Tag Archives: DARPA POSYDON

The Reckless Gambles that Changed the World: darpa

Using messenger RNA to make vaccines was an unproven idea. But if it worked, the technique would revolutionize medicine, not least by providing protection against infectious diseases and biological weapons. So in 2013 America’s Defense Advanced Research Projects Agency (DARPA) gambled. It awarded a small, new firm called Moderna $25m to develop the idea. Eight years, and more than 175m doses later, Moderna’s covid-19 vaccine sits alongside weather satellites, GPS, drones, stealth technology, voice interfaces, the personal computer and the internet on the list of innovations for which DARPA can claim at least partial credit.

It is the agency that shaped the modern world, and this success has spurred imitators. In America there are ARPAS for homeland security, intelligence and energy, as well as the original defense one…Germany has recently established two such agencies: one civilian (the Federal Agency for Disruptive Innovation, or SPRIN-d) and another military (the Cybersecurity Innovation Agency). Japan’s interpretation is called Moonshot R&D. 

As governments across the rich world begin, after a four-decade lull, to spend more on research and development, the idea of an agency to invent the future (and, in so doing, generate vast industries) is alluring and, the success of DARPA suggests, no mere fantasy. In many countries there is displeasure with the web of bureaucracy that entangles funding systems, and hope that the DARPA model can provide a way of getting around it. But as some have discovered, and others soon will, copying DARPA requires more than just copying the name. It also needs commitment to the principles which made the original agency so successful—principles that are often uncomfortable for politicians.

On paper, the approach is straightforward. Take enormous, reckless gambles on things so beneficial that only a handful need work to make the whole venture a success. As Arun Majumdar, founding director of ARPA-e, America’s energy agency, puts it: “If every project is succeeding, you’re not trying hard enough.” Current (unclassified) DAROA projects include mimicking insects’ nervous systems in order to reduce the computation required for artificial intelligence and working out how to protect soldiers from the enemy’s use of genome-editing technologies.

The result is a mirror image of normal R&D agencies. Whereas most focus on basic research, DARPA builds things. Whereas most use peer review and carefully selected measurements of progress, DARPA strips bureaucracy to the bones (the conversation in 1965 which led the agency to give out $1m for the first cross-country computer network, a forerunner to the internet, took just 15 minutes). All work is contracted out. DARPA has a boss, a small number of office directors and fewer than 100 program managers, hired on fixed short-term contracts, who act in a manner akin to venture capitalists, albeit with the aim of generating specific outcomes rather than private returns.

Excerpt from Inventing the future: A growing number of governments hope to clone America’s DARPA, Economist, June 5, 2021

The Ocean-Based Internet: Data Mining the Ocean

The U.S. Defense Department could one day place thousands of low-cost, floating sensors into the ocean to collect environmental data, such as water temperature, as well as activity data about commercial vessels, aircraft and even fish or maritime mammals moving through the area. But others also are dropping similar sensors in the world’s oceans, and defense researchers suggest many of those systems could be integrated into an even more comprehensive ocean-based Internet of Things.

The growing Internet of Things is mostly a land-based phenomenon, frequently in large cities with loads of sensors. But researchers at the Defense Advanced Research Projects Agency (DARPA) foresee a wide range of military and civil benefits from extending the Internet of Things out to sea.  The agency announced its Ocean of Things program in 2017. John Waterston, a program manager within DARPA’s Strategic Technology Office, says the sensors will float along the surface for at least one year, transmitting short messages via the Iridium satellite constellation back to a central location for analysis. “It’s a 280-byte in and 340-byte out message, so it’s a little bit more than a tweet. I like to say these things tweet about their environment,” he says.

The goal is to increase maritime awareness in a cost-effective way. Using existing systems to continuously monitor vast regions of the ocean would be cost prohibitive…. By coupling powerful analytical tools with commercial sensor technology, the agency intends to create floating sensor networks that significantly expand maritime awareness at a fraction of the cost of current approaches.

Waterston says one of the most interesting missions for the sensor might be to simply determine whether GPS signals are available in an area of interest for military operations. …The program also could help improve ocean modeling, which is important for forecasting weather, finding people who have fallen overboard or locating debris from a crashed aircraft. …The agency has yet to determine how many sensors it might eventually deploy, but they could number in the tens of thousands. To put that into perspective, DARPA officials compare the final density to placing a penny on the national mall, which Wikipedia says covers about 309 acres between the Ulysses S. Grant Memorial and the Lincoln Memorial….

