Monthly Archives: October 2018

Skip Pakistan: new way into Afghanistan

A port being developed in the southern Iranian city of Chabahar underscores some of the dilemmas U.S. policy makers face in implementing sanctions against Tehran.  Strategically located on the Gulf of Oman and named for an Iranian revolutionary war hero, the Shahid Beheshti Port is exactly the sort of Iranian economic development the Trump administration wants to stop with sanctions that kick in on Nov. 5, 2018…

Once completed, the port—a small part of which started initial operations in December—could help Iran by strengthening economic ties with South and Central Asia, providing an export point for its oil beyond the Persian Gulf and functioning as a strategic military asset.   But it could also be a critical economic lifeline for Afghanistan, where the U.S. has tried for 16 years to strengthen and stabilize the government so thousands of U.S. troops can come home.

The port also could be a big boon to India, an increasingly close partner of the U.S. in Asia. India wants Chabahar port activities exempted from sanctions. Indian companies are mostly equipping and operating the facility. If the port is completed, they are expected to be among the biggest users of the port in order to participate in the reconstruction of Afghanistan—something the Trump administration has asked India to get more involved in—and establish a stronger economic presence in Central Asia.

The Chabahar port has long been seen as a potential way around Pakistan, a sworn enemy of India that believes holding sway over Afghanistan is critical to its own security.  Pakistan has squelched trade between India and Afghanistan across its territory. It wants Afghanistan to eventually transport goods through a competing Pakistani port on the Gulf of Oman that is being developed with China…

“If you stop Chabahar, you make Afghanistan permanently dependent on Pakistan,” said Barnett Rubin, a New York University expert on South Asia who has advised Western governments on policy in Afghanistan and the surrounding region.

Exceprts from Iranian Port Project Poses a Dilemma for U.S., WSJ, Oct. 29, 2018

Nuclear Waste Above Sea Level: Pilgrim

Pilgrim Nuclear Power Station (PNPS) is the only nuclear power plant operating in Massachusetts. …On October 13, 2015, plant owners announced that it would close by June 1, 2019, citing “market conditions and increased costs,” which would have included tens of millions of dollars of necessary safety upgrades.

Up to 2015,all of the nuclear reactor fuel rods from the Pilgrim Nuclear Power Station were submerged in a deep pool of water, which was running out of space.  In 2015, the company started to use casks to store the waste. Cask storage is used at many nuclear plants in the United States to deal with excess nuclear reactor waste. The casks, 18 feet tall and 11 feet wide, are designed to withstand a truck bomb or a tornado-borne projectile moving at 360 miles per hour.

The plant in 2018 had 17 steel-reinforced concrete cylinders filled with the radioactive waste on a concrete pad about 25 feet above sea level and about 200 feet from shore.  It announced it was planning to move these 360,000-pound casks to a new pad on an existing parking lot that’s about 75 feet above mean sea level and 700 feet from shore to avoid risks associated with sea-level rise due to climate change.

Under-Sea Nuclear Deterrence: China

China for decades has struggled to develop nuclear ballistic-missile submarines . The country finally might be on the cusp of deploying reliable boomers.  An effective Chinese ballistic-missile submarine fleet over the long term could have a stabilizing influence on the world’s nuclear balance. But in the short term, it might heighten tensions. Especially if Beijing lets popular fervor drive its build-up.n n That’s the surprising conclusion of a new report from Tong Zhao. …Beijing began developing boomers as far back as 1958. It wasn’t until the late 1980s that the country completed its first boat….A Type 094 apparently conducted China’s first undersea deterrence patrol in 2015. “China has obtained, for the first time, a demonstrably operational underwater nuclear capability. This represents the start of a new era for China’s sea-based nuclear forces.”  As of late 2018 there are four Type 094s in service. Beijing has not publicly released a detailed plan for its SSBN fleet expansion, but the U.S. military expects China to build between five and eight of the vessels, in total, according to Tong and various military reports and statements.

The U.S. military has responded to the China’s new boomers by boosting its own anti-submarine capabilities. “Between Chinese efforts to create a credible sea-based nuclear deterrent and U.S. endeavors to strengthen anti-submarine countermeasures, tensions are brewing under the surface of the South China Sea and the broader Pacific Ocean,” Tong explains.

