Monthly Archives: May 2018

An Unforgettable Type of Pollution

May 2018: The environmental damage around the site of two Royal Dutch Shell oil spills in Nigeria a decade ago has worsened significantly after years of delay to cleanup efforts, according to a report that the oil giant has been accused of trying to shield from public view.  The spills from a ruptured Shell pipeline spewed thousands of barrels of oil over parts of the Bodo fishing community in the crude-rich Niger Delta. Although the company in 2015 reached an out-of-court settlement with the local community, admitting to liability and agreeing to pay £55 million, or around $80 million at the time, in compensation, controversy around the case has remained.

A United Nations body, in a 2011 report, found extensive environmental damage around Bodo. Four years later, an assessment to prepare the cleanup found soil contamination had worsened while cleanup efforts languished and illegal refining and oil theft added to pollution in the area, according to an academic paper published last month. That has left the community facing potentially toxic pollution and “catastrophic” damage to the environment, the paper said.  The 2015 analysis was commissioned by the Bodo Mediation Initiative, a consortium established to oversee the cleanup in the area. Shell is a member of the group along with local stakeholders.

At least one of the authors urged the findings to be widely distributed because they pointed to significant health risks to the local community. Kay Holtzmann, the cleanup project’s former director, said in a letter reviewed by the Journal that Shell had denied him permission to publish the study’s results in a scientific journal.

But the academic paper* said the site survey contained new facts. The average surface soil contamination in Bodo had tripled since the original U.N. probe,the paper said. Out of 32 samples taken from the top two inches of soil in the area around Bodo, only one was within Nigeria’s legally acceptable limit for oil contamination, the paper added.

Excerpts from Pollution Worsens Around Shell Oil Spills in Nigeria, Wall Street Journal, May 26, 2018.

*Sediment Hydrocarbons in Former Mangrove Areas, Southern Ogoniland, Eastern Niger Delta, Nigeria, Apr. 2018

The Unquenchable Thirst: water mismanagement

Most of the drinking water consumed in Beijing has travelled 1,432km (895 miles), roughly the distance from New York to Orlando, Florida. Its journey begins in a remote and hilly part of central China at the Danjiangkou reservoir, on the bottom of which lies the drowned city of Junzhou. The water gushes north by canal and pipeline, crosses the Yellow river by burrowing under it, and arrives, 15 days later, in the water-treatment plants of Beijing. Two-thirds of the city’s tap water and a third of its total supply now comes from Danjiangkou.

This winter and spring, the reservoir was the capital’s lifeline. No rain or snow fell in Beijing between October 23rd 2017 and March 17th 2018—by far the longest drought on record. Yet the city suffered no supply disruptions, unlike Shanxi province to the west, where local governments rationed water. The central government is exultant, since the project which irrigates Beijing was built at vast cost and against some opposition.

The South-to-North Water Diversion Project—to give the structure its proper name—is the most expensive infrastructure enterprise in the world. It is the largest transfer of water between river basins in history, and China’s main response to its worst environmental threat, which is (despite all the pollution) lack of water.

The route between Beijing and Danjiangkou, which lies on a tributary of the Yangzi, opened in 2014. An eastern route opened in 2013 using the ancient Grand Canal between Hangzhou and the capital. (Jaw-dropping hydrological achievements are a feature of Chinese history.) A third link is planned on the Tibetan plateau, but since that area is prone to earthquakes and landslides, it has been postponed indefinitely…

Downstream from Danjiangkou, pollution has proved intractable. By diverting water from the Yangzi, the project has made the river more sluggish. It has become less able to wash away contaminants and unable to sustain wetlands, which act as sponges and reduce flooding. To compensate for water taken from their rivers, local governments are also building dams wherever they can to divert it back again. Shaanxi province, for example, is damming the Han river to transfer water to its depleted river Wei….Worst of all, the project diverts not only water but money and attention from China’s real water problem: waste and pollution.

Excerpts from Water: Massive Diversion, Economist, Apr. 7, 2018

Flying off the Shelves: the entrenching of drone warfare

A 2018 report published by Drone Wars UK reveals that over the last five years the number of countries actively using armed drones has quadrupled. Drone Wars: The Next Generation demonstrates that from just three states (US, UK and Israel) in 2013, there are now a further nine who have deployed armed drones in a variety of roles including for armed conflict and counter-terror operations. The report also shows that a further nine states are very close to having armed drone capabilities, almost doubling the number of existing users. To this number, we have added five non-state actors who have used armed drones, which will take the number of active operators of armed drones to over 25 in the next few years.

As is well known, China has sold armed drones to a number of countries around the world. Since 2013, Nigeria, Pakistan, Saudi Arabia, Iraq, UAE and Egypt have begun operating armed Chinese drones whilst another four countries (Jordan, Myanmar, Kazakhstan and Turkmenistan) are thought to have recently taken possession of, or be in discussion about the sale of, Chinese drones. These Wing Loong and CH series drones are cheaper and less powerful than US Predators and Reapers.  As, according to their specifications, they are not capable of delivering a payload of at least 500 kg to a range of at least 300 km they do not fall into the category of systems that would be refused under Category 1 of the Missile Technology Control Regime (MTCR) as the US systems do.

Turkey, Pakistan and Iran are actively using their own manufactured drones. Iran has, it seems, supplied Hamas, Hezbollah and the Houthis with armed drones while ISIS and the PKK  (Kurdistan Workers’ Party) have attached small explosives to off-the-shelf drones. Turkey are thought to be concluding deal with Qatar and the Ukrain eand South Korea are very close to beginning production of their own armed drones.

As for the larger countries that one might expect to have already deployed armed drones, such as Russia and India, they still appear to be some distance from producing workable models…Several cross-European projects are underway to develop indigenous armed drones within the EU.

Excerpts from New research shows rise in number of states deploying armed drones, Press Release from Drone Wars UK, May 17, 2018

Extreme Markets: the fascination for wild genitