Tag Archives: seabed

A Brand New World: Mapping the Ocean Floor

Mapping of the ocean floor may expand under an order signed by President Donald Trump on in  November, 2019 to create a federal plan to explore U.S. coastal waters. The announcement…comes amid growing international interest in charting the sea floor as unmanned aquatic drones and other new technologies promise to make the work cheaper and faster. The maps, also created by ship-towed sonar arrays, are crucial to understanding basic ocean dynamics, finding biological hot spots, and surveying mineral, oil, and gas deposits.

But much of the ocean floor remains unmapped; an international campaign called Seabed 2030 aims to map all of it in detail by 2030. Such maps cover just 40% of the 11.6 million square kilometers in the U.S. exclusive economic zone, which extends 320 kilometers from the coasts of all U.S. states and territories—an area larger than the total U.S. land mass. Today, those maps are a hodgepodge drawn from government, industry, and academic research, says Vicki Ferrini, a marine geophysicist at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, New York. The federal plan, she says, could be a “game changer.”

Excerpts from  United States to Survey Nearby Sea Floor, Science, Nov. 29, 2019, at 6469

The Diversity of Submarine Mountains

There are about 30 000 mountains under the sea, the so-called “seamounts.”  One of them the Tropic Seamount started as a volcano, 120 million years ago. It lies at the southern tail of a chain that includes submerged peaks as well as the Canary Islands off the coast of Western Sahara. The seamount rises 3 kilometers from the ocean floor and is topped by a plateau 50 kilometers wide, 1 kilometer below the sea surface. Above ground, it would rank among the world’s 100 tallest mountains…. Much of its surface is encrusted with minerals that precipitated out of the seawater over eons, coating the lava at the excruciatingly slow rate of 1 centimeter or less every 1 million years.

That coating has caught the eye of prospectors. Called ferromanganese crust, it can contain high concentrations of cobalt, tellurium, and rare-earth elements used in electronics such as wind turbines, batteries, and solar panels. By one estimate, seamounts in just one chunk of the North Pacific Ocean could hold 50 million tons of cobalt—seven times the worldwide total that’s economical to dig up on land. Such estimates arrive at a time when the International Energy Agency in Vienna is warning of a possible cobalt supply crunch by 2030, caused in part by the growing production of battery-powered cars.

Companies hoping to extract those metals from the seabed are focusing first on abyssal plains. Those flat expanses of the deep ocean floor can be littered with potatolike nodules rich in nickel, copper, and cobalt. They are also looking at hydrothermal vents that spew mineral-laden water, creating thick crusts and fantastical rock chimneys. Seventeen companies have permits to explore for minerals in one abyssal region, the Clarion-Clipperton Zone in the Pacific Ocean between Hawaii and Mexico. And in 2017, Japan became the first nation to conduct large-scale experimental mining of a dead hydrothermal vent off the coast of Okinawa, inside Japan’s national waters. But the crusts on seamounts have particularly high concentrations of sought-after metals, making them a tempting target…

[Scientists are worried] that what they have learned from the the Tropic Seamount puts mining and conservation on a collision course. “The conditions that seem to favor the growth of the crusts,” he says, “also seem to favor the colonization by a lot of corals and sponges.”

Seamounts cover roughtly the same area as Russia and Europe combined, by one estimate, making them one of the planet’s largest habitats. The peaks have long been known as oases for sea life….Schools of fish—brick-red orange roughy, silvery pelagic armorheads, and goggle-eyed black oreos—often congregate at seamounts, as do sharks and tuna. Some migratory humpback whales appear to use them as navigational markers, spawning grounds, and resting spots. Seabirds gather above them, and myriad corals and sponges cling to their rocky surfaces, creating ample cover for other creatures.

Interest in seamounts is particularly high in countries that either host companies interested in deep-sea mining or are considering allowing mining in their national waters. In 2018, the Chinese research ship Kexue (meaning “science”) spent about 1 month surveying the Magellan Seamounts near the Mariana Trench, which several nations see as a potential source of industrial minerals. Brazilian researchers teamed up with Murton’s MarineE-tech project to examine an area in international waters where the country has a preliminary mining claim. Japanese scientists sent robots to survey seamounts that might be ripe for mining. In late July, the International Seabed Authority (ISA) in Kingston, a part of the United Nations that governs deep-sea mining in international waters, released 18 years of environmental data gathered by companies pursuing mining claims, including on seamounts….

The design of seamount mining equipment is closely guarded by competing countries and companies. But it could work much like equipment being tested for hydrothermal vents: enormous, remote-controlled machines that resemble bulldozers, equipped with toothed wheels designed to grind the crust into bits that can be carried to the ocean surface for processing.

