Tag Archives: drones gremlins

The Killing Fad: Agile Drones

Drones built in Turkey with affordable digital technology wrecked tanks and other armored vehicles, as well as air-defense systems, of Russian protégés in battles waged in Syria, Libya and Azerbaijan. These drones point to future warfare being shaped as much by cheap but effective fighting vehicles as expensive ones with the most advanced technology. China, too, has become a leading war drone exporter to the Middle East and Africa. Iran-linked groups in Iraq and Yemen used drones to attack Saudi Arabia. At least 10 countries, from Nigeria to the United Arab Emirates, have used drones purchased from China to kill adversaries, defense analysts say.

Flying alone or in a group, these drones can surprise troops and disable poorly concealed or lightly defended armored vehicles, a job often assigned to expensive warplanes. The drones can stay quietly aloft for 24 hours, finding gaps in air-defense systems and helping target strikes by warplanes and artillery, as well as firing their own missiles. Militaries, including the U.S., are upgrading air-defense systems to catch up with the advances, seeking methods to eliminate low-budget drones without firing missiles that cost more than their targets. The U.S. Air Force Research Laboratory is also developing Skyborg and Valkyrie, lower-cost autonomous aircraft that are part of an innovation program

Israel and the U.S. have long used high-end drones in counterterrorism operations to target prominent enemies. But the countries have hesitated to sell their top models, even to allies, for fear of proliferation…Technological advances and global competitors have produced inexpensive alternatives.

The standard-bearer of the latest armed-drone revolution emerged last year on the battlefields around Turkey, the Bayraktar TB2. Compared with the American MQ-9, the TB2 is lightly armed, with four laser-guided missiles. Its radio-controlled apparatus limits its basic range to around 200 miles, roughly a fifth of the ground the MQ-9 can cover. Yet it is utilitarian, and reliable—qualities reminiscent of the Soviet Kalashnikov AK-47 rifle that changed warfare in the 20th century. A set of six Bayraktar TB2 drones, ground units, and other essential operations equipment costs tens of millions of dollars, rather than hundreds of millions for the MQ-9…

Ukraine signed a deal in January 2019 to buy TB2 drones from Turkey, receiving at least six so far, and Kyiv is in talks for joint production. A Ukrainian company is manufacturing engines for the latest Baykar drone, a larger model with a heavier payload than the TB2. The country hopes the drones will discourage a repeat of the Kremlin’s 2014 invasions. …Turkey’s drone sales have riled Moscow. …

The TB2 was born of Turkey’s dissatisfaction with available models from the U.S. and Israel, and the country’s desire for systems under its control to fight the PKK, a Kurdish militant group….Azerbaijan, geographically and culturally close to Turkey, procured a set of TB2 drones last year. The country had lost control of the Nagorno-Karabakh region to Armenia in a war that ended in a 1994 cease-fire. Rising petroleum wealth had bolstered Azerbaijan’s military in the years since. The TB2s, as well as Israeli-made drones, helped Azerbaijan overwhelm Armenian forces. Attacks were recorded for videos and posted online by Azerbaijan’s Defense Ministry….

The Azerbaijan victory caught the attention of Turkey’s suppliers. Some companies and countries, including Canada, halted export of components used in the TB2. [Too little too late?]

Excerpt from James Marson and Brett Forrest, Armed Low-Cost Drones, Made by Turkey, Reshape Battlefields and Geopolitics, WSJ, June 4, 2021

Smart Weapons Who Make Many Mistakes: AI in War

Autonomous weapon systems rely on artificial intelligence (AI), which in turn relies on data collected from those systems’ surroundings. When these data are good—plentiful, reliable and similar to the data on which the system’s algorithm was trained—AI can excel. But in many circumstances data are incomplete, ambiguous or overwhelming. Consider the difference between radiology, in which algorithms outperform human beings in analysing x-ray images, and self-driving cars, which still struggle to make sense of a cacophonous stream of disparate inputs from the outside world. On the battlefield, that problem is multiplied.

