Tag Archives: swarm drones

The Killing Fad: Agile Drones

Drones built in Turkey with affordable digital technology wrecked tanks and other armored vehicles, as well as air-defense systems, of Russian protégés in battles waged in Syria, Libya and Azerbaijan. These drones point to future warfare being shaped as much by cheap but effective fighting vehicles as expensive ones with the most advanced technology. China, too, has become a leading war drone exporter to the Middle East and Africa. Iran-linked groups in Iraq and Yemen used drones to attack Saudi Arabia. At least 10 countries, from Nigeria to the United Arab Emirates, have used drones purchased from China to kill adversaries, defense analysts say.

Flying alone or in a group, these drones can surprise troops and disable poorly concealed or lightly defended armored vehicles, a job often assigned to expensive warplanes. The drones can stay quietly aloft for 24 hours, finding gaps in air-defense systems and helping target strikes by warplanes and artillery, as well as firing their own missiles. Militaries, including the U.S., are upgrading air-defense systems to catch up with the advances, seeking methods to eliminate low-budget drones without firing missiles that cost more than their targets. The U.S. Air Force Research Laboratory is also developing Skyborg and Valkyrie, lower-cost autonomous aircraft that are part of an innovation program

Israel and the U.S. have long used high-end drones in counterterrorism operations to target prominent enemies. But the countries have hesitated to sell their top models, even to allies, for fear of proliferation…Technological advances and global competitors have produced inexpensive alternatives.

The standard-bearer of the latest armed-drone revolution emerged last year on the battlefields around Turkey, the Bayraktar TB2. Compared with the American MQ-9, the TB2 is lightly armed, with four laser-guided missiles. Its radio-controlled apparatus limits its basic range to around 200 miles, roughly a fifth of the ground the MQ-9 can cover. Yet it is utilitarian, and reliable—qualities reminiscent of the Soviet Kalashnikov AK-47 rifle that changed warfare in the 20th century. A set of six Bayraktar TB2 drones, ground units, and other essential operations equipment costs tens of millions of dollars, rather than hundreds of millions for the MQ-9…

Ukraine signed a deal in January 2019 to buy TB2 drones from Turkey, receiving at least six so far, and Kyiv is in talks for joint production. A Ukrainian company is manufacturing engines for the latest Baykar drone, a larger model with a heavier payload than the TB2. The country hopes the drones will discourage a repeat of the Kremlin’s 2014 invasions. …Turkey’s drone sales have riled Moscow. …

The TB2 was born of Turkey’s dissatisfaction with available models from the U.S. and Israel, and the country’s desire for systems under its control to fight the PKK, a Kurdish militant group….Azerbaijan, geographically and culturally close to Turkey, procured a set of TB2 drones last year. The country had lost control of the Nagorno-Karabakh region to Armenia in a war that ended in a 1994 cease-fire. Rising petroleum wealth had bolstered Azerbaijan’s military in the years since. The TB2s, as well as Israeli-made drones, helped Azerbaijan overwhelm Armenian forces. Attacks were recorded for videos and posted online by Azerbaijan’s Defense Ministry….

The Azerbaijan victory caught the attention of Turkey’s suppliers. Some companies and countries, including Canada, halted export of components used in the TB2. [Too little too late?]

Excerpt from James Marson and Brett Forrest, Armed Low-Cost Drones, Made by Turkey, Reshape Battlefields and Geopolitics, WSJ, June 4, 2021

Smart Weapons Who Make Many Mistakes: AI in War

Autonomous weapon systems rely on artificial intelligence (AI), which in turn relies on data collected from those systems’ surroundings. When these data are good—plentiful, reliable and similar to the data on which the system’s algorithm was trained—AI can excel. But in many circumstances data are incomplete, ambiguous or overwhelming. Consider the difference between radiology, in which algorithms outperform human beings in analysing x-ray images, and self-driving cars, which still struggle to make sense of a cacophonous stream of disparate inputs from the outside world. On the battlefield, that problem is multiplied.

