Tag Archives: spent fuel storage

Fracking v. Nuclear Wastes: the Fate of New Mexico

Holtec International, a Florida-based company, aims to rail thousands of canisters of spent nuclear fuel to Lea County, New Mexico, United States, and store the containers below ground. The site has a 40-year license and could ultimately hold around 170,000 metric tons of used radioactive fuel—about twice as much as the U.S. currently holds. It would be the largest such facility in the world, and Holtec says it would further the development of U.S. nuclear energy. [This plan is opposed by Fasken Oil and Ranch] a company that claims that  a nuclear incident in the Permian basin, which cranks out more oil than Iraq and Libya combined, would have devastating consequences for U.S. energy and the local economy. “I’m not antinuclear,” Fasken Assistant General Manager Tommy Taylor, said. “We just don’t feel like siting all the nuclear waste in the middle of our biggest oil and gas resource is a good idea.” 

Fasken said the nuclear-waste storage sites threaten its operations in the Permian. According to the court filing of Fasken:

“The proposed site sits on top of and adjacent to oil and gas minerals to be developed
by means of fracture stimulation techniques. Currently, drilling techniques used to
extract minerals in the Permian Basin involve drilling horizontally into deep
underground formations up to two miles beneath the earth’s surface. High pressure
fluids are pumped into the wells, in some cases exceeding twelve thousand pounds
per square inch. This pressure is power enough to fracture the surrounding rock
thus releasing the oil and gas
. The pressure creates fissures and cracks
beneath the surface
. And, at this time, there are oil and gas operators testing a new
technique of simultaneously drilling and fracturing up to 49 horizontal wellbores in
a single section of land. Either the traditional or new and unproven drilling
technique, involving more than 20,000,000 bbls of water and sand, could
conceivably be utilized to inject into and withdraw from the rock formation beneath
and surrounding the Holtec site. Hydraulic fracturing beneath and around Holtec
should give the NRC pause and is sufficient reason not to proceed.” (HOLTEC INTERNATIONAL’S ANSWER OPPOSING FASKEN’S, pdf)

The yearslong fight has entangled large oil companies, the country’s top nuclear regulator, the states of Texas and New Mexico, as well as local communities that want to host the nuclear waste

Supporters of the nuclear-waste projects say they could help break a decades-old nuclear waste logjam that has led to radioactive refuse piling up at reactors. President Biden and billionaire investors are endorsing new nuclear projects to reduce greenhouse-gas emissions, but the U.S. has yet to figure out where to permanently unload some of the most hazardous material in the world.  The Permian is home to two sites that handle some types of nuclear waste and to the only commercial uranium-enrichment facility in the country.  Holtec’s storage would be temporary, and some nuclear experts say interim facilities can be a stopgap until the federal government builds a permanent, deep geologic repository. A plan to house nuclear waste at Nevada’s Yucca Mountain fizzled under former President Barack Obama, and the search for an alternative site has stalled.

As a result, the US federal government is paying utilities billions of dollars to keep used fuel rods in steel-lined concrete pools and dry casks at dozens of sites.  Consolidating used nuclear fuel at one or two facilities would lessen that financial

Fasken has notched court victories. Last year, the U.S. Fifth Circuit Court of Appeals in New Orleans found that federal law didn’t authorize the Nuclear Regulatory Commission to license a private, away-from-reactor storage facility for spent nuclear fuel. It vacated the federal license for another storage project proposed by Interim Storage Partners, a joint-venture between Orano USA and Waste Control Specialists. The Nuclear Regulatory Commission has asked the court to reconsider.

The Holtec project faces other hurdles. New Mexico last year passed legislation all but banning storage of high-level nuclear waste. Texas lawmakers have also opposed interim storage facilities. The Holtec spokesman said the company was evaluating the legislation’s impact on the project. Fasken expects the fight over interim storage will eventually reach the Supreme Court. 