Although no seamount has been mined yet, scientists point to the damage from deep-sea fishing to underscore why they worry this heavy machinery would do irreparable damage. In the late 1990s, Australian scientists documented devastation from nets dragged across seamounts near Tasmania to catch orange roughy. Hard corals had been wiped out, and the sheer mass of life on the mountains was half that on nearby ones too deep to be fished. Fifteen years after trawling was halted on some New Zealand seamounts, Clark and other researchers found little evidence of recovery.

Excerpts from Warren Cornwall, Sunken Summits, Science, Sept 13, 2019

Mining the Ocean: the Fate of Sea Pangolin

A snail that lives near hydrothermal vents on the ocean floor east of Madagascar has become the first deep-sea animal to be declared endangered because of the threat of mining.  The International Union for Conservation of Nature (IUCN) added the scaly-foot snail (Chrysomallon squamiferum) to its Red List of endangered species on 18 July, 2019 — amid a rush of companies applying for exploratory mining licenses…. The scaly-foot snail is found at only three hydrothermal vents in the Indian Ocean.  Two of those three vents are currently under mining exploration licences,…Even one exploratory mining foray into this habitat could destroy a population of these snails by damaging the vents or smothering the animals under clouds of sediment..

Full-scale mining of the deep seabed can’t begin in international waters until the International Seabed Authority (ISA) — a United Nations agency tasked with regulating sea-bed mining — finalizes a code of conduct, which it hopes to do by 2020….The biggest challenge to determining whether the scaly-foot snail warranted inclusion on the Red List was figuring out how to assess the extinction risk for animals that live in one of the weirdest habitats on Earth…

When the IUCN considers whether to include an organism on the Red List, researchers examine several factors that could contribute to its extinction. They include the size of a species’ range and how fragmented its habitat is…The IUCN settled on two criteria to assess the extinction risk for deep-sea species: the number of vents where they’re found, and the threat of mining.   In addition to the scaly-foot snail, the researchers are assessing at least 14 more hydrothermal vent species for possible inclusion on the Red List.

Excerpts from Ocean Snail is First Animal to be Officially Endangered by Deep-Sea Mining, Nature, July 22, 2019

On Sea Pangolins see YouTube video

Sucking the Life out of Deep Sea

Those involved in deep-sea mining hope it will turn into a multi-billion dollar industry. Seabed nodules are dominated by compounds of iron (which is commonplace) and manganese (which is rarer, but not in short supply from mines on dry land). However, the nodules also contain copper, nickel and cobalt, and sometimes other metals such as molybdenum and vanadium. These are in sufficient demand that visiting the bottom of the ocean to acquire them looks a worthwhile enterprise. Moreover, these metals seldom co-occur in terrestrial mines. So, as Kris Van Nijen, who runs deep-sea mining operations at Global Sea Mineral Resources (gsr), a company interested in exploiting the nodules, observes: “For the same amount of effort, you get the same metals as two or three mines on land.”

Though their location several kilometres beneath the ocean surface makes the nodules hard to get at in one sense, in another they are easily accessible, because they sit invitingly on the seabed, almost begging to be collected. Most are found on parts of the ocean floor like the Clarion Clipperton Zone (ccz), outside the 200-nautical-mile exclusive economic zones of littoral countries. They thus fall under the purview of the International Seabed Authority (isa), which has issued 17 exploration licences for such resources. All but one of these licences pertain to the ccz, an area of about 6m square kilometres east-south-east of Hawaii.

The licensees include Belgium, Britain, China, France, Germany, India, Japan, Russia, Singapore and South Korea, as well as several small Pacific island states. America, which is not party to the United Nations Convention on the Law of the Sea that established the isa, is not involved directly, but at least one American firm, Lockheed Martin, has an interest in the matter through a British subsidiary, uk Seabed Resources. And people are getting busy. Surveying expeditions have already visited the concessions. On land, the required mining machines are being built and tested. What worries biologists is that if all this busyness does lead to mining, it will wreck habitats before they can be properly catalogued, let alone understood.

