Tag Archives: unmanned surface vehicles (USVs)

Everybody and their Watch Box: State Surveillance

Aerial surveillance can reach backwards in time, by the expedient of indiscriminately recording everything that is going on in a particular neighborhood, and then looking for useful patterns in the resulting footage. This technique, called wide-area motion imagery (Wami), has been around since 2006. But improvements in both the recording equipment used and the means by which the images are analysed are making it more and more valuable.

Wami was first employed by American forces in Iraq to track down those placing roadside bombs. When such a bomb went off, it was possible to run the relevant footage in reverse and trace the events that led up to the explosion. That often allowed the bombers to be identified and dealt with…Wami began with an aircraft-borne system called Constant Hawk, which was developed by Lawrence Livermore National Laboratory, in California. Constant Hawk’s success in Iraq begat more powerful versions. Gorgon Stare, carried by drone, was designed by the armed forces themselves…

But there is a problem. Explosions are easy to see. For many tasks, however, an awful lot of staring at screens looking for things that are out-of-the-ordinary is involved. People are bad at this…So AI is here to help…. Chips called graphic-processing units, borrowed from the video-game industry, are helping. So is machine learning, the basis of much modern artificial intelligence. .

l3Harris, a company in Florida, sells Wami sensors for use as automatic sentries. Their software monitors the coming and going of vehicles and pedestrians into and out of so-called watch boxes. These are protected areas surrounded by virtual trip wires, the triggering of which will cause a vehicle or individual of interest to be tracked…This approach can detect immediate threats. It can also, working over a longer period, carry out “pattern of life” analysis by building up a picture of what normal daily traffic looks like in an area. That permits the identification of anomalies which might signal hostile agents whose movements would otherwise be masked by the hurly-burly around them.

The sensors themselves are getting better, too….The latest version includes a so-called hyperspectral sensor, which sees simultaneously across many different wavelengths, including infrared and ultraviolet. It is thus able to distinguish things which the naked eye cannot, such as the difference between camouflage and vegetation. This approach’s real power, however, lies in software which automatically passes data between sensors…Future multi-sensor pods may include other instruments, such as signals-intelligence receivers. These are bits of equipment which can detect radio-frequency communicators like mobile phones and walkie-talkies, enabling particular devices to be identified and located. That would permit the individual carrying the phone, and also those he or she came into contact with, to be tracked and photographed. 

So far, the costs and complexity of Wami have kept it as a predominantly military technology. But that is starting to change. Smaller and more affordable versions are now within the reach of police, fire services and other non-military users…The most famous examples were in Baltimore, where the local cops experimented with the idea twice—first in 2016 and then in 2020. The second time around they made the mistake of monitoring a political protest as well as looking for crimes such as vehicle theft. 

Excerpts from Aerial Surveillance: The Spies in the Sky that See Backwards in Time, Economist, May 7, 2022

What is the Sea Train? DARPA

DARPA’s The Sea Train program aims to demonstrate long range deployment capabilities for a distributed fleet of tactical unmanned surface vessels. The program seeks to enable extended transoceanic transit and long-range naval operations by exploiting the efficiencies of a system of connected vessels (Sea Train). The goal is to develop and demonstrate approaches that exploit wave-making resistance reductions to overcome the range limitations inherent in medium unmanned surface vessels. DARPA envisions sea trains formed by physically connecting vessels with various degrees of freedom between the vessels, or vessels sailing in collaborative formations at various distances between the vessels. The weak of October 5, 2020, DARPA awarded Gibbs & Cox a separate $9.5 million contract to develop a “Connectorless Sea Train” concept. 

Dr. Andrew Nuss, Sea Train

A Perpetual State of Competition: US-China-Russia

The US Secretary of Defense stated in September 2020 that America’s air, space and cyber warriors “will be at the forefront of tomorrow’s high-end fight.” That means confronting near-peer competitors China and Russia. That means shifting the focus from defeating violent extremist groups to deterring great power competitors. It means fighting a high-intensity battle that combines all domains of warfare. “In this era of great power competition, we cannot take for granted the United States’ long-held advantages,” Esper said. 

The last time an enemy force dropped a bomb on American troops was in the Korean War. “China and Russia, seek to erode our longstanding dominance in air power through long-range fires, anti-access/area-denial systems and other asymmetric capabilities designed to counter our strengths,” he said. “Meanwhile, in space, Moscow and Beijing have turned a once peaceful arena into a warfighting domain.” China and Russia have placed weapons on satellites and are developing directed energy weapons to exploit U.S. systems “and chip away at our military advantage,” he said.

Russia, China, North Korea, Iran and some violent extremist groups also look to exploit cyberspace to undermine U.S. security without confronting American conventional overmatch. “They do this all in an increasingly ‘gray zone’ of engagement that keeps us in a perpetual state of competition,’ the secretary said…The fiscal 2020 Defense Department research and development budget is the largest in history, he said, and it concentrates on critical technologies such as hypersonic weapons, directed energy and autonomous systems. 