Excerpts from Benoit Morenne, The War over Burying Nuclear Waste in America’s Busiest Oil Field, WSJ, Feb. 19, 2024

Imagining Failure: Nuclear Waste on the Beach, California

But for all the good vibes and stellar sunsets of  San Onofre state beach in California, beneath the surface hides a potential threat: 3.6m lb of nuclear waste from a group of nuclear reactors shut down nearly a decade ago. Decades of political gridlock have left it indefinitely stranded, susceptible to threats including corrosion, earthquakes and sea level rise. The San Onofre reactors are among dozens across the United States phasing out, but experts say they best represent the uncertain future of nuclear energy.

“It’s a combination of failures, really,” said Gregory Jaczko, who chaired the US Nuclear Regulatory Commission (NRC), the top federal enforcer, between 2009 and 2012, of the situation at San Onofre. That waste is the byproduct of the San Onofre Nuclear Generating Station (Songs), three nuclear reactors primarily owned by the utility Southern California Edison (SCE) that has shut down….

Since there is not central repository for the final disposition of nuclear wasted in the United States,  the California Coastal Commission approved in 2015 the construction of an installation at San Onofre to store it until 2035. In August 2020, workers concluded the multi-year burial process, loading the last of 73 canisters of waste into a concrete enclosure. San Onofre is not the only place where waste is left stranded. As more nuclear sites shut down, communities across the country are stuck with the waste left behind. Spent fuel is stored at 76 reactor sites in 34 states….

At San Onofre, the waste is buried about 100ft from the shoreline, along the I-5 highway, one of the nation’s busiest thoroughfares, and not far from a pair of faults that experts say could generate a 7.4 magnitude earthquake. Another potential problem is corrosion. In its 2015 approval, the Coastal Commission noted the site could have a serious impact on the environment in case of coastal flooding and erosion hazards beyond its design capacity, 

Concerns have also been raised about government oversight of the site. Just after San Onofre closed, SCE began seeking exemptions from the NRC’s operating rules for nuclear plants. The utility asked and received permission to loosen rules on-site, including those dealing with record-keeping, radiological emergency plans for reactors, emergency planning zones and on-site staffing.

San Onofre isn’t the only closed reactor to receive exemptions to its operating licence. The NRC’s regulations historically focused on operating reactors and assumed that, when a reactor shut down, the waste would be removed quickly.

It’s true that the risk of accidents decreases when a plant isn’t operating, said Dave Lochbaum of the Union of Concerned Scientists. But adapting regulations through exemptions greatly reduces public transparency, he argued. “Exemptions are wink-wink, nudge-nudge deals with the NRC,” he said. “In general, it’s not really a great practice,” former NRC chair Jaczko said about the exemptions. “If the NRC is regulating by exemption, it means that there’s something wrong with the rules … either the NRC believes the rules are not effective, and they’re not really useful, or the NRC is not holding the line where the NRC should be holding line,” he said…

It’s worth considering how things fail, though, argued Rod Ewing, nuclear security professor at Stanford University’s center for international security and cooperation, and author of a 2021 report about spent nuclear waste that focuses on San Onofre. “The problem with our safety analysis approach is we spend a lot of time proving things are safe. We don’t spend much time imagining how systems will fail,” he said. “And I think the latter is what’s most important.”

Excerpts from Kate Mishkin, ‘A combination of failures:’ why 3.6m pounds of nuclear waste is buried on a popular California beach, Guardian, Aug. 

Lots of Money Forever for Waste that Lasts for Forever: Nuclear Waste in Japan

Since August 2020, two local governments on the western shore of Hokkaido in Japan have said they will apply to the central government for a survey that could eventually lead to their municipalities hosting a permanent underground repository for high-level radioactive waste. The fact that these two localities made their announcements about a month apart and are situated not far from each other was enough to attract more than the usual media attention, which revealed not only the straitened financial situations of the two areas, but also the muddled official policy regarding waste produced by the country’s nuclear power plants.