Exceprts from David Axe China Is Building More Submarines That Carry Nuclear Weapons. And It Could Be a Good Thing, The National Interest, Oct. 27, 2018

Insect Biogeneering as a Biological Weapon: DARPA

According to Science Magazine, Agricultural genetic technologies typically achieve their agronomic aims by introducing laboratory-generated modifications into target species’ chromosomes. However, the speed and flexibility of this approach are limited, because modified chromosomes must be vertically inherited from one generation to the next. In an effort to remove this limitation, an ongoing research program funded by the U.S. Defense Advanced Research Projects Agency (DARPA) aims to disperse infectious genetically modified viruses that have been engineered to edit crop chromosomes directly in fields [through insects]. This is genetic engineering through horizontal transfer, as opposed to vertical inheritance. The regulatory, biological, economic, and societal implications of dispersing such horizontal environmental genetic alteration agents (HEGAAs)[eg leafhoppers, whiteflies and aphids) into ecosystems are profound. Further, this program stipulates that the means of delivery of these viral HEGAAs into the environment should be insect-based dispersion (Insect Allies Program). In the context of the stated aims of the DARPA program, it is our opinion that the knowledge to be gained from this program appears very limited in its capacity to enhance U.S. agriculture or respond to national emergencies (in either the short or long term). Furthermore, there has been an absence of adequate discussion regarding the major practical and regulatory impediments toward realizing the projected agricultural benefits. As a result, the program may be widely perceived as an effort to develop biological agents for hostile purposes and their means of delivery, which—if true—would constitute a breach of the Biological Weapons Convention (BWC).

Stop it: Illegal, Unreported and Unregulated Fishing

Large ships are supposed, by international agreement, to be fitted with what is known as the Automatic Identification System (AIS), and to keep it on all the time. Arrangements for small ones vary from country to country, but most require some sort of beacon to be fitted to craft sailing in their waters.

The beacons’ main purpose is to avoid collisions. But monitoring them can also give away who is fishing nefariously, if you develop the software to sift through masses of location data looking for patterns. Beacon-watching has also helped identify hot spots for the transfer of catches at sea from IUU fishing boats to refrigerated cargo vessels, a practice which conceals the origin of a catch. Transshipment hotspots have been identified in this way off west Africa and Russia, and in the tropical Pacific. But beacons can be (and are) switched off.

Global Fishing Watch—a collaboration between Oceana, a conservation group, Google, a division of Alphabet, and Sky Truth, a charity that uses remote sensing to monitor environmental problems—has turned to America’s National Oceanic and Atmospheric Administration for help. NOAA has long collected satellite data on clouds. These are available to outsiders at no cost. The agency’s Visible Infrared Imaging Radiometer Suite consists of two sensors, each mounted on a different satellite. Between them, these sensors photograph the entire planet every 24 hours. Though their target is cloud cover, they can also see small, bright sources of light. Some of these give away the activities of fishermen. Many marine species are attracted to light, so it is common practice to shine floodlights into the water.

To find those illegals who do not so conveniently illuminate their activities Global Fishing Watch turns to satellite radar data. These are gathered mainly by private companies for sale to customers who want to do things like monitor the logging of forests. Global Fishing Watch, too, has to pay for them. Radar data have proved themselves useful, though. In 2016, for example, radar turned up a fleet of ships off the coast of Chile that had their AIS turned off…. The European Union’s Sentinel satellites now provide radar data free of charge. Global Fishing Watch is working on an automated vessel-detection system that uses these data.

Better detection would certainly help limit IUU fishing. The Port State Measures Agreement, introduced in 2016 and now ratified by 55 countries, is supposed to stop vessels engaged in such fishing from landing their catches. But ports can act against a vessel only if they know what it has been up to. The technology being developed by Global Fishing Watch makes it possible to report offenders quickly, thus giving port authorities time to act.

The future, moreover, looks brighter still—or dimmer, if you are an illicit fisherman. CubeSats, satellites the size of a loaf of bread, are lowering the cost of Earth observation.  making it feasible to track all boats continuously.

Excerpts from Netting the Crooks: Curbing Illegal Fishing, Economist,  Sept. 8, 2018

What to Do with Radioactive Pools

More than 60,000 tons of highly radioactive spent nuclear fuel is stored on the shores of four of the five Great Lakes at the Border between United States and Canada — in some cases, mere yards from the waterline — in still-growing stockpiles…It remains on the shorelines because there’s still nowhere else to put it…

The nuclear power industry and its federal regulator, the U.S. Nuclear Regulatory Commission, point to spent nuclear fuel’s safe on-site storage over decades. But the remote possibility of a worst-case scenario release — from a natural disaster, a major accident, or an act of terrorism — could cause unthinkable consequences for the Great Lakes region.   Scientific research has shown a radioactive cloud from a spent fuel pool fire would span hundreds of miles, and force the evacuation of millions of residents in Detroit, Chicago, Cleveland, Toronto or other population centers, depending on where the accident occurred and wind patterns.