“Conflict environments are harsh, dynamic and adversarial,” says UNDIR. Dust, smoke and vibration can obscure or damage the cameras, radars and other sensors that capture data in the first place. Even a speck of dust on a sensor might, in a particular light, mislead an algorithm into classifying a civilian object as a military one, says Arthur Holland Michel, the report’s author. Moreover, enemies constantly attempt to fool those sensors through camouflage, concealment and trickery. Pedestrians have no reason to bamboozle self-driving cars, whereas soldiers work hard to blend into foliage. And a mixture of civilian and military objects—evident on the ground in Gaza in recent weeks—could produce a flood of confusing data.

The biggest problem is that algorithms trained on limited data samples would encounter a much wider range of inputs in a war zone. In the same way that recognition software trained largely on white faces struggles to recognise black ones, an autonomous weapon fed with examples of Russian military uniforms will be less reliable against Chinese ones. 

Despite these limitations, the technology is already trickling onto the battlefield. In its war with Armenia last year, Azerbaijan unleashed Israeli-made loitering munitions theoretically capable of choosing their own targets. Ziyan, a Chinese company, boasts that its Blowfish a3, a gun-toting helicopter drone, “autonomously performs…complex combat missions” including “targeted precision strikes”. The International Committee of the Red Cross (ICRC) says that many of today’s remote-controlled weapons could be turned into autonomous ones with little more than a software upgrade or a change of doctrine….

On May 12th, 2021, the ICRD published a new and nuanced position on the matter, recommending new rules to regulate autonomous weapons, including a prohibition on those that are “unpredictable”, and also a blanket ban on any such weapon that has human beings as its targets. These things will be debated in December 2021 at the five-yearly review conference of the UN Convention on Certain Conventional Weapons, originally established in 1980 to ban landmines and other “inhumane” arms. Government experts will meet thrice over the summer and autumn, under un auspices, to lay the groundwork. 

Yet powerful states remain wary of ceding an advantage to rivals. In March, 2021 a National Security Commission on Artificial Intelligence established by America’s Congress predicted that autonomous weapons would eventually be “capable of levels of performance, speed and discrimination that exceed human capabilities”. A worldwide prohibition on their development and use would be “neither feasible nor currently in the interests of the United States,” it concluded—in part, it argued, because Russia and China would probably cheat. 

Excerpt from Autonomous weapons: The fog of war may confound weapons that think for themselves, Economist, May 29, 2021

What is the Sea Train? DARPA

DARPA’s The Sea Train program aims to demonstrate long range deployment capabilities for a distributed fleet of tactical unmanned surface vessels. The program seeks to enable extended transoceanic transit and long-range naval operations by exploiting the efficiencies of a system of connected vessels (Sea Train). The goal is to develop and demonstrate approaches that exploit wave-making resistance reductions to overcome the range limitations inherent in medium unmanned surface vessels. DARPA envisions sea trains formed by physically connecting vessels with various degrees of freedom between the vessels, or vessels sailing in collaborative formations at various distances between the vessels. The weak of October 5, 2020, DARPA awarded Gibbs & Cox a separate $9.5 million contract to develop a “Connectorless Sea Train” concept. 

Dr. Andrew Nuss, Sea Train

A Perpetual State of Competition: US-China-Russia

The US Secretary of Defense stated in September 2020 that America’s air, space and cyber warriors “will be at the forefront of tomorrow’s high-end fight.” That means confronting near-peer competitors China and Russia. That means shifting the focus from defeating violent extremist groups to deterring great power competitors. It means fighting a high-intensity battle that combines all domains of warfare. “In this era of great power competition, we cannot take for granted the United States’ long-held advantages,” Esper said. 