In addition, Argo, an international program, uses several thousand battery-powered, robotic floating devices to measure temperature, salinity and current for climate and oceanographic research. The floats mostly drift 10 days at a time below the ocean surface. After rising and transmitting their data to satellites, they return to depth to drift for another 10 days. The floats go as deep as 2,000 meters, according to the Argo website. 

Argo Floating Device

It is possible an ocean-based Internet could provide data on demand to a variety of customers inside and outside the Defense Department. If, for example, a government agency needs the water temperature in a given area reported every six hours, or a combatant command needs to know what’s happening in the Mediterranean, or NATO officials want information between Gibraltar and Sicily, or commercial fishermen need data on where the shrimp or tuna are, they could simply request it. “It’s about serving the end users. If you can use that data, we can generate it for you,” he offers. “It’s a little bit like floats-as-a-service or data-as-a-service.”

Argo’s Ocean Sensors

Another option is that other organizations could purchase and deploy the DARPA-developed sensors. “I hope people want to come up with their own sensors or want to buy these. I imagine a marketplace where you get many commercial people buying these. Everyone could buy 500 and then take advantage of the service provided by the thousands that are out there. I could imagine this as that foundational community,” Waterston suggests.

DARPA currently is working with three teams led by the Palo Alto Research Center, better known as PARC***, Areté Associates and Numurus LLC to develop the floats. Leidos, Draper Laboratory, SoarTech and Geometric Data Analytics are providing software for data visualization, performance prediction, float command and control and detection. 

Excerpts from George Seffers, DARPA’s Ocean of Things Ripples Across Research Areas, AFCEA.org, Nov. 1, 2019

***See also DARPA’s Vanishing Programmable Resources (VAPR) program. According to one scientist that works in the PARC’s disappearing electronics platform (called DUST) “Imagine being able to cover a large area, like the ocean floor, with billions of tiny sensors to ‘hear’ what is happening within the earth’s crust, and have them quickly disintegrate into, essentially, sand, leaving no trace and not harming the planet or sea life,  

Black Operations are Getting Blacker: US Military

Heterogeneous Collaborative Unmanned Systems (HCUS), as these drones will be known, would be dropped off by either a manned submarine or one of the navy’s big new Orca robot submersibles.

Logo for Orca Submarine by Lockheed Martin

They could be delivered individually, but will more often be part of a collective system called an encapsulated payload. Such a system will then release small underwater vehicles able to identify ships and submarines by their acoustic signatures, and also aerial drones similar to the BlackWing reconnaissance drones already flown from certain naval vessels.

BlackWing

Once the initial intelligence these drones collect has been analysed, a payload’s operators will be in a position to relay further orders. They could, for example, send aerial drones ashore to drop off solar-powered ground sensors at specified points. These sensors, typically disguised as rocks, will send back the data they collect via drones of the sort that dropped them off. Some will have cameras or microphones, others seismometers which detect the vibrations of ground vehicles, while others still intercept radio traffic or Wi-Fi.

Lockheed Martin Ground Sensor Disguised as Rock

HCUS will also be capable of what are described as “limited offensive effects”. Small drones like BlackWing can be fitted with warheads powerful enough to destroy an SUV or a pickup truck. Such drones are already used to assassinate the leaders of enemy forces. They might be deployed against fuel and ammunition stores, too.

Unmanned systems such as HCUS thus promise greatly to expand the scope of submarine-based spying and special operations. Drones are cheap, expendable and can be deployed with no risk of loss of personnel. They are also “deniable”. Even when a spy drone is captured it is hard to prove where it came from. Teams of robot spies and saboteurs launched from submarines, both manned and unmanned, could thus become an important feature of the black-ops of 21st-century warfare.

Excerpts from Submarine-launched drone platoons will soon be emerging from the sea: Clandestine Warfare, Economist, June 22, 2019

Stopping the Unstoppable: undersea nuclear torpedoes

On July 20th 1960, a missile popped out of an apparently empty Atlantic ocean. Its solid-fuel rocket fired just as it cleared the surface and it tore off into the sky. Hours later, a second missile followed. An officer on the ballistic-missile submarine USS George Washington sent a message to President Dwight Eisenhower: “POLARIS—FROM OUT OF THE DEEP TO TARGET. PERFECT.” America had just completed its first successful missile launch of an intercontinental ballistic missile (ICBM) from beneath the ocean. Less than two months later, Russia conducted a similar test in the White Sea, north of Archangel.