For five years, Michigan residents, lawmakers, environmental groups and others around the Midwest have, loudly and nearly unanimously, opposed a planned Canadian underground repository for low-to-medium radioactive waste at Kincardine, Ontario, near the shores of Lake Huron. Meanwhile, spent nuclear fuel, vastly more radioactive, sits not far from the shores of  four Great Lakes — Michigan, Huron, Erie and Ontario — at 15 currently operating or former nuclear power plant sites on the U.S. side. In Michigan, that includes Fermi 2; the Donald C. Cook nuclear plant in Berrien County; the Palisades nuclear plant in Van Buren County, and the former Big Rock Point nuclear plant in Charlevoix County, which ceased operation in 1997 and where now only casks of spent nuclear fuel remain.

Neither the U.S. nor the Canadian government has constructed a central collection site for the spent nuclear fuel. It’s not just a problem in the Great Lakes region — more than 88,000 tons of spent nuclear fuel, an amount that is rising, is stored at 121 U.S. locations across 39 states.

Spent nuclear fuel isn’t only radioactive, it continues to generate heat. It requires storage in pools with circulating water for typically five years before it can be moved into so-called dry-cask storage — concrete-and-steel obelisks where spent fuel rods receive continued cooling by circulating air.In practice, however, because of the high costs associated with transferring waste from wet pools to dry casks, nuclear plants have kept decades worth of spent fuel in wet storage. Plant officials instead “re-rack” the pools, reconfiguring them to add more and more spent fuel, well beyond the capacities for which the pools were originally designed.

Only in recent years have nuclear plants stepped up the transition to dry cask storage because there’s no room left in the wet pools. Still, about two-thirds of on-site spent nuclear fuel remains in wet pools in the U.S….That’s a safety concern, critics contend. A catastrophe or act of terrorism that drains a spent fuel pool could cause rising temperatures that could eventually cause zirconium cladding — special brackets that hold the spent fuel rods in bundles — to catch fire.  Such a disaster could be worse than a meltdown in a nuclear reactor, as spent nuclear fuel is typically stored with nowhere near the fortified containment of a reactor core.

At Fukushima…what almost happened — at the plant’s Unit 4 spent-fuel pool that gives nuclear watchdogs nightmares.  A hydrogen explosion four days into the disaster left the building housing the Unit 4 spent-fuel pool in ruins. The pool was seven stories up in a crumbling, inaccessible building.  It “was so radioactive, you couldn’t put people up there,” von Hippel said. “For about a month after Fukushima, people didn’t know how much water was in the pool. They were shooting water up there haphazardly with a hose, trying to drop it by helicopter.”  Two weeks after the earthquake and tsunami, the Japanese Atomic Energy Commission secretly conducted a worst-case scenario study of the ongoing disaster. The biggest fear that emerged: that a self-sustaining fire would start in the Unit 4 spent fuel pool, spreading to the nearby, damaged reactors. That, they found, would release radiation requiring evacuations as far away as 150 miles, to the outskirts of Tokyo and its more than 13.4 million residents. “That was the devil’s scenario that was on my mind,” Chief Cabinet Secretary Yukio Edano said during a special commission’s 2014 investigation of the accident.“Common sense dictated that, if that came to pass, then it was the end of Tokyo.”   What kept the spent fuel rods covered with water in Unit 4 was a miraculous twist of fate: The explosion had jarred open a gate that typically separated the Unit 4 spent fuel pool from an adjacent reactor pool.  “Leakage through the gate seals was essential for keeping the fuel in the Unit 4 pool covered with water,” a 2016 report on the Fukushima accident by the U.S. National Academies of Sciences, Engineering and Medicine concluded. “Had there been no water in the reactor well, there could well have been severe damage to the stored fuel and substantial releases of radioactive material to the environment.”

The U.S. nuclear industry sees Fukushima differently — in some ways as a success story.  “At Fukushima, you not only had a tsunami, you blew up the buildings … and you still did not drain the pool,” said Rod McCullum, senior director for fuel and decommissioning at the Nuclear Energy Institute, the trade association for nuclear utilities in the U.S.  “Those pools and those casks withstood explosions and earthquakes and tsunamis, all on the same day.”  A scenario where a fire can occur by the draining of water from a spent-fuel pool “has never been demonstrated,” McCullum said. He noted safety measures added in the U.S. since Fukushima include the ability to provide extra pumps and water supplies, in minutes or hours, should a spent fuel pool become breached and lose water — even if the disaster required that the resources be brought in by air from farther away….

