Tag Archives: submarines

Black Operations are Getting Blacker: US Military

Heterogeneous Collaborative Unmanned Systems (HCUS), as these drones will be known, would be dropped off by either a manned submarine or one of the navy’s big new Orca robot submersibles.

Logo for Orca Submarine by Lockheed Martin

They could be delivered individually, but will more often be part of a collective system called an encapsulated payload. Such a system will then release small underwater vehicles able to identify ships and submarines by their acoustic signatures, and also aerial drones similar to the BlackWing reconnaissance drones already flown from certain naval vessels.

BlackWing

Once the initial intelligence these drones collect has been analysed, a payload’s operators will be in a position to relay further orders. They could, for example, send aerial drones ashore to drop off solar-powered ground sensors at specified points. These sensors, typically disguised as rocks, will send back the data they collect via drones of the sort that dropped them off. Some will have cameras or microphones, others seismometers which detect the vibrations of ground vehicles, while others still intercept radio traffic or Wi-Fi.

Lockheed Martin Ground Sensor Disguised as Rock

HCUS will also be capable of what are described as “limited offensive effects”. Small drones like BlackWing can be fitted with warheads powerful enough to destroy an SUV or a pickup truck. Such drones are already used to assassinate the leaders of enemy forces. They might be deployed against fuel and ammunition stores, too.

Unmanned systems such as HCUS thus promise greatly to expand the scope of submarine-based spying and special operations. Drones are cheap, expendable and can be deployed with no risk of loss of personnel. They are also “deniable”. Even when a spy drone is captured it is hard to prove where it came from. Teams of robot spies and saboteurs launched from submarines, both manned and unmanned, could thus become an important feature of the black-ops of 21st-century warfare.

Excerpts from Submarine-launched drone platoons will soon be emerging from the sea: Clandestine Warfare, Economist, June 22, 2019

Under-sea GPS: DARPA POSYDON

The objective of the POSYDON program is to develop an undersea system that provides omnipresent, robust positioning. DARPA envisions that the POSYDON program will distribute a small number of acoustic sources, analogous to GPS satellites, around an ocean basin.  By measuring the absolute range to multiple source signals, an undersea platform can obtain continuous, accurate positioning without surfacing for a GPS fix.

DARPA program  April 14, 2015

 

SeaWeb Live: drones, mules & gliders

UUVs [unmanned underwater vehicles]  will probably play a bigger role as roving wireless nodes that increase the reach of underwater networks. The latest “glider” UUVs consume very little battery power…. Already, gliders serving as “mules” are descending to sensors in deep water where they acoustically collect information. They then ascend to the surface and send the data via radio, says David Kelly, chief executive of Bluefin Robotics, which provides UUVs to half a dozen navies.

The US Navy has ordered several gliders to form underwater mobile networks. With no engine noise, a stealthy “swarm” of gliders could monitor submarines and ships entering a strait, for example, surfacing to transmit their findings. Floating gateway nodes, dropped from the air, allow messages to be sent to submerged devices via low-frequency acoustic signals. This scheme, known as Deep Siren and developed by Raytheon, an American defence contractor, has been tested by the British and American navies.

“Underwater networking will put an end to the ‘data starvation’ experienced by submarines”.  The combination of acoustic signalling and UUVs, which can deliver data physically, will put an end to the “data starvation” experienced by submarines, as America’s submarine command described it in a report last year. Often incommunicado, subs have been condemned to “lone wolf” roles, says Xavier Itard, head of submarine products at DCNS, a French shipbuilder. His firm is developing a funnel-shaped torpedo-tube opening that would make it easier for a UUV to dock with a submarine. Being able to send messages quickly via acoustic networks would enable submarines to take on more tactical roles—inserting special forces when needed to a nearby battlefield, say, or supporting ground operations by launching cruise missiles from the depths.

The Soviet-built ELF radio system remains a “backbone” of Russia’s submarine communications, according to a Norwegian expert. But in a clear vote of confidence in newer technologies, America shut down its own system in 2004. Thanks to steady progress in undersea networks, what was once a technological marvel was, a US Navy statement explained, “no longer necessary”. Whether via sound waves, laser pulses, optical fibres or undersea drones, there are now better ways to deliver data underwater.

Excerpt , Underwater networking: Captain Nemo goes online, Economist Technology Quarterly, Mar. 9, 2013, at 7