“In the Air Force, specifically, we are modernizing our force for the 21st century with aircraft such as the B-21, the X-37 and the Next Generation Air Dominance platform,” Esper said. “Equally important, we are transforming the way we fight through the implementation of novel concepts such as Dynamic Force Employment, which provides scalable options to employ the joint force while preserving our capabilities for major combat.”

To realize the full potential of new concepts the department must be able to exchange and synchronize information across systems, services and platforms, seamlessly across all domains, he said. “The Department of the Air Force is leading on this front with the advancement of Joint All-Domain Command and Control,” Esper said.  This concept is part of the development of a Joint Warfighting concept that will drive transition to all-domain operations, he said. “

For these breakthroughs to succeed in any future conflict … we must maintain superiority in the ultimate high ground — space,” Esper said…In collaboration with academia and industry, the Air Force’s AI Accelerator program is able to rapidly prototype cutting-edge innovation,” Esper said. One example of this was the AI technology used to speed-up the development of  F-15EX.


F-15EX

Excerpts from Esper: Air Force, Space Force Leading Charge to New Technologies, DOD News, Sept. 16, 2020

Even the Oceans are not Free: Swarming the Seas

The Ocean of Things of Defence Advanced Research Projects Agency (DARPA) aims to  wire up the high seas with swarms of floating, connected sensors.  Such devices are not in themselves new. There are around 6,000 floating sensors deployed around the world’s oceans, run by navies and research institutes. What is unprecedented is the scale of  DARPA’s ambition. Over the next few years it hopes to deploy 50,000 sensors across 1m square kilometres of sea, an area considerably larger than Texas. The eventual goal—much more distant—is to enable the continuous monitoring and analysis of a significant fraction of the world’s oceans.

Existing “floating instrument packages”, known as floats or drifters, are often custom-built, and usually contain the highest-quality instruments available. They therefore tend to be expensive, and are bought only in small numbers. A typical existing float, designed for scientific research, is the Argo. It costs around $20,000, and can measure water temperature and salinity.  The Ocean of Things takes the opposite approach. The aim is to cram as many cheap, off-the-shelf components as possible into a single low-cost package. Current float prototypes cost around $750…That would allow tens of thousands to be deployed without breaking the bank. Large numbers are crucial for coverage. They also help compensate for inaccuracies in individual instruments.

The project’s researchers are evaluating three designs from different manufacturers, ranging in size from about six to 18 litres. One, proposed by Xerox’s Palo Alto Research Centre, is made of glass, like a traditional Japanese fishing float. A second, from a firm called Areté Associates, has an aluminium shell, and uses wood for buoyancy. Both models feature solar panels. The third, made by a company called Numurus, is made of lacquered cardboard, and relies entirely on its batteries. All three are designed to last for a year or so and are made to be as environmentally friendly as possible, with minimal use of plastics. That is important because, at the end of their mission, the floats are designed to scuttle themselves

With 361m square kilometres of ocean on the planet, a true Ocean of Things, monitoring everything on and under the water, would require about 18m floats.

Excerpts from Big Wet Data: The Ocean of Things, Economist, Mar. 14, 2020

Sea Supremacy with Boat Drones

To protect the natural resources in the EEZ, which stretch 200 nautical miles from a country’s coastline, countries need almost constant presence in the open seas. One option is unmanned surface vehicles (USVs)…

Israel recently discovered huge reservoirs of natural gas in the Mediterranean and these are threatened by the Hezbollah terror organization in Lebanon. This threat accelerated the development of advanced USVs by some Israeli defence companies. Rafael was the first to develop such a system. The company’s Protector USV proved its capability to launch Spike ER missiles.   Protector can carry a variety of weapons and equipment, including a water cannon, electronic warfare systems for protection and escort of naval vessels, mine countermeasures equipment, the Toplite electro-optical long-range detection and tracking system, and Spike missile…. It can also fit the Mini-Typhoon stabilized gun mount…

In Yemen, the Houthis  attacks against navy and commercial ships are performed by Chinese made C-802 missiles and other weapons like anti-tank rockets launched from speed boats. “In such an arena, the Protector with the Spike ER missiles is the best solution for protecting such a vital connection between seas,” the Rafael official said…Intelligence sources say that the Houthis have been building capabilities to perform “Swarm Attacks” using a number of high speed boats.

Elbit systems, another Israeli major defence company has developed the Seagull USV. This is a 12-meter long vessel that can be operated from a mother-ship or from shore stations…And Israel Aerospace Industries (IAI) has also joined the trend and developed the Katana USV …Meteor Aerospace, a new Israeli company developed the Orca. The Orca vessel is a 13 metres long, and weighs eight tons.

Excerpts from Arie Egozi, Israeli unmanned boats deliver firepower on the high seas, Defence web, June 20, 2018