Because nuclear power is much more widely used in Canada — the province of Ontario alone has 20 nuclear reactors at three plants — it also generates much more nuclear waste.  In Ontario, nearly 52,000 tons of spent nuclear fuel is stored on-site at nuclear plants along Lakes Huron and Ontario.“There’s a huge amount of high-level, radioactive waste stored right along the water,” said Edwards, the president of the nonprofit Canadian Coalition for Nuclear Responsibility  Like the U.S., Canada is seeking a long-term storage solution that will involve a central underground repository. Unlike the U.S., the Canadian government is seeking willing hosts, promising jobs and economic activity. …Even if a central repository is one day approved, another complication arises — how to get two generations of the most dangerous industrial waste man has ever created from sites all over the country to one point….

Germany, in the 1980s, tried using an abandoned salt and potash mine to store barrels of nuclear waste over 30 years, the Asse II mine.  It’s now prompting a cleanup that may take 30 years and cost nearly $12 billion U.S. dollars. The government has disputed the contention of workers at the mine that they were exposed to excessive levels of radiation, causing an unusual number of cancers….Nuclear power is projected to drop as a percentage of the world’s power generation mix from 10 percent in 2017 to just 5.6 percent by 2050, a report issued by the International Atomic Energy Agency this summer found…

If central repository solutions aren’t found, within years, the re-licensing of some early dry-cask storage facilities will come into play, as they meet a lifespan they were never expected to reach. “The age of nuclear power is winding down, but the age of nuclear waste is just beginning,” Edwards said.

Excerpts from Keith Matheny, 60,000 tons of dangerous radioactive waste sits on Great Lakes shores, Detroit Free Press, Oct. 19, 2018

Dismantling Nuclear Reactors at Fukushima

In the aftermath of the Fukushima nuclear disaster in 2011, Naraha decided to oppose nuclear energy and call for the closure of the Fukushima No. 2 nuclear power plant that it co-hosts on the coast of the prefecture.  Since the 1970s, the town has been home to the No. 2 plant, which first went into service in 1982.  For decades, Naraha has received central government grants and subsidies for hosting the No. 2 plant, as well as tax revenues from TEPCO and its affiliates operating in the town.The plant also employed 860 people, many of them from Naraha and its surrounding communities.

Naraha had a population of about 8,000 before the Great East Japan Earthquake and tsunami caused the triple meltdown at TEPCO’s Fukushima No. 1 nuclear plant in March 2011. The crippled plant is located within 20 kilometers from Nahara.  The quake and tsunami also created a scare at the No. 2 plant by leaving the facility with only a limited power supply from external sources and emergency diesel generators to cool the reactors. But the plant brought the situation under control.

After long remaining silent about the fate of the No. 2 plant, TEPCO decided to retire all of its four reactors, which were approaching their legal operating limit of 40 years. If the power company wanted to continue operations at the plant, it would have to spend hundreds of billions of yen on upgrades to meet the more stringent safety standards that were set after the accident at the No. 1 plant…

Although Naraha and Tomioka officials share concerns about their municipalities’ financial futures, they see a silver lining in the situation at the Fukushima No. 1 nuclear plant.  Both towns have served as front-line bases for workers involved in decommissioning of the stricken plant.  About 5,000 workers a day who are involved in the decommissioning effort provide steady business for convenience stores and other shops in the two towns. Business hotels, dorms and apartment buildings have been built in the towns and neighboring communities to accommodate the workers. Work to dismantle the No. 1 plant is expected to take decades to complete. Local officials said the closure of the No. 2 plant could bring about a similar economic boon. “Decommissioning can become a major industry,” Naraha Mayor Matsumoto said.

Excerpts from  Nuclear plant closure brings hope, despair to Fukushima town
THE ASAHI SHIMBUN, October 18, 2018

How to Swarm your Enemy

Swarming is…a deliberately structured, coordinated, strategic way to strike from all directions, by means of a sustainable pulsing of force and/or fire, close-in as well as from stand-off positions. It will work best—perhaps it will only work—if it is designed mainly around the deployment of myriad, small, dispersed, networked maneuver units (what we call “pods” organized in “clusters”). Developing a swarming force implies, among other things, radical changes in current military organizational structures. From command and control of line units to logistics, profound shifts will have to occur to nurture this new “way of war.” …

Swarming could become the catalyst for the creation of a newly energized military doctrine:“BattleSwarm.” One requirement—well-informed, deadly small units—is already coming into being…

Technological hurdles also loom large on the path to BattleSwarm. First, aside from the
challenge of assuring the internetting of communications among myriad units, it is
imperative that communications also be hardened and made redundant. An enemy who
knows that information operations lie at the enabling core of swarming will surely strike
at them—and we must prepare to parry such blows in advance. It may also be possible
to safeguard a swarm force’s information flows by means of decoys and deception.
Indeed, the use of false or enhanced signals and traffic may prove to have offensive, in
addition to defensive, utility.