“Conflict environments are harsh, dynamic and adversarial,” says UNDIR. Dust, smoke and vibration can obscure or damage the cameras, radars and other sensors that capture data in the first place. Even a speck of dust on a sensor might, in a particular light, mislead an algorithm into classifying a civilian object as a military one, says Arthur Holland Michel, the report’s author. Moreover, enemies constantly attempt to fool those sensors through camouflage, concealment and trickery. Pedestrians have no reason to bamboozle self-driving cars, whereas soldiers work hard to blend into foliage. And a mixture of civilian and military objects—evident on the ground in Gaza in recent weeks—could produce a flood of confusing data.

The biggest problem is that algorithms trained on limited data samples would encounter a much wider range of inputs in a war zone. In the same way that recognition software trained largely on white faces struggles to recognise black ones, an autonomous weapon fed with examples of Russian military uniforms will be less reliable against Chinese ones. 

Despite these limitations, the technology is already trickling onto the battlefield. In its war with Armenia last year, Azerbaijan unleashed Israeli-made loitering munitions theoretically capable of choosing their own targets. Ziyan, a Chinese company, boasts that its Blowfish a3, a gun-toting helicopter drone, “autonomously performs…complex combat missions” including “targeted precision strikes”. The International Committee of the Red Cross (ICRC) says that many of today’s remote-controlled weapons could be turned into autonomous ones with little more than a software upgrade or a change of doctrine….

On May 12th, 2021, the ICRD published a new and nuanced position on the matter, recommending new rules to regulate autonomous weapons, including a prohibition on those that are “unpredictable”, and also a blanket ban on any such weapon that has human beings as its targets. These things will be debated in December 2021 at the five-yearly review conference of the UN Convention on Certain Conventional Weapons, originally established in 1980 to ban landmines and other “inhumane” arms. Government experts will meet thrice over the summer and autumn, under un auspices, to lay the groundwork. 

Yet powerful states remain wary of ceding an advantage to rivals. In March, 2021 a National Security Commission on Artificial Intelligence established by America’s Congress predicted that autonomous weapons would eventually be “capable of levels of performance, speed and discrimination that exceed human capabilities”. A worldwide prohibition on their development and use would be “neither feasible nor currently in the interests of the United States,” it concluded—in part, it argued, because Russia and China would probably cheat. 

Excerpt from Autonomous weapons: The fog of war may confound weapons that think for themselves, Economist, May 29, 2021

What is the Sea Train? DARPA

DARPA’s The Sea Train program aims to demonstrate long range deployment capabilities for a distributed fleet of tactical unmanned surface vessels. The program seeks to enable extended transoceanic transit and long-range naval operations by exploiting the efficiencies of a system of connected vessels (Sea Train). The goal is to develop and demonstrate approaches that exploit wave-making resistance reductions to overcome the range limitations inherent in medium unmanned surface vessels. DARPA envisions sea trains formed by physically connecting vessels with various degrees of freedom between the vessels, or vessels sailing in collaborative formations at various distances between the vessels. The weak of October 5, 2020, DARPA awarded Gibbs & Cox a separate $9.5 million contract to develop a “Connectorless Sea Train” concept. 

Dr. Andrew Nuss, Sea Train

A Perpetual State of Competition: US-China-Russia

The US Secretary of Defense stated in September 2020 that America’s air, space and cyber warriors “will be at the forefront of tomorrow’s high-end fight.” That means confronting near-peer competitors China and Russia. That means shifting the focus from defeating violent extremist groups to deterring great power competitors. It means fighting a high-intensity battle that combines all domains of warfare. “In this era of great power competition, we cannot take for granted the United States’ long-held advantages,” Esper said. 

The last time an enemy force dropped a bomb on American troops was in the Korean War. “China and Russia, seek to erode our longstanding dominance in air power through long-range fires, anti-access/area-denial systems and other asymmetric capabilities designed to counter our strengths,” he said. “Meanwhile, in space, Moscow and Beijing have turned a once peaceful arena into a warfighting domain.” China and Russia have placed weapons on satellites and are developing directed energy weapons to exploit U.S. systems “and chip away at our military advantage,” he said.

