23rd 2017 and March 17th 2018—by far the longest drought on record. Yet the city suffered no supply disruptions, unlike Shanxi province to the west, where local governments rationed water. The central government is exultant, since the project which irrigates Beijing was built at vast cost and against some opposition.

The South-to-North Water Diversion Project—to give the structure its proper name—is the most expensive infrastructure enterprise in the world. It is the largest transfer of water between river basins in history, and China’s main response to its worst environmental threat, which is (despite all the pollution) lack of water.

The route between Beijing and Danjiangkou, which lies on a tributary of the Yangzi, opened in 2014. An eastern route opened in 2013 using the ancient Grand Canal between Hangzhou and the capital. (Jaw-dropping hydrological achievements are a feature of Chinese history.) A third link is planned on the Tibetan plateau, but since that area is prone to earthquakes and landslides, it has been postponed indefinitely…

Downstream from Danjiangkou, pollution has proved intractable. By diverting water from the Yangzi, the project has made the river more sluggish. It has become less able to wash away contaminants and unable to sustain wetlands, which act as sponges and reduce flooding. To compensate for water taken from their rivers, local governments are also building dams wherever they can to divert it back again. Shaanxi province, for example, is damming the Han river to transfer water to its depleted river Wei….Worst of all, the project diverts not only water but money and attention from China’s real water problem: waste and pollution.

Excerpts from Water: Massive Diversion, Economist, Apr. 7, 2018

Air, Water, Waste and Death

The UN Environment and WHO have agreed a new, wide-ranging collaboration to accelerate action to curb environmental health risks that cause an estimated 12.6 million deaths a year.

On January 10, 2018 in Nairobi, Mr Erik Solheim, head of UN Environment, and Dr Tedros Adhanom Ghebreyesus, Director-General of WHO, signed an agreement to step up joint actions to combat air pollution, climate change and antimicrobial resistance, as well as improve coordination on waste and chemicals management, water quality, and food and nutrition issues. The collaboration also includes joint management of the BreatheLife advocacy campaign to reduce air pollution for multiple climate, environment and health benefits

“Our health is directly related to the health of the environment we live in. Together, air, water and chemical hazards kill more than 12.6 million people a year. This must not continue,” said WHO’s Tedros.  He added: “Most of these deaths occur in developing countries in Asia, Africa and Latin America where environmental pollution takes its biggest health toll.”

Excerpts from, UN Environment and WHO agree to major collaboration on environmental health risks, Press Release, Jan. 10, 2017

Saving Iconic Rivers: Ganges

The Ganges, arguably the lifeline of India, has its origin in the Himalayas. Once it crosses Gangotri, it flows through Haridwar collecting industrial, agricultural and human waste on its way. Before it culminates in the Bay of Bengal, it passes through various towns and villages lacking sanitation. The Government of India is rolling up its sleeves to clean the 2525 KM long-Ganga and facilitate its flow as it is the source of water for more than 40 per cent of India’s population.

The Institution of Engineering and Technology (IET) is non-profit engineering organisation founded 145 years ago, the IET is one of the world’s leading professional societies for the engineering and technology community. The IET has more than 167,000 members across 150 countries. In India, the IET has over 13,000 members, eight Local Networks and focuses on Energy, Transport, Information & Communications, IoT and Education sectors.

In March 2017, a panel formed by the Institution of Engineering and Technology (IET) on IoT (Internet of Things) were invited to consult the Government of India’s National Mission for Clean Ganga (NMCG) to discuss the ways to clean the river. According to IET, the leaders discussed and tried to identify ways to improve the water flow in Ganga, better treatment of pollutants via sewage and effluent treatment plants, need for controlling unregulated sewage, open defecation,  and handling chemical runoff from agricultural lands (fertilisers and pesticides).

The IoT technology could be used in providing real-time information of pollution status and enabling the industries and societies to find alternate means of disposal of waste.   Other technologies being used to clean up the river Unmanned robotic water surface vehicle with drones: The vehicle can be programmed to collect all the pollutant waste through its arms and offload the same. It works 24X7 and under all weather conditions. More, it can actually submerge to clean up pollutants on even the riverbed. A set of drones is used with it to collect videos of the pollutants.

Gumps- Detectors for pipeline leaks: The Guided Ultrasonic Monitoring of Pipe Systems (GUMPS) can detect oil leakages from oil pipelines that are laid across the river bed of the Ganga River. They continuously monitor pipelines and alert any impending leaks, thus preventing loss of marine life and pollution due to oil leakages.

Excerpts, Alekhya Hanumanthu ,Using technology for clean Ganga, Telangana Today, Oct. 10, 2017

Owning and Trading Water

Rights regimes that are well designed and implemented are among the most effective tools for distributing water fairly and sustainably. Under one such system, Australian states began reforming water management in 1994. Few others have followed, though attempts at reform in Chile and Yemen have met with varying degrees of success.