Swarming and the Future of Conflict (Rand pfd)

DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program envisions future small-unit infantry forces using swarms comprising upwards of 250 small unmanned aircraft systems (UASs) and/or small unmanned ground systems (UGSs) to accomplish diverse missions in complex urban environments. By leveraging and combining emerging technologies in swarm autonomy and human-swarm teaming, the program seeks to enable rapid development and deployment of breakthrough capabilities.

Underwater Nuclear Wrecks

Russian scientists have said that radioactive waste sunk in the Arctic by the Soviet Navy has not leaked any contamination….  Data on the scuttled cargoes –– which includes several thousand containers of radioactive waste, as well as an entire nuclear submarine –– come from a month-and-a-half-long expedition in the Kara Sea conducted by the Russian Academy of Sciences Institute of Oceanology.  Mikhail Flint, the institute’s head, told reporters last week that scientists on the expedition had managed to significantly improve their maps of where the sunken waste lies, especially in the area of the Novaya Zemlya archipelago, a former Soviet nuclear bomb testing site.  From Novaya Zemlya’s craggy coast, the expedition conducted additional research mapping radioactive hazards in the White Sea, and then progressed to the Laptev Sea some 2000 nautical miles to the east.

Since the first decades of the 2000s, these mapping and measuring expeditions have taken place on an annual basis. Environmentalists fear the waste could eventually rupture and spoil thousands of square kilometers of fertile Arctic fishing grounds.

Beginning in 1955 and continuing until the early 1990s, the Russian Navy dumped enormous amounts of irradiated debris — and it one case an entire nuclear submarine — into the waters of the Arctic. It was not, however, until 2011 that the Russian government admitted this on an international level.  That year, Moscow shared with Norwegian nuclear officials the full scope of the problem. The list of sunken objects was far more than had initially been thought, and included 17,000 containers of radioactive waste; 19 ships containing radioactive waste; 14 nuclear reactors, including five that still contain spent nuclear fuel; the K-27 nuclear submarine with its two reactors loaded with nuclear fuel, and 735 other pieces of radioactively contaminated heavy machinery.

Exceprts from  Charles Digges ussian officials update maps of radioactive debris sunk in Arctic, Bellona, Oct. 15, 2018.

Flowering the Sahara

The installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect,  could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.

Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms…

This highlights that, in addition to avoiding anthropogenic greenhouse gas emissions from fossil fuels and the resulting warming, wind and solar energy could have other unexpected beneficial climate impacts when deployed at a large scale in the Sahara, where conditions are especially favorable for these impacts. Efforts to build such large-scale wind and solar farms for electricity generation may still face many technological (e.g., transmission, efficiency), socioeconomic (e.g., cost, politics), and environmental challenges, but this goal has become increasingly achievable and cost-effective

Exceprts from Yan Li, Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation, Science, Sept. 7, 2018

Shedding Nuclear Weapons: the uphill battle

At the June 2018 Singapore Summit, North Korea agreed to the goal of “complete denuclearization” in exchange for “security guarantees” by the United States, including an end to enmity … The two sides seem to have settled on the phrase “complete denuclearization.” For the purposes of this analysis, this is taken to include the key nuclear weapon–related obligations agreed on in the 1992 Joint Declaration of South and North Korea on the Denuclearization of the Korean Peninsula, namely to “not test, manufacture, produce, receive, possess, store, deploy or use nuclear weapons” and that these commitments would be verified.

In March 2018, North Korea announced a moratorium on nuclear weapons and ballistic missile testing. …Moving forward, eliminating North Korea’s nuclear weapons program and related facilities will need a freeze on current weapon-related activities; an agreed baseline of current stockpiles of nuclear weapons, fissile materials, ballistic missiles, and key components; and verified reductions of these stockpiles and downsizing of North Korea’s weapons complex….We assume that a new framework agreement would contain provisions similar to those in some other arms-control agreements, under which the parties agree not to interfere with specified remote-monitoring techniques or use concealment measures intended to obstruct verification.