 Some of the ccz’s creatures stretch the imagination. There is the bizarre, gelatinous, yellow “gummy squirrel”, a 50cm-long sea cucumber with a tall, wide tail that may operate like a sail. There are galloping sea urchins that can scurry across the sea floor on long spines, at speeds of several centimetres a second. There are giant red shrimps, measuring up to 40cm long. And there are “Dumbo” octopuses, which have earlike fins above their eyes, giving them an eerie resemblance to a well-known cartoon elephant…Of 154 species of bristle worms the surveyors found, 70% were previously unknown. 

the Whale fossils, sea cucumbers and shrimps are just the stuff that is visible to the naked eye. Adrian Glover, one of Dr Amon’s colleagues at the Natural History Museum, and his collaborators spent weeks peering down microscopes, inspecting every nook and cranny of the surfaces of some of the nodules themselves. They discovered a miniature ecosystem composed of things that look, at first sight, like flecks of colour—but are, in fact, tiny corals, sponges, fan-like worms and bryozoans, all just millimetres tall. In total, the team logged 77 species of such creatures, probably an underestimate.

Inevitably, much of this life will be damaged by nodule mining. The impacts are likely be long-lasting. Deep-sea mining technology is still in development, but the general idea is that submersible craft equipped with giant vacuum cleaners will suck nodules from the seafloor. Those nodules will be carried up several kilometres of pipes back to the operations’ mother ships, to be washed and sent on their way.

The largest disturbance experiment so far was carried out in 1989 in the Peru Basin, a nodule field to the south of the Galapagos Islands. An eight-metre-wide metal frame fitted with ploughs and harrows was dragged back and forth repeatedly across the seabed, scouring it and wafting a plume of sediment into the water…. The big question was, 26 years after the event, would the sea floor have recovered? The answer was a resounding “no”. The robots brought back images of plough tracks that looked fresh, and of wildlife that had not recovered from the decades-old intrusion.

Conservation and seabed minerals: Mining the deep ocean will soon begin, Economist, Nov. 10, 2018

Fukushima Waste Disposal under Ocean Floor

The industry ministry will consider the feasibility of burying high-level radioactive waste from nuclear power plants under the seabed, which a working panel said Dec. 11, 2015 could be a “highly appropriate” solution.  In an interim report on disposal methods of highly contaminated materials from spent nuclear fuel, the panel said such waste could be disposed of in adjacent waters within 20 kilometers of the coastline.

It called the disposal method relatively realistic because the circulation of groundwater at sea is not as strong as on land. The panel said the site should be created in adjacent waters so that nuclear waste can easily be transported by ships.  The panel included the under-the-seabed disposal plan in nearby waters as a viable option for the final disposal site.

Based on this proposal, the ministry will set up an expert panel in January 2016 to discuss what specific technical challenges lay ahead.  The expert panel will discuss locations of active faults under the seabed and the impact of sea level changes to evaluate the feasibility of the project. It is expected to issue its recommendations by next summer.

While the government has encouraged municipalities to submit candidate sites for nuclear waste disposal, it is being forced to rethink this policy because no local government has come forward to provide a realistic disposal site.  Instead, it will hand-pick the “candidate sites from scientific perspectives” and unilaterally request local governments to comply with its research and inspection efforts.

Japan to consider ocean disposal of nuclear waste, THE ASAHI SHIMBUN, Dec. 12, 2015

Militarization of the Deep Sea

U.S. military researchers are moving forward with a program to hide ruggedized electronic devices at the bottom of the world’s oceans that when called on will float to the surface to jam, disrupt, and spy on enemy forces.  Officials of the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., this week released a formal solicitation (DARPA-BAA-14-27) for the second and third phases of the Upward Falling Payloads (UFP) project to hide sensors and other devices on the ocean floor that will last for as long as five years concealed at depths to 20,000 feet.

Last summer (2013) DARPA awarded UFP phase-one contracts to Sparton Electronics of De Leon Springs, Fla., and to Zeta Associates Inc. in Fairfax, Va., to develop conceptual designs of a future system with the potential to launch sensors, electronic jammers, laser dazzlers, and other devices surreptitiously and quickly in any of the world’s maritime hot spots…

Sparton and Zeta experts designed UFP concepts that not only would float sensors to the ocean’s surface, but also potentially launch a wave of distracting light strobes, blinding lasers, electronic warfare jammers, or other kinds of non-lethal weapons able to pop up without warning in the middle of an adversary’s naval battle group.

“The goal is to support the Navy with distributed technologies anywhere, anytime over large maritime areas. If we can do this rapidly, we can get close to the areas we need to affect, or become widely distributed without delay,” says Andy Coon, the DARPA UFP program manager. “To make this work, we need to address technical challenges like extended survival of nodes under extreme ocean pressure, communications to wake-up the nodes after years of sleep, and efficient launch of payloads to the surface.”…

DARPA moves forward with project to lay sea-based electronic ambushes for enemy naval forces,  Indian Defence, March 27, 2014

See also https://www.fbo.gov/index?s=opportunity&mode=form&id=234431690a8c824d7b67a24d95596e7c&tab=core&tabmode=list&=