Russia, China, North Korea, Iran and some violent extremist groups also look to exploit cyberspace to undermine U.S. security without confronting American conventional overmatch. “They do this all in an increasingly ‘gray zone’ of engagement that keeps us in a perpetual state of competition,’ the secretary said…The fiscal 2020 Defense Department research and development budget is the largest in history, he said, and it concentrates on critical technologies such as hypersonic weapons, directed energy and autonomous systems. 

“In the Air Force, specifically, we are modernizing our force for the 21st century with aircraft such as the B-21, the X-37 and the Next Generation Air Dominance platform,” Esper said. “Equally important, we are transforming the way we fight through the implementation of novel concepts such as Dynamic Force Employment, which provides scalable options to employ the joint force while preserving our capabilities for major combat.”

To realize the full potential of new concepts the department must be able to exchange and synchronize information across systems, services and platforms, seamlessly across all domains, he said. “The Department of the Air Force is leading on this front with the advancement of Joint All-Domain Command and Control,” Esper said.  This concept is part of the development of a Joint Warfighting concept that will drive transition to all-domain operations, he said. “

For these breakthroughs to succeed in any future conflict … we must maintain superiority in the ultimate high ground — space,” Esper said…In collaboration with academia and industry, the Air Force’s AI Accelerator program is able to rapidly prototype cutting-edge innovation,” Esper said. One example of this was the AI technology used to speed-up the development of  F-15EX.


F-15EX

Excerpts from Esper: Air Force, Space Force Leading Charge to New Technologies, DOD News, Sept. 16, 2020

Black Operations are Getting Blacker: US Military

Heterogeneous Collaborative Unmanned Systems (HCUS), as these drones will be known, would be dropped off by either a manned submarine or one of the navy’s big new Orca robot submersibles.

Logo for Orca Submarine by Lockheed Martin

They could be delivered individually, but will more often be part of a collective system called an encapsulated payload. Such a system will then release small underwater vehicles able to identify ships and submarines by their acoustic signatures, and also aerial drones similar to the BlackWing reconnaissance drones already flown from certain naval vessels.

BlackWing

Once the initial intelligence these drones collect has been analysed, a payload’s operators will be in a position to relay further orders. They could, for example, send aerial drones ashore to drop off solar-powered ground sensors at specified points. These sensors, typically disguised as rocks, will send back the data they collect via drones of the sort that dropped them off. Some will have cameras or microphones, others seismometers which detect the vibrations of ground vehicles, while others still intercept radio traffic or Wi-Fi.

Lockheed Martin Ground Sensor Disguised as Rock

HCUS will also be capable of what are described as “limited offensive effects”. Small drones like BlackWing can be fitted with warheads powerful enough to destroy an SUV or a pickup truck. Such drones are already used to assassinate the leaders of enemy forces. They might be deployed against fuel and ammunition stores, too.

Unmanned systems such as HCUS thus promise greatly to expand the scope of submarine-based spying and special operations. Drones are cheap, expendable and can be deployed with no risk of loss of personnel. They are also “deniable”. Even when a spy drone is captured it is hard to prove where it came from. Teams of robot spies and saboteurs launched from submarines, both manned and unmanned, could thus become an important feature of the black-ops of 21st-century warfare.

Excerpts from Submarine-launched drone platoons will soon be emerging from the sea: Clandestine Warfare, Economist, June 22, 2019

Killer Robots: Your Kids V. Theirs

The harop, a kamikaze drone, bolts from its launcher like a horse out of the gates. But it is not built for speed, nor for a jockey. Instead it just loiters, unsupervised, too high for those on the battlefield below to hear the thin old-fashioned whine of its propeller, waiting for its chance.