Since North Korea’s withdrawal from the Nuclear Non-Proliferation Treaty (NPT) in 2003, there have been essentially no international inspection efforts in North Korea. At the same time, North Korea has expanded the scale and complexity of its nuclear weapons program. On the basis of information available via open sources, it is not clear how many nuclear weapons North Korea possesses today, of what kind (including possibly thermonuclear weapons), and whether they use plutonium or highly enriched uranium (HEU) or both as fissile material. Nor is there reliable information on its ballistic missile capabilities. To establish a basis for moving forward, North Korea could add to its freeze on nuclear weapon and ballistic missile tests a freeze on fissile material production. This can be verified primarily through agreed-on nonintrusive provisions.

In the case of plutonium, satellite imagery can be sufficient to confirm the operational status of reactors in North Korea. Imagery can be used to observe heat signatures, vapor plumes, cooling water discharges, and other activities near the reactor . All these indicators would provide good evidence for a suspension of plutonium production at Yongbyon nuclear reactor in North Korea. Regional krypton-85 monitoring, ideally with a small number of detectors placed around the Yongbyon site, could confirm that remaining spent fuel is not reprocessed . There are also simple measures to permanently disable the Yongbyon reactor—for example, by blowing boron dust through the core’s cooling channels—but North Korea may not agree to such actions until the later stages of the denuclearization process.

The situation with regard to uranium enrichment is more difficult. It may be possible to confirm remotely the shutdown status of the Yongbyon enrichment plant and a possible second plant suspected to be at Kangson—for example, by monitoring vehicle traffic, including shipments of uranium hexafluoride (UF6) cylinders entering and leaving the sites, or by monitoring signatures related to electricity supply.

Rather than shut them down, North Korea may prefer to use its enrichment plants for production of low-enriched uranium for its experimental light-water reactor (30 MW-electric). If this or other civilian reactors are allowed to operate, then International Atomic Energy Agency (IAEA) safeguards could be applied to these plants as well as to the feed and product materials associated with them, as happens with civilian uranium enrichment plants in all non-nuclear weapon states and also in some nuclear weapon states. In this case, verification could include unattended measurement systems confirming the nonproduction of HEU, but it would also include onsite inspections. Even if North Korea ended all nuclear activities, IAEA safeguards would still be required to detect possible efforts at reconstitution of its nuclear weapons program.

One major concern is the existence of undeclared nuclear facilities, especially uranium enrichment plants beyond that at Yongbyon and suspected at Kangson. This is a proliferation concern in all states and not limited to North Korea, however…

With a freeze as a starting point, declarations of current fissile material and nuclear warhead inventories would be important for measuring progress toward denuclearization. These initial declarations could be relatively simple. Ideally, as a transparency measure, they could be made public. In the case of nuclear warheads, a declaration could include the total number of warheads in North Korea’s stockpile, perhaps listed by type, and the number of additional warhead components in storage; in the case of fissile material, a declaration could include acquisitions, losses, and removals, including the aggregate amount of material consumed in tests, and the current inventory of plutonium and highly enriched uranium, ideally also specifying the respective plutonium-239 and uranium-235 contents. More detailed declarations could follow at a later stage of the process.

There is a precedent for fissile material declarations. In May 2008, North Korea declared its plutonium inventory, often reported as 37 kg and backed up by 18,000 pages of operating records. At the time, the United States estimated that North Korea had produced a total of 40 to 50 kg of plutonium, raising concerns that the declaration may be incomplete. U.S. negotiators requested access to the Yongbyon reactor to confirm total plutonium production through use of nuclear archaeological techniques, in which the isotopic ratios of trace impurities in graphite samples are analyzed. At that time, North Korea refused.  Nuclear archaeology techniques for graphite-moderated reactors are now well established and would be sufficient to narrow down the uncertainty in plutonium production to a few kilograms, possibly to less than one weapon-equivalent. North Korea may or may not agree to these procedures early on in the denuclearization process, but every effort must be made to preserve the reactor core and relevant operating records so that such an analysis can be conducted when circumstances permit.

Reconstructing uranium enrichment activities is more challenging. Perhaps the best option would be to reconstruct North Korea’s history of uranium supply and use. Such an effort would assess uranium production at North Korean mines, uranium purification, UF6 production, and enrichment. This would involve auditing the records for internal consistency. Reports of North Korean uranium ore grade suggest that it takes 300 to 400 tons of ore to extract 1 ton of uranium. This means that up to 2000 tons of ore are required to make 25 kg of weapon-grade HEU or 5 kg of weapon-grade plutonium, the typical amounts used in a nuclear weapon. The review of records from the different plants could be complemented with forensic analysis of tailings at the mines and depleted uranium in cylinders at known enrichment plants. It also may be possible to examine North Korea’s centrifuge-plant equipment and reconstruct the amount of uranium processed in these plants and respective HEU output.

It will take years to conclude that undeclared stockpiles of materials and warheads do not exist, even if North Korea fully cooperates...