The last time an enemy force dropped a bomb on American troops was in the Korean War. “China and Russia, seek to erode our longstanding dominance in air power through long-range fires, anti-access/area-denial systems and other asymmetric capabilities designed to counter our strengths,” he said. “Meanwhile, in space, Moscow and Beijing have turned a once peaceful arena into a warfighting domain.” China and Russia have placed weapons on satellites and are developing directed energy weapons to exploit U.S. systems “and chip away at our military advantage,” he said.

Russia, China, North Korea, Iran and some violent extremist groups also look to exploit cyberspace to undermine U.S. security without confronting American conventional overmatch. “They do this all in an increasingly ‘gray zone’ of engagement that keeps us in a perpetual state of competition,’ the secretary said…The fiscal 2020 Defense Department research and development budget is the largest in history, he said, and it concentrates on critical technologies such as hypersonic weapons, directed energy and autonomous systems. 

“In the Air Force, specifically, we are modernizing our force for the 21st century with aircraft such as the B-21, the X-37 and the Next Generation Air Dominance platform,” Esper said. “Equally important, we are transforming the way we fight through the implementation of novel concepts such as Dynamic Force Employment, which provides scalable options to employ the joint force while preserving our capabilities for major combat.”

To realize the full potential of new concepts the department must be able to exchange and synchronize information across systems, services and platforms, seamlessly across all domains, he said. “The Department of the Air Force is leading on this front with the advancement of Joint All-Domain Command and Control,” Esper said.  This concept is part of the development of a Joint Warfighting concept that will drive transition to all-domain operations, he said. “

For these breakthroughs to succeed in any future conflict … we must maintain superiority in the ultimate high ground — space,” Esper said…In collaboration with academia and industry, the Air Force’s AI Accelerator program is able to rapidly prototype cutting-edge innovation,” Esper said. One example of this was the AI technology used to speed-up the development of  F-15EX.


F-15EX

Excerpts from Esper: Air Force, Space Force Leading Charge to New Technologies, DOD News, Sept. 16, 2020

Black Operations are Getting Blacker: US Military

Heterogeneous Collaborative Unmanned Systems (HCUS), as these drones will be known, would be dropped off by either a manned submarine or one of the navy’s big new Orca robot submersibles.

Logo for Orca Submarine by Lockheed Martin

They could be delivered individually, but will more often be part of a collective system called an encapsulated payload. Such a system will then release small underwater vehicles able to identify ships and submarines by their acoustic signatures, and also aerial drones similar to the BlackWing reconnaissance drones already flown from certain naval vessels.

BlackWing

Once the initial intelligence these drones collect has been analysed, a payload’s operators will be in a position to relay further orders. They could, for example, send aerial drones ashore to drop off solar-powered ground sensors at specified points. These sensors, typically disguised as rocks, will send back the data they collect via drones of the sort that dropped them off. Some will have cameras or microphones, others seismometers which detect the vibrations of ground vehicles, while others still intercept radio traffic or Wi-Fi.

Lockheed Martin Ground Sensor Disguised as Rock

HCUS will also be capable of what are described as “limited offensive effects”. Small drones like BlackWing can be fitted with warheads powerful enough to destroy an SUV or a pickup truck. Such drones are already used to assassinate the leaders of enemy forces. They might be deployed against fuel and ammunition stores, too.

Unmanned systems such as HCUS thus promise greatly to expand the scope of submarine-based spying and special operations. Drones are cheap, expendable and can be deployed with no risk of loss of personnel. They are also “deniable”. Even when a spy drone is captured it is hard to prove where it came from. Teams of robot spies and saboteurs launched from submarines, both manned and unmanned, could thus become an important feature of the black-ops of 21st-century warfare.

Excerpts from Submarine-launched drone platoons will soon be emerging from the sea: Clandestine Warfare, Economist, June 22, 2019

How to Navigate the Rubble: DARPA

Imagine a natural disaster scenario, such as an earthquake, that inflicts widespread damage to buildings and structures, critical utilities and infrastructure, and threatens human safety. Having the ability to navigate the rubble and enter highly unstable areas could prove invaluable to saving lives or detecting additional hazards among the wreckage.