Israeli Aerospace Industries (IAI) has been selling the Harop for more than a decade. A number of countries have bought the drone, including India and Germany. …In 2017, according to a report by the Stockholm International Peace Research Institute (sipri), a think-tank, the Harop was one of 49 deployed systems which could detect possible targets and attack them without human intervention. It is thus very much the sort of thing which disturbs the coalition of 89 non-governmental organisations (ngos) in 50 countries that has come together under the banner of the “Campaign to Stop Killer Robots”.

The Phalanx guns used by the navies of America and its allies. Once switched on, the Phalanx will fire on anything it sees heading towards the ship it is mounted on. And in the case of a ship at sea that knows itself to be under attack by missiles too fast for any human trigger finger, that seems fair enough. Similar arguments can be made for the robot sentry guns in the demilitarised zone (dmz) between North and South Korea.

Autonomous vehicles do not have to become autonomous weapons, even when capable of deadly force. The Reaper drones with which America assassinates enemies are under firm human control when it comes to acts of violence, even though they can fly autonomously…. One of the advantages that MDBA, a European missile-maker, boasts for its air-to-ground Brimstones is that they can “self-sort” based on firing order. If different planes launch volleys of Brimstones into the same “kill box”, where they are free to do their worst, the missiles will keep tabs on each other to reduce the chance that two strike the same target.

Cost is also a factor in armies where trained personnel are pricey. “The thing about robots is that they don’t have pensions,”…If keeping a human in the loop was merely a matter of spending more, it might be deemed worthwhile regardless. But human control creates vulnerabilities. It means that you must pump a lot of encrypted data back and forth. What if the necessary data links are attacked physically—for example with anti-satellite weapons—jammed electronically or subverted through cyberwarfare? Future wars are likely to be fought in what America’s armed forces call “contested electromagnetic environments”. The Royal Air Force is confident that encrypted data links would survive such environments. But air forces have an interest in making sure there are still jobs for pilots; this may leave them prey to unconscious bias.

The vulnerability of communication links to interference is an argument for greater autonomy. But autonomous systems can be interfered with, too. The sensors for weapons like Brimstone need to be a lot more fly than those required by, say, self-driving cars, not just because battlefields are chaotic, but also because the other side will be trying to disorient them. Just as some activists use asymmetric make-up to try to confuse face-recognition systems, so military targets will try to distort the signatures which autonomous weapons seek to discern. Paul Scharre, author of “Army of None: Autonomous Weapons and the Future of War”, warns that the neural networks used in machine learning are intrinsically vulnerable to spoofing.

The 2017 UN Convention on Certain Conventional Weapons has put together a group of governmental experts to study the finer points of autonomy. As well as trying to develop a common understanding of what weapons should be considered fully autonomous, it is considering both a blanket ban and other options for dealing with the humanitarian and security challenges that they create.  Most states involved in the convention’s discussions agree on the importance of human control. But they differ on what this actually means. In a paper for Article 36, an advocacy group named after a provision of the Geneva conventions that calls for legal reviews on new methods of warfare, Heather Roff and Richard Moyes argue that “a human simply pressing a ‘fire’ button in response to indications from a computer, without cognitive clarity or awareness” is not really in control. “Meaningful control”, they say, requires an understanding of the context in which the weapon is being used as well as capacity for timely and reasoned intervention. It also requires accountability…

The two dozen states that want a legally binding ban on fully autonomous weapons are mostly military minnows like Djibouti and Peru, but some members, such as Austria, have diplomatic sway. None of them has the sort of arms industry that stands to profit from autonomous weapons. They ground their argument in part on International Humanitarian Law (IHL), a corpus built around the rules of war laid down in the Hague and Geneva conventions. This demands that armies distinguish between combatants and civilians, refrain from attacks where the risk to civilians outweighs the military advantage, use no more force than is proportional to the objective and avoid unnecessary suffering…Beyond the core group advocating a ban there is a range of opinions. China has indicated that it supports a ban in principle; but on use, not development. France and Germany oppose a ban, for now; but they want states to agree a code of conduct with wriggle room “for national interpretations”. India is reserving its position. It is eager to avoid a repeat of nuclear history, in which technological have-nots were locked out of game-changing weaponry by a discriminatory treaty.