For safety reasons, as former Los Alamos National Laboratory Director Siegfried Hecker and colleagues recently observed, “shipping the North’s nuclear weapons out of the country is naïve and dangerous. The weapons must be disassembled by the people who assembled them.”…A third option would be for North Korea to gradually reduce the size of its weapons complex without revealing where exactly nuclear weapons and long-range ballistic missiles remain. An estimate in 2014 suggested about 90 nuclear weapon and missile sites of potential interest…

Excerpts from Alexander Glaser and Zia Mian, Denuclearizing North Korea: A verified, phased approach, Science, Sept. 7, 2018

Who Owns the Genes in the Seas?

It’s an eye-catching statistic: A single company, the multinational chemical giant BASF, owns nearly half of the patents issued on 13,000 DNA sequences from marine organisms. That number is now helping fuel high-stakes global negotiations on a contentious question: how to fairly regulate the growing exploitation of genes collected in the open ocean, beyond any nation’s jurisdiction.

The negotiations that took place at the UN in September 2018 aim, inter alia, to replace today’s free-for-all scramble for marine genetic resources with a more orderly and perhaps more just regime.  Many developed nations and industry groups are adamant that any new rules should not complicate efforts to discover and patent marine genes that may help create better chemicals, cosmetics, and crops. But many developing nations want rules that will ensure they, too, share in any benefits. Scientists are also watching. A regulatory regime that is too burdensome could have “a negative impact” on scientists engaged in “noncommercial ocean research,” warns Robert Blasiak, a marine policy specialist at the Stockholm Resilience Centre.  It is not the first time nations have wrangled over how to share genetic resources. Under another U.N. pact, the 2010 Nagoya Protocol, 105 countries have agreed to rules to prevent so-called biopiracy: the removal of biological resources—such as plant or animal DNA—from a nation’s habitats without proper permission or compensation.

Those rules don’t apply in international waters, which begin 200 nautical miles from shore and are attracting growing interest from researchers and companies searching for valuable genes. The first patent on DNA from a marine organism was granted in 1988 for a sequence from the European eel, which spends part of its life in freshwater. Since then, more than 300 companies, universities, and others have laid claim to sequences from 862 marine species, a team led by Blasiak reported in June in Science Advances. Extremophiles have been especially prized. Genes from worms found in deep-sea hydrothermal vents, for example, encode polymers used in cosmetics. And BASF has patented other worm DNA that the company believes could help improve crop yields. The conglomerate, based in Ludwigshafen, Germany, says it found most of its 5700 sequences in public databases…

It may take years for nations to agree on a marine biodiversity treaty; [A]n “ideological divide” between developing and developed countries has, so far, “led to stalemate” on how to handle marine genetic resources, says Harriet Harden-Davies, a policy expert at the University of Wollongong in Australia.

Most developing nations want to expand the “common heritage” philosophy embedded in the 1982 United Nations Convention on the Law of the Sea, which declares that resources found on or under the seabed, such as minerals, are the “common heritage of mankind.” Applying that principle to genetic resources would promote “solidarity in the preservation and conservation of a good we all share,” South Africa’s negotiating team said in a recent statement. Under such an approach, those who profit from marine genes could, for example, pay into a global fund that would be used to compensate other nations for the use of shared resources, possibly supporting scientific training or conservation.

But developed nations including the United States, Russia, and Japan oppose extending the “common heritage” language, fearing burdensome and unworkable regulations. They argue access to high seas genes should be guaranteed to all nations under the principle of the “freedom of the high seas,” also enshrined in the Law of the Sea. That approach essentially amounts to finders keepers, although countries traditionally have balanced unfettered access with other principles, such as the value of conservation, in developing rules for shipping, fishing, and research in international waters.

The European Union and other parties want to sidestep the debate and seek a middle ground. One influential proposal would allow nations to prospect for high seas genes, but require that they publish the sequences they uncover. Companies could also choose to keep sequences private temporarily, in order to be able to patent them, if they contribute to an international fund that would support marine research by poorer nations. “Researchers all around the world should be put all on a level playing field,” says Arianna Broggiato, a Brussels-based legal adviser for the consultancy eCoast, who co-authored a paper on the concept this year in The International Journal of Marine and Coastal Law.

Exceprts from Eli Kintisch U.N. tackles gene prospecting on the high seas, Science, Sept. 7, 2018

The Biggest Bang for the Buck: Which Species to Save

Faced with a gulf between the species in need and the available resources, some scientists are pushing an approach that combines the cold-blooded eye of an accountant with the ruthless decisiveness of a battlefield surgeon. To do the greatest good, they argue, governments need to consider shifting resources from endangered species and populations that are getting too much attention to those not getting enough. That could mean resolving not to spend money on some species for which the chance of success appears low, such as the vaquita, an adorable small porpoise now down to fewer than 30 animals in Mexico’s Gulf of California.