The respective populations of the two municipalities reacted differently. The town of Suttsu made its announcement in August 2020, or, at least, its 71-year-old mayor did, apparently without first gaining the understanding of his constituents, who, according to various media, are opposed to the plan…. Meanwhile, the mayor of the village of Kamoenai says he also wants to apply for the study after the local chamber of commerce urged the village assembly to do so in early September 2020. TBS asked residents about the matter and they seemed genuinely in favor of the study because of the village’s fiscal situation. Traditionally, the area gets by on fishing — namely, herring and salmon — which has been in decline for years. A local government whose application for the survey is approved will receive up to ¥2 billion in subsidies from the central government… Kamoenai, already receiving subsidies for nuclear-related matters. The village is 10 kilometers from the Tomari nuclear power plant, where some residents of Kamoenai work. In exchange for allowing the construction of the plant, the village now receives about ¥80 million a year, a sum that accounts for 15 percent of its budget. According to TBS, Kamoenai increasingly relies on that money as time goes by, since its population has declined by more than half over the past 40 years.

Since Japan’s Nuclear Waste Management Organization started soliciting local governments for possible waste storage sites in 2002, a few localities have expressed interest, but only one — the town of Toyo in Kochi Prefecture — has actually applied, and then the residents elected a new mayor who canceled the application. The residents’ concern was understandable: The waste in question can remain radioactive for up to 100,000 years.

The selection process also takes a long time. The first phase survey, which uses existing data to study geological attributes of the given area, requires about two years. If all parties agree to continue, the second phase survey, in which geological samples are taken, takes up to four years. The final survey phase, in which a makeshift underground facility is built, takes around 14 years. And that’s all before construction of the actual repository begins.

Neither Suttsu nor Kamoenai may make it past the first stage. Yugo Ono, an honorary geology professor at Hokkaido University, told the magazine Aera that Suttsu is located relatively close to a convergence of faults that caused a major earthquake in 2018. And Kamoenai is already considered inappropriate for a repository on a map drawn up by the trade ministry in 2017.

If the Nuclear Waste Management Organization’s process for selecting a site sounds arbitrary, it could reflect the government’s general attitude toward future plans for nuclear power, which is still considered national policy, despite the fact that only three reactors nationwide are online.

Japan’s spent fuel is being stored in cooling pools at 17 nuclear plants comprising a storage capacity of 21,400 tons. As of March 2020, 75 percent of that capacity was being used, so there is still some time to find a final resting place for the waste. Some of this spent fuel was supposed to be recycled at the Rokkasho Reprocessing Plant in Aomori Prefecture, but, due to numerous setbacks, it doesn’t look as if it’s ever going to open, so the fuel will just become hazardous garbage.

According to some, the individual private nuclear plants should be required to manage their own waste themselves. If they don’t have the capacity, then they should create more. It’s wrong to bury the waste 300 meters underground because many things can happen over the course of future millennia. The waste should be in a safe place on the surface, where it can be readily monitored.  However, that would require lots of money virtually forever, something the government would prefer not to think about, much less explain. Instead, they’ve made plans that allow them to kick the can down the road for as long as possible.

Excerpt from PHILIP BRASOR, Hokkaido municipalities gamble on a nuclear future, but at what cost? Japan Times, Oct. 24, 2020

The Enormous Task of Nuclear Waste Storage

“The Koeberg spent fuel pool storage capacity in South Africa  is currently over 90% full. (These) pools will reach (their) capacity by April 2020,” Eskom, the South African utility, told Reuters in a statement on Nov. 25, 2019.  Koeberg produces about 32 tonnes of spent fuel a year. Fuel assemblies, which contain radioactive materials including uranium and plutonium that can remain dangerous for thousands of years, are cooled for a decade under water in spent fuel pools.

Fuel Pool at Koeberg, South Africa

In 2016,  Eskom paid an estimated 200 million rand ($13.60 million) for an initial batch of seven reinforced dry storage casks from U.S. energy company Holtec International to help keep Koeberg running beyond 2018.  Eskom now has nine new unused casks on site, each with an individual capacity of 32 spent fuel assemblies, with another five expected to be delivered soon.