To create tradable water rights, Australia first drew up a baseline for water use, taking into consideration past commercial, social and environmental needs. Next, old water rights were replaced with shares that granted holders (usually landowners) a proportion of any annual allocations. Clever formulae take account of the seniority of pre-existing rights. Different classes of shares determine who gets what and when to balance the competing claims of upstream farmers and downstream urbanites. After that a regulatory board makes sure that all users get as much as they are entitled to.

Allocations made to shareholders are tradable, but those receiving them can also store them for the future. This prevents any sudden wasting of water at the end of each year and encourages thrift during a drought. Issuing shares in perpetuity ensures that a holder can have more water only if someone else is prepared to have less. A centralised register holds everything together. Two markets for trading have been created: one in which shares are exchanged, and another for allocations of water in a given year. The idea is not a new one. In places such as Oman, aflaj systems involve villages trading in shares and in minutes of water flow.

Such regime change originally met strong resistance from farmers and other big users in Australia. But trading allocations reaped enormous rewards for shareholders. During the first decade of reform the annual internal rate of return from owning a water right was over 15%; those who held water shares saw the value of their rights double every five or so years. But following this example elsewhere will be tough. Even rich countries will struggle to unbundle rights that have accumulated over decades.

Excerpt from Liquidity Crisis, Economist, Nov. 5, 2016, at 17

Right to Water and Indigenous People: New Zealand

The Maori claim a special relationship with New Zealand’s fresh water, based on their historical use of its rivers for drinking water, spiritual beliefs, fishing and shellfish harvest, transport and trade, among other things. Their case goes back to 1840, when the British Crown and most of the Maori tribes signed the Waitangi treaty, which first formalised the colonists’ settling of the islands. Maori rights were enshrined in the treaty. An interim ruling by the Waitangi tribunal, set up in 1975 to deal with Maori grievances about land and related issues, says that the Maori have freshwater rights “for which full ownership was the closest cultural equivalent in 1840.”

Although the government has been willing to discuss water rights with some Maori groups, John Key, the prime minister, says that “full ownership” will not be ceded. In 2012 the government sought to part-privatise Mighty River Power, an electricity company with dams on the longest river, the Waikato, which has particular spiritual value for the Tainui tribe. The Maori Council, with representatives from each Maori district, tried to have the sale stopped or postponed. But in 2013 the high court ruled in the government’s favour….

One proposal is that the Maori get a specified water allocation from regional councils, just as farms do. But Federated Farmers, a lobby group, argues that all available water has already been allocated and that specifying a share for the Maori would mean others losing out. New Zealand’s farms rely heavily on water—especially in the dairy sector, which is now the country’s biggest export earner, worth $10 billion a year.

Growing Chinese demand for milk powder means farmers are increasingly switching from meat production to dairy, thereby increasing their water use. Dairy farming is also polluting freshwater supplies, as phosphates and nitrates seep into groundwater. This has become a political issue, not just for the Maori: many of the rivers and lakes loved by all Kiwis are no longer safe to swim in. The most likely outcome is a fudge that avoids saying anyone owns New Zealand’s fresh water. But the Maori may get more influence over some water, or even an allocation.

Excerpts from Maori rights in New Zealand Water, water everywhere, Economist, May 9, 2015 at 34.

What Transocean Pays for the Gulf Oil Spill

Transocean Ltd. appeared in federal court in New Orleans after reaching a $1.4 billion settlement with the U.S. over the 2010 Gulf of Mexico oil spill….The company agreed last week to plead guilty to a misdemeanor count of violating the Clean Water Act and to pay $400 million in criminal fines and $1 billion plus interest in civil penalties. Under the agreement, Transocean will undergo five years’ probation and establish a technology innovation group to focus on drilling safety, devoting a minimum of $10 million to this effort…..

The agreement doesn’t cover costs to Transocean for natural-resources damage under the Oil Pollution Act of 1990, the company said. That law requires responsible parties to reimburse governments for restoring natural resources to pre- incident conditions.  Transocean said last week that the company’s liability for these damages was limited by a 2012 court ruling that it wouldn’t be liable under the Oil Pollution Act for subsurface discharge from the well.

The blowout and explosion aboard Transocean’s drilling rig sent millions of barrels of crude leaking into the gulf. The accident prompted hundreds of lawsuits against Transocean, London-based BP, the well’s owner, and Houston-based Halliburton Co. (HAL), which provided cementing services. BP previously agreed to pay $4 billion to the Justice Department to resolve charges connected to the spill and $525 million to settle the U.S. Securities and Exchange Commission’s claim that the company misled investors about the rate of oil flowing into the gulf.  BP announced Nov. 15 that it reached a deal with the Justice Department to plead guilty to 14 counts, including 11 for felony seaman’s manslaughter. U.S. District Judge Sarah S. Vance said last month that she would determine at a Jan. 29 hearing whether to accept BP’s plea.

The criminal case is U.S. v. Transocean Deepwater Inc., 13- cr-001, U.S. District Court, Eastern District of Louisiana (New Orleans). (pdf)

Margaret Cronin Fisk & Allen Johnson Jr, Transocean Appears in Court After $1.4 Billion Spill Pact, Bloomberg, Jan. 9, 2013