The term “triage”—from the French verb trier, meaning to sort—was born on the battlefields of Napoleonic Europe. Faced with a flood of wounded soldiers, French military doctors conceived of a system to decide who got medical attention and who was too far gone. The idea reached conservation biology as early as the 1980s. But in recent years it has moved from scientific journals to the halls of policymakers, thanks in part to an Australian mathematician and conservation scientist, Hugh Possingham.

Over the following decade, Possingham and others worked to create formulas that could point to the most efficient way to spend money on species preservation. They tried to quantify answers to key questions: What will species restoration projects cost? How likely are they to succeed? How distinct and important is each species? What actions will benefit multiple species or entire ecosystems, bringing the biggest bang for the buck?…

Today, conservation spending is influenced by a complex array of factors, including how close a species is to extinction and the pressure brought by lawsuits, lobbying, and media coverage. The result, Possingham and others argue, is that money is often poured into costly long shots or charismatic organisms, whereas species that could be secured for a relatively low cost go wanting.

A dozen years ago, New Zealand became the first nation to test Possingham’s approach. A nation filled with unique species, some 3000 of them at risk, the country is a poster child for the extinction crisis. But New Zealand had no clear process for setting conservation spending priorities, recalls Richard Maloney, a senior scientist in the country’s Department of Conservation in Christchurch.

In a bid to do better, officials asked Possingham to help craft a plan for spending roughly $20 million per year. The result was a list of 100 top-priority species, developed using a formula that balanced costs and benefits. In general, highly threatened species unique to New Zealand and ended up at the top of the list. But it also included representatives from a variety of species and took into account the cost and likelihood of success. Before that process, the government was working to recover 130 species. Now, more than 300 are getting attention, Possingham says.  But for every species or population at the top of such lists, one is at the bottom. And that can lead to agonizing choices

But saving th Canadian caribou might mean keeping the species on life support for decades… When Mark Hebblewhite, a caribou biologist at the University of Montana in Missoula, looks at how maps of woodland caribou habitat overlap with Alberta’s oil and gas deposits, his response is: Get real. Hebblewhite doubts the government will ever summon the will to impose the development restrictions necessary to save all herds. He points to a 2010 study indicating that such restrictions could mean forgoing extraction of oil, gas, and timber worth more than $125 billion in Alberta alone…

Instead of focusing on the most feeble herds, Canada should instead protect habitat in key areas where caribou populations still stand a good chance, he argued in a 2017 Biological Conservation paper. “We’ve prioritized the most screwed populations,” Hebblewhite says. “All I’m saying is that we prioritize the winners.”

That idea makes biologist Alana Westwood uncomfortable. A Vancouver, Canada–based scientist with the Yellowstone to Yukon Conservation Initiative,… If Canada isn’t willing to take the necessary steps, she suggests officials rename its law “the ‘recover species that are most easy to accommodate under business as usual act.’”…”It’s an easy way out for managers who don’t have the balls to make tough decisions, and therefore we lose species after species,” says Stuart Pimm, a conservation scientist at Duke University in Durham, North Carolina, who has often sparred with Possingham in public forums. One problem, he argues, is that giving up on a species also means abandoning a potent tool to rally the public and the courts. Sometimes charismatic animals such as California condors or polar bears can help build political support for saving endangered species or habitats more broadly….

And some species stand for entire ecosystems, Pimm adds. Consider the Cape Sable seaside sparrow. The innocuous songbird lives in Florida’s Everglades, where water diversions threaten its marsh habitat. The species might not rank high in a triage system—in part because other populations of related seaside sparrows exist. But because of how the U.S. Endangered Species Act is structured, efforts to protect the sparrow have required policymakers to reallocate water, benefiting the entire ecosystem. “I’m afraid we have to make more complicated decisions than the simple recipes that Hugh comes up with,” Pimm says.

Possingham concedes that triage is not suited to every situation. Europe, for example, has wealthy countries and few native endangered species, which makes saving them all realistic. And sometimes a species is so culturally important that it gets special treatment. New Zealand, for instance, has departed from its triage system to give priority to protecting 50 cherished species, including five species of kiwi birds, the nation’s mascot.

Excepts from Warren Cornwall With limited funds for conservation, researchers spar over which species to save—and which to let go, Science Magazine, Sept. 6, 2018