Dr. Ronald Polcawich, a DARPA program manager in the Microsystems Technology Office (MTO):”There are a number of environments that are inaccessible for larger robotic platforms. Smaller robotics systems could provide significant aide, but shrinking down these platforms requires significant advancement of the underlying technology.”

Technological advances in microelectromechanical systems (MEMS), additive manufacturing, piezoelectric actuators, and low-power sensors have allowed researchers to expand into the realm of micro-to-milli robotics. However, due to the technical obstacles experienced as the technology shrinks, these platforms lack the power, navigation, and control to accomplish complex tasks proficiently

To help overcome the challenges of creating extremely [Size, Weight and Power] SWaP-constrained microrobotics, DARPA is launching a new program called SHort-Range Independent Microrobotic Platforms (SHRIMP). The goal of SHRIMP is to develop and demonstrate multi-functional micro-to-milli robotic platforms for use in natural and critical disaster scenarios. To achieve this mission, SHRIMP will explore fundamental research in actuator materials and mechanisms as well as power storage components, both of which are necessary to create the strength, dexterity, and independence of functional microrobotics platforms.

“The strength-to-weight ratio of an actuator influences both the load-bearing capability and endurance of a micro-robotic platform, while the maximum work density characterizes the capability of an actuator mechanism to perform high intensity tasks or operate over a desired duration,” said Polcawich. “

Excerpts from Developing Microrobotics for Disaster Recovery and High-Risk Environments: SHRIMP program seeks to advance the state-of-the art in micro-to-milli robotics platforms and underlying technology, OUTREACH@DARPA.MIL, July 17, 2018

The 1 Million Genies out of the Bottle

The head of the U.S. Departement of Homeland Security  (DHS)  on May 15, 2018 told Congress that the agency needs new legal authority to track threatening drones and disable or destroy them if necessary.  “Our enemies are exploring other technologies, too, such as drones, to put our country in danger. ISIS has used armed drones to strike targets in Syria, and we are increasingly concerned that they will try the same tactic on our soil,” she said…

Government and private-sector officials are concerned that dangerous or even hostile drones could get too close to places like military bases, airports and sports stadiums.Nielsen added that DHS has “also seen drones used to smuggle drugs across our borders and to conduct surveillance on sensitive government locations.”

In 2017, the Federal Aviation Administration barred drone flights over major U.S. nuclear sites. The FAA also banned drone flights over 10 U.S. landmarks, including the Statue of Liberty in New York and Mount Rushmore in South Dakota.  Also banned in 2017 were drone flights over 133 U.S. military facilities. The Pentagon said in August 2017 that U.S. military bases could shoot down drones that pose a threat.  The FAA said in January 2017  that more than 1 million drones have been registered. Last week, the U.S. Transportation Department picked 10 pilot projects allowing drone use at night, out of sight operations and over populated areas

Exceprts from U.S. agency seeks new authority to disable threatening drones, May 15, 2018

Up, Close and Personal: How to Destroy the Enemy

Deep southern Negev desert, Israel, there is a small town called Baladia, with a main square, five mosques, cafés, a hospital, multi-storey blocks of flats, a kasbah and a cemetery. Oddly, it also has a number of well-constructed tunnels. The only people milling around in its streets are Israeli Defence Force (IDF) soldiers. Baladia, the Arab word for city, is part of the Tze’elim army base**. It has been built to provide a realistic training ground for the next time the IDF is required to go into Gaza to destroy Hamas missile launchers…Acceptance among Western armies that future fights are most likely to take place in cities. Megacities with populations of more than 10m are springing up across Africa and Asia. They are often ringed by closely packed slums controlled by neighbourhood gangs. Poor governance, high unemployment and criminality make them fertile territory for violent extremism.