Holtec Cask

The 14 casks should ensure there is sufficient storage in the spent fuel pool until 2024, Eskom said, ahead of a tender for an extra 30 casks….Anti-nuclear lobby group Earthlife Africa said South Africa could not afford the social, environmental and economic costs associated with nuclear waste.  “We have a ticking bomb with high-level waste and fuel rods at Koeberg,” said Makoma Lekalakala, Earthlife Africa’s director.

Wendell Roelf, Waste storage at Africa’s only nuclear plant brimming, Reuters, Nov. 25, 2019

The Rolls Royce Nuclear Reactor

Small modular nuclear  reactors (SMRs) are relatively small and flexible: they have a power capacity of up to 300 MW(e) and their output can fluctuate in line with demand. This makes them particularly attractive for remote regions with less developed grids, but also for use as a complement to renewables and for non-electric applications of nuclear power. SMRs can be manufactured and then shipped and installed on site, so they are expected to be more affordable to build.

The Rolls Royce SMR is small enough to be transported by truck.

Globally, there are about 50 SMR designs and concepts at different stages of development. Three SMR plants are in advanced stages of construction or commissioning in Argentina, China and Russia, which are all scheduled to start operation between 2019 and 2022…Some SMR designs have features that could reduce the tasks associated with spent fuel management. Power plants based on these designs require less frequent refuelling, every 3 to 7 years, in comparison to between 1 and 2 years for conventional plants, and some are even designed to operate for up to 30 years without refuelling. Nevertheless, even in such cases, there will be some spent fuel left, which will have to be properly managed.

Excerpts from Small Modular Reactors: A Challenge for Spent Fuel Management? IAEA News, Aug. 8, 2019

How to Make Money out of the Nuclear Waste Mess

Companies specializing in the handling of radioactive material are buying retired U.S. nuclear reactors from utilities and promising to clean them up and demolish them in dramatically less time than usual — eight years instead of 60, in some cases.  Turning nuclear plants over to outside companies and decommissioning them on such a fast track represents a completely new approach in the United States, never before carried to completion in this country, and involves new technology as well…

Once a reactor is shut down, the radioactive mess must be cleaned up, spent nuclear fuel packed for long-term storage and the plant itself dismantled. The most common approach can last decades, with the plant placed in a long period of dormancy while radioactive elements slowly decay.  Spent fuel rods that can no longer sustain a nuclear reaction remain radioactive and still generate substantial heat. They are typically placed in pools of water to cool, staying there for at least five years, with 10 years the industry norm, according to the Nuclear Regulatory Commission. After that, they are removed and placed in giant cylindrical casks, typically made of steel and encased in concrete.

But Holtec International, which in the past year has been buying up several retired or soon-to-be-retired nuclear plants in the U.S., has designed a cask it says can accept spent fuel after only two years of cooling.  Holtec struck a deal last year to buy Oyster Creek in Forked River, New Jersey, from its owner, Exelon Generation.  It also has deals in place to buy several plants owned by Entergy Corp., including: Pilgrim, in historic Plymouth, Massachusetts, closing May 31; Palisades, in Covert, Michigan, set to shut down in 2022 ; and two reactors expected to close within two years at Indian Point in Buchanan, New York….  NorthStar Group Services, a specialist in nuclear demolition, completed the purchase of Vermont Yankee from Entergy with plans for its accelerated decommissioning.