At the far end of the spectrum a group of states, including America, Britain and Russia, explicitly opposes the ban. These countries insist that existing international law provides a sufficient check on all future systems….States are likely to sacrifice human control for self-preservation, says General Barrons. “You can send your children to fight this war and do terrible things, or you can send machines and hang on to your children.” Other people’s children are other people’s concern.

Excerpts from Briefing Autonomous Weapons: Trying to Restrain the Robots, Economist, Jan. 19, 2019, at 22

Killer Robotic Insects

On November 12, 2017,  a video called “Slaughterbots” was uploaded to YouTube. … It is set in a near-future in which small drones fitted with face-recognition systems and shaped explosive charges can be programmed to seek out and kill known individuals or classes of individuals (those wearing a particular uniform, for example). In one scene, the drones are shown collaborating with each other to gain entrance to a building. One acts as a petard, blasting through a wall to grant access to the others…

[M]ilitary laboratories around the planet are busy developing small, autonomous robots for use in warfare, both conventional and unconventional. In America, in particular, a programme called MAST (Micro Autonomous Systems and Technology), which has been run by the US Army Research Laboratory in Maryland, is wrapping up this month after ten successful years….. Its successor, the Distributed and Collaborative Intelligent Systems and Technology (DCIST) programme, which began earlier this year, is now getting into its stride….Along with flying drones, MAST’s researchers have been developing pocket-sized battlefield scouts that can hop or crawl ahead of soldiers. DCIST’s purpose is to take these autonomous robots and make them co-operate. The result, if the project succeeds, will be swarms of devices that can take co-ordinated action to achieve a joint goal.

If swarms of small robots can be made to collaborate autonomously, someone, somewhere will do it…[Many of these small robots are today] cyclocopters …of less than 30 grams. Such machines can outperform polycopters...Cyclocopter aerodynamics is more like that of insects than of conventional aircraft…Cyclocopters get better as they get smaller. They are also quieter…[Another innovation involves] robots…that hop.One of the most advanced is Salto, developed by the Biomimetic Millisystems Laboratory at the University of California, Berkeley. Salto… has the agility to bounce over uneven surfaces and also to climb staircases…

Bouncing over the rubble of a collapsed building is not the only way to explore it. Another is to weave through the spaces between the debris. Researchers at the Biomimetic Millisystems lab are working on that, too. Their solution resembles a cockroach.

Getting into a building, whether collapsed or intact, is one thing. Navigating around it without human assistance is quite another. For this purpose MAST has been feeding its results to the Defence Advanced Research Projects Agency (DARPA)… The next challenge…is getting the robots to swarm and co-ordinate their behavior effectively.

Excerpt from Miniature Robots: Bot Flies, Economist, Dec. 16, 2017

Recyclable, Mini and Lethal: Drones

From DARPA Website:  An ability to send large numbers of small unmanned air systems (UAS) with coordinated, distributed capabilities could provide U.S. forces with improved operational flexibility at much lower cost than is possible with today’s expensive, all-in-one platforms—especially if those unmanned systems could be retrieved for reuse while airborne. So far, however, the technology to project volleys of low-cost, reusable systems over great distances and retrieve them in mid-air has remained out of reach.

To help make that technology a reality, DARPA has launched the Gremlins program….The program envisions launching groups of gremlins from large aircraft such as bombers or transport aircraft, as well as from fighters and other small, fixed-wing platforms while those planes are out of range of adversary defenses. When the gremlins complete their mission, a C-130 transport aircraft would retrieve them in the air and carry them home, where ground crews would prepare them for their next use within 24 hours….With an expected lifetime of about 20 uses, Gremlins could fill an advantageous design-and-use space between existing models of missiles and conventional aircraft…

Excerpts from Friendly “Gremlins” Could Enable Cheaper, More Effective, Distributed Air Operations, DARPA Website, Aug. 28, 2015