It is hardly surprising that non-state adversaries of the West and its allies should seek asymmetric advantage by taking the fight into cities. Air power and precision-guided munitions lose some of their effectiveness in urban warfare because their targets can hide easily and have no scruples about using a densely packed civilian population as a shield.

Valuable lessons have been learned from the battle for Sadr City, a large suburb of Baghdad, in 2008, Israel going into Gaza in 2014 and the defeat of Islamic State (IS) in Mosul 2017….As General Mark Milley, the head of the US Army, puts it, “it took the infantry and the armour and the special operations commandos to go into that city, house by house, block by block, room by room…and it’s taken quite a while to do it, and at high cost.” He thinks that his force should now focus less on fighting in traditional environments such as woodland and desert and more on urban warfare.

To that end, he advocates smaller but well-armoured tanks that can negotiate city streets, and helicopters with a narrower rotor span that can fly between buildings. At the organisational level, that means operating with smaller, more compartmentalised fighting units with far more devolved decision-making powers…

Western military forces should still enjoy a significant technological edge. They will have a huge range of kit, including tiny bird- or insect-like unmanned aerial vehicles that can hover outside buildings or find their way in. Unmanned ground vehicles can reduce the risk of resupplying troops in contested areas and provide medical evacuation for injured soldiers, and some of them will carry weapons….

For all the advances that new technologies can offer, General Milley says it is a fantasy to think that wars can now be won without blood and sacrifice: “After the shock and awe comes the march and fight…to impose your political will on the enemy requires you…to destroy that enemy up close with ground forces.”

Excerpt from House to House in the The New Battlegrounds, Economist Special Report, the Future of War, Jan. 27, 2018

***In 2005, the Israeli Defense Forces, with assistance from the United States, built the Urban Warfare Training Center at the Tze’elim Army Base, at a cost of $45 million. Nicknamed “Baladia” it is a 7.4 square mile training center used to instruct soldiers in urban warfare techniques, and consists of an imitation Middle Eastern style city with multiple multistory buildings. It has been used to train various military organizations, including the US Army and UN peacekeepers.  Wikipedia

Handcrafted Terror

An attack on Russian forces in Syria on January 5th, 2018 by 13 home-made drones is a good example of “asymmetric” warfare..The craft involved in these attacks resembled hobbyists’ model aircraft. They had three-metre wingspans, were built crudely of wood and plastic, and were powered by lawnmower engines. Each carried ten home-made shrapnel grenades under its wings.  The drones were guided by GPS and had a range of 100km. The electronics involved were off-the-shelf components, and the total cost of each drone was perhaps a couple of thousand dollars. The airframes bore a resemblance to those of Russian Orlan-10 drones, several of which have been shot down by rebel forces in Syria. The craft may thus have been a cheap, garage-built copy of captured kit.

Guerrillas have been using commercial drones since 2015. Islamic State (IS), one of the groups active in Syria, makes extensive use of quadcopters to drop grenades. In 2017 alone the group posted videos of over 200 attacks. IS has also deployed fixed-wing aircraft based on the popular Skywalker X8 hobby drone. These have longer ranges than quadcopters and can carry bigger payloads. Other groups in Syria, and in Iraq as well, employ similar devices. Their use has spread, too, to non-politically-motivated criminals. In October, four Mexicans allegedly linked to a drug cartel were arrested with a bomb-carrying drone…

Existing defences are not geared up to cope with small drones, which are difficult to spot, identify and track, and which may be too numerous to stop. Jamming might be thought an obvious solution….Many jammers, with names like Dedrone, DroneDefender and DroneShield, have already been employed by various countries. …Drones are, however, becoming increasingly autonomous. This means there is no operator link to jam…But new technologies such as optical navigation (which permits a drone to compare its surroundings with an on-board electronic map, and thus to know where it is) will make even GPS jammers useless. Hence the need for “kinetic solutions”, to shoot drones down.