The companies jumping into the business believe they can make in profit….Holtec will inherit the multibillion-dollar decommissioning trust funds set up by the utilities for the plants’ eventual retirement. , The company would be able to keep anything left over in each fund after the plant’s cleanup. By Holtec’s accounting, for instance, the Pilgrim decommissioning will cost an estimated $1.13 billion, leaving $3.6 million in the fund.  Holtec and Northstar are also banking on the prospect of recouping money from the federal government for storing spent fuel during and after the decommissioning, because there is no national disposal site for high-level nuclear waste…

Holtec has come under scrutiny over its role in a mishap in August 2018 during the somewhat less aggressive decommissioning of the San Onofre plant in Southern California, where two reactors were retired in 2013 and the estimated completion date is 2030….Holtec contractors were lowering a 45-ton spent fuel cask into an underground storage vault at San Onofre when it became misaligned and nearly plunged 18 feet, investigators said. No radiation was released.  Federal regulators fined Southern California Edison, the plant’s owner, $116,000, and an investigation found that some Holtec procedures had been inadequate or not properly followed.

BOB SALSBERG , Speedy reactor cleanups may carry both risks and rewards, Associated Press, May 21, 2019

Institutions Go Away But Not Nuclear Waste

The Trump administration  is asking Congress for money to resume work on the Yucca Mountain nuclear waste storage in Nevada.  But that may not end local opposition or a longstanding political stalemate. And in the meantime, nuclear plants are running out of room to store spent fuel….As the waste piles up, private companies are stepping in with their own solutions for the nation’s radioactive spent fuel. One is proposing a temporary storage site in New Mexico, and another is seeking a license for a site in Texas.

Most experts agree that what’s needed is a permanent site, like Yucca Mountain, that doesn’t require humans to manage it.  “Institutions go away,” says Edwin Lyman, acting director of the Nuclear Safety Project at the Union of Concerned Scientists. “There’s no guarantee the owner will still be around for the duration of time when that waste remains dangerous, which is tens or hundreds of thousands of years.”

A California company says it has a viable plan for permanent storage. Deep Isolation wants to store spent fuel in holes drilled at least 1,000 feet underground in stable rock formations. The company says the waste would be separate from groundwater and in a place where it can’t hurt people.  “I like to imagine having a playground at the top of the Deep Isolation bore hole where my kids and I can go play,” says CEO Elizabeth Muller.  In November 2018, Muller’s company conducted a test north of Austin, Texas. Crews lowered an 80-pound canister into a drilled hole. It was a simulation, so no radioactive substances were involved. The goal was to determine whether they could also retrieve the canister.  The test was successful, and that’s important. Regulators require retrieval, because new technology could develop to better deal with the spent fuel. And the public is less likely to accept disposal programs that can’t be reversed, according to the International Atomic Energy Agency.

Proving the waste can be retrieved may be the easy part. The bigger challenge is federal law, which doesn’t allow private companies to permanently store nuclear waste from power plants.  Current law also says all the waste should end up at Yucca Mountain in Nevada. By contrast, Deep Isolation’s technology would store waste at sites around the country, likely near existing nuclear power plants.

Jeff Brady, As Nuclear Waste Piles Up, Private Companies Pitch New Ways To Store It, NPR, Apr. 30, 2019

Never-Ending CleanUp: Fukushima

 The operator of Japan’s wrecked Fukushima nuclear plant completed in April 2019 the removal of the first fuel rods from a cooling pool high up in a badly damaged reactor building, a rare success in the often fraught battle to control the site.  The batch of 22 unused fuel assemblies, which each contain 50-70 of the fuel rods, was transferred by a trailer to a safer storage pool, the last day of a four-day operation, Tokyo Electric Power Co, or Tepco, said in a statement.

The company must carefully pluck more than 1,500 brittle and potentially damaged assemblies from the unstable reactor No.4., the early stages of a decommissioning process following the 2011 earthquake and tsunami that wrecked the site.