Those tests began a new phase in the cold war. Having ICBMs on effectively invisible launchers meant that neither side could destroy the other’s nuclear arsenal in a single attack. So by keeping safe the capacity for retaliatory second strikes, the introduction of ballistic-missile submarines helped develop the concept of “mutually assured destruction” (MAD), thereby deterring any form of nuclear first strike. America, Britain, China, France and Russia all have nuclear-powered submarines on permanent or near permanent patrol, capable of launching nuclear missiles; India has one such submarine, too, and Israel is believed to have nuclear missiles on conventionally powered submarines.

As well as menacing the world at large, submarines pose a much more specific threat to other countries’ navies; most military subs are attack boats rather than missile platforms. This makes anti-submarine warfare (ASW) a high priority for anyone who wants to keep their surface ships on the surface. Because such warfare depends on interpreting lots of data from different sources—sonar arrays on ships, sonar buoys dropped from aircraft, passive listening systems on the sea-floor—technology which allows new types of sensor and new ways of communicating could greatly increase its possibilities. “There’s an unmanned-systems explosion,” says Jim Galambos of DARPA, the Pentagon’s future-technology arm. Up until now, he says, submariners could be fairly sure of their hiding place, operating “alone and unafraid”. That is changing.

Aircraft play a big role in today’s ASW, flying from ships or shore to drop “sonobuoys” in patterns calculated to have the best chance of spotting something. This is expensive. An aeroplane with 8-10 people in it throws buoys out and waits around to listen to them and process their data on board. “In future you can envision a pair of AUVs [autonomous underwater vehicles], one deploying and one loitering and listening,” says Fred Cotaras of Ultra Electronics, a sonobuoy maker. Cheaper deployment means more buoys.

But more data is not that helpful if you do not have ways of moving it around, or of knowing where exactly it comes from. That is why DARPA is working on a Positioning System for Deep Ocean Navigation (POSYDON) which aims to provide “omnipresent, robust positioning across ocean basins” just as GPS satellites do above water, says Lisa Zurk, who heads up the programme. The system will use a natural feature of the ocean known as the “deep sound channel”. The speed of sound in water depends on temperature, pressure and, to some extent, salinity. The deep sound channel is found at the depth where these factors provide the lowest speed of sound. Below it, higher pressure makes the sound faster; above it, warmer water has the same effect…

Even in heavily surveilled seas, spotting submarines will remain tricky. They are already quiet, and getting quieter; new “air-independent propulsion” systems mean that conventionally powered submarines can now turn off their diesel engines and run as quietly as nuclear ones, perhaps even more so, for extended periods of time. Greater autonomy, and thus fewer humans—or none at all—could make submarines quieter still.

A case in point is a Russian weapon called Status-6, also known as Kanyon, about which Vladimir Putin boasted in a speech on March 1st, 2018. America’s recent nuclear-posture review describes it as “a new intercontinental, nuclear-armed, nuclear-powered, undersea autonomous torpedo”. A Russian state television broadcast in 2015 appeared to show it as a long, thin AUV that can be launched from a modified submarine and travel thousands of kilometres to explode off the shore of a major city with a great deal more energy than the largest warheads on ICBMs, thus generating a radioactive tsunami. Such a system might be seen as preserving a second-strike capability even if the target had a missile-defence system capable of shooting ICBMs out of the sky…

One part of the ocean that has become particularly interesting in this regard is the Arctic. Tracking submarines under or near ice is difficult, because ice constantly shifts, crackles and groans loudly enough to mask the subtle sounds of a submarine. With ever less ice in the Arctic this is becoming less of a problem, meaning America should be better able to track Russian submarines through its Assured Arctic Awareness programme…

Greater numbers of better sensors, better networked, will not soon make submarines useless; but even without breakthroughs, they could erode the strategic norm that has guided nuclear thinking for over half a century—that of an unstoppable second strike.

Excerpts from Mutually assured detection, Economist, Mar. 10, 2018

Under-sea GPS: DARPA POSYDON

The objective of the POSYDON program is to develop an undersea system that provides omnipresent, robust positioning. DARPA envisions that the POSYDON program will distribute a small number of acoustic sources, analogous to GPS satellites, around an ocean basin.  By measuring the absolute range to multiple source signals, an undersea platform can obtain continuous, accurate positioning without surfacing for a GPS fix.

DARPA program  April 14, 2015