Small drones are surprisingly hard targets, however. Iraqi forces in Mosul used to joke that trying to deal with an IS drone attack was like being at a wedding celebration: everyone fired their Kalashnikovs into the air with no effect. A recent American army manual …suggests that rather than aiming directly at a drone, the entire squad should fire their weapons at a fixed point ahead of it, hoping to bring the small drones down with a curtain of fire. The manual also advises commanders that the best course of action may be “immediate relocation of the unit to a safer location”….

A similar problem applies at sea, where billion-dollar ships might have their defences overwhelmed by squadrons of cheap, jerry-built drones. The mainstay of American naval air defence is Aegis, an orchestrated arrangement of radars, computers, missiles and cannons. The short-range element of Aegis is a Dalek-like, rapid-fire cannon called Phalanx, which spits out 75 rounds a second and can shoot down incoming cruise missiles. This will not cope well with lots of small drones, though. The navy is now upgrading Aegis’s software to handle multiple simultaneous incoming targets by scheduling bursts of fire to destroy as many members of a swarm as possible. It is doubtful, however, whether one gun could account for more than a handful of attackers coming in from all directions at once. An unclassified study suggests that it could be overwhelmed by as few as eight [handcrafted drones].

Developers of drone-countering measures hope to overcome that by using laser weapons…An American army document from 2016 thus emphasises the importance of stopping drones “left of launch”—that is, before they can take off. IS drone workshops and operators have been attacked to stop the drone threat… Until adequate defences are in place, then, guerrilla drone swarms will be a real danger.

Excerpt from Buzz, buzz, you’re dead, Economist, Feb. 10, at 70

Killer Robotic Insects

On November 12, 2017,  a video called “Slaughterbots” was uploaded to YouTube. … It is set in a near-future in which small drones fitted with face-recognition systems and shaped explosive charges can be programmed to seek out and kill known individuals or classes of individuals (those wearing a particular uniform, for example). In one scene, the drones are shown collaborating with each other to gain entrance to a building. One acts as a petard, blasting through a wall to grant access to the others…

[M]ilitary laboratories around the planet are busy developing small, autonomous robots for use in warfare, both conventional and unconventional. In America, in particular, a programme called MAST (Micro Autonomous Systems and Technology), which has been run by the US Army Research Laboratory in Maryland, is wrapping up this month after ten successful years….. Its successor, the Distributed and Collaborative Intelligent Systems and Technology (DCIST) programme, which began earlier this year, is now getting into its stride….Along with flying drones, MAST’s researchers have been developing pocket-sized battlefield scouts that can hop or crawl ahead of soldiers. DCIST’s purpose is to take these autonomous robots and make them co-operate. The result, if the project succeeds, will be swarms of devices that can take co-ordinated action to achieve a joint goal.

If swarms of small robots can be made to collaborate autonomously, someone, somewhere will do it…[Many of these small robots are today] cyclocopters …of less than 30 grams. Such machines can outperform polycopters...Cyclocopter aerodynamics is more like that of insects than of conventional aircraft…Cyclocopters get better as they get smaller. They are also quieter…[Another innovation involves] robots…that hop.One of the most advanced is Salto, developed by the Biomimetic Millisystems Laboratory at the University of California, Berkeley. Salto… has the agility to bounce over uneven surfaces and also to climb staircases…

Bouncing over the rubble of a collapsed building is not the only way to explore it. Another is to weave through the spaces between the debris. Researchers at the Biomimetic Millisystems lab are working on that, too. Their solution resembles a cockroach.

Getting into a building, whether collapsed or intact, is one thing. Navigating around it without human assistance is quite another. For this purpose MAST has been feeding its results to the Defence Advanced Research Projects Agency (DARPA)… The next challenge…is getting the robots to swarm and co-ordinate their behavior effectively.

Excerpt from Miniature Robots: Bot Flies, Economist, Dec. 16, 2017