Tepco estimates removing the damaged assemblies from reactor No.4 alone will take a year. Some experts say that timeline is ambitious.  Still, it is an urgent operation. They are being stored 18 meters (59 feet) above ground level in a building that has buckled and tilted and could collapse if another quake strikes.  Carefully plucking the damaged fuel assemblies from the reactor building is being seen as a test of Tepco’s ability to move ahead with decommissioning the whole facility – a task likely to cost tens of billions of dollars and take decades.  The removal has to be conducted under water. If the rods are exposed to air or if they break, huge amounts of radioactive gases could be released into the atmosphere. Each assembly weighs around 300 kg (660 pounds) and is 4.5 meters (15 feet) long.  The hazardous removal operation has been likened by Arnie Gundersen, a veteran U.S. nuclear engineer and director of Fairewinds Energy Education, to trying to pull cigarettes from a crushed pack

Exerpts from In Start of Long Operation, Fukushima Removes First Fuel Rods, Reuters, April 2019

Devil’s Idea for Tokyo’s End: Fukushima

By late March 2011… after tsunami struck the Fukushima Daiichi plant—it was far from obvious that the accident was under control and the worst was over. Chief Cabinet Secretary Yukio Edano feared that radioactive material releases from the Fukushima Daiichi plant and its sister plant (Fukushima Daini) located some 12 km south could threaten the entire population of eastern Japan: “That was the devil’s scenario that was on my mind. Common sense dictated that, if that came to pass, then it was the end of Tokyo.”

Prime Minister Naoto Kan asked Dr. Shunsuke Kondo, then-chairman of the Japanese Atomic Energy Commission, to prepare a report on worst-case scenarios from the accidenta .  Dr. Kondo led a 3-day study involving other Japanese experts and submitted his report (Kondo, 2011) to the prime minister on March 25, 2011. The existence of the report was initially kept secret because of the frightening nature of the scenarios it described. An article in the Japan Times quoted a senior government official as saying, “The content [of the report] was so shocking that we decided to treat it as if it didn’t exist.” …

One of the scenarios involved a self-sustaining zirconium cladding fire in the Unit 4 spent fuel pool. Radioactive material releases from the fire were estimated to cause extensive contamination of a 50- to 70-km region around the Fukushima Daiichi plant with hotspots significant enough to require evacuations up to 110 km from the plant. Voluntary evacuations were envisioned out to 200 km because of elevated dose levels. If release from other spent fuel pools occurred, then contamination could extend as far as Tokyo,…There was particular concern that the zirconium cladding fire could produce enough heat to melt the stored fuel, allowing it to flow to the bottom of the pool, melt through the pool liner and concrete bottom, and flow into the reactor building.

Lessons Learned from the Fukushima Daiichi Accident for Spent Fuel Storage: The U.S. nuclear industry and its regulator should give additional attention to improving the ability of plant operators to measure real-time conditions in spent fuel pools and maintain adequate cooling of stored spent fuel during severe accidents and terrorist attacks. These improvements should include hardened and redundant physical surveillance systems (e.g., cameras), radiation monitors, pool temperature monitors, pool water-level monitors, and means to deliver pool makeup water or sprays even when physical access to the pools is limited by facility damage or high radiation levels….

[At nuclear power plants there must be…adequate separation of plant safety and  security systems so that security systems can continue to function independently if safety systems are damaged. In particular, security systems need to have independent, redundant, and protected power sources…]

Excerpts from Lessons Learned from the Fukushima Accident for Improving
Safety and Security of U.S. Nuclear Plants: Phase 2, US National Academies, 2016

Nuclear Waste Disposal: Japan

The Japanese government will select potential areas to host nuclear dump sites instead of waiting for communities to volunteer, according to the revised policy on permanent disposal of high-level radioactive waste that was adopted by the Cabinet on May 22, 2015  The revision, the first in seven years, was prompted after towns, villages and cities throughout Japan snubbed requests to host nuclear waste dumps. The government has been soliciting offers since 2002.

The move is seen as a sign that the government wants to address the matter as it proceeds with its pursuit of reactor restarts. All commercial units have largely sat idle since the triple meltdown at the Fukushima No. 1 plant in 2011….Prime Minister Shinzo Abe’s administration is seeking to revive atomic power, although the majority of the public remains opposed in light of the Fukushima disaster, which left tens of thousands homeless. Critics have attacked the government for promoting atomic power without resolving where all the waste will end up.

Permanent disposal of high-level nuclear waste requires that a depository be built more than 300 meters underground, where the materials must lie for up to 100,000 years until radiation levels fall to the point where there is no harm to humans or the environment.  About 17,000 tons of spent fuel is stored on the premises of nuclear plants and elsewhere in Japan, but some would run out of space in three years if all the reactors got back online.  Under the revision, the government said it will allow future generations to retrieve high-level waste from such facilities should policy changes or new technologies emerge.

Worldwide, only Finland and Sweden have been able to pick final depository sites.

Excerpts from METI changes tactics after search for nuclear waste host proves futile,  Japan Times, May 22, 2015

Ukraine – Nuclear Power and Waste

UKRAINE, More than 3,000 spent nuclear fuel rods are kept inside metal casks within towering concrete containers in an open-air yard close to a perimeter fence at Zaporizhia, the Guardian discovered on a recent visit to the plant, which is 124 miles (200km) from the current front line.“

With a war around the corner, it is shocking that the spent fuel rod containers are standing under the open sky, with just a metal gate and some security guards waltzing up and down for protection,” said Patricia Lorenz, a Friends of the Earth nuclear spokeswoman who visited the plant on a fact-finding mission.“I have never seen anything like it,” she added. “It is unheard of when, in Germany, interim storage operators have been ordered by the court to terror-proof their casks with roofs and reinforced walls.”  

Industry experts said that ideally the waste store would have a secondary containment system such as a roof.  Ukraine’s conflict in Donbass is 124 miles away from the plant, but Gustav Gressel, a fellow at the European Council of Foreign Relations thinks the front line is too far away – for now – to be at risk from fighting.

However, locals still fear for the potential consequences if the conflict was to spread in the plant’s direction. Just three decades ago, an explosion at the Chernobyl nuclear power plant north of Kiev released a radioactive cloud that poisoned vast tracts of land…

Plant security at Zaporizhia is now at a ‘high readiness’ level, while air force protection and training exercises have been stepped up. Officials say that if fighting reaches the plant, there are plans for the closure of access roads and deployment of soldiers.  But they say that no containment design could take the stresses of military conflict into account. “Given the current state of warfare, I cannot say what could be done to completely protect installations from attack, except to build them on Mars,” Sergiy Bozhko , the chairman of the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) told the Guardian…..

However, a dry storage container with a resilient roof and in-house ventilation would offer greater protection….

“Nuclear energy is the only possible option for us to replace the generated electricity that we lost [from coal and gas],” a government source told the Guardian. “After the start of open war with Russia, it was understood that all our other strategies in the energy sphere would become impossible.” Some 60% of Ukraine’s electricity is now produced by 15 ageing reactors – concentrated in four giant plants. Nine of these will reach the end of their design lifetimes in the next five years, and three have already.  Most of Ukraine’s nuclear fleet depends on Russia’s Rosatom to supply its enriched uranium fuel – and to whisk away the resulting radioactive waste for storage…

But as fear and loathing in the war-torn region grow, government sources say that in the long term, Ukraine aims to forge a three-way split in nuclear fuel supply contracts between US-company Westinghouse, European companies, such as Areva, and Rosatom. This creates its own safety issues….

Last December (2014), the US firm signed a memo with Ukraine to “significantly increase fuel deliveries” to Ukrainian plants, though the details are sketchy. A similar deal was signed with the French nuclear company Areva on 24 April.  But fears of Russian retaliation have dogged past plans to shift supply or disposal contracts to the West, and market diversification will be a slow process….

The US has provided technology, training and hundreds of millions of dollars to help Ukraine’s push for fuel diversification, according to a US diplomatic cable from 2009, published by Wikileaks.  Westinghouse has also lobbied the Ukrainian government at ministerial level to commit to buying their fuel for at least five reactors. Plant managers say that it will be used in Zaporizhia by 2017.

Excerpts from Nuclear waste stored in ‘shocking’ way 120 miles from Ukrainian front line, Guardian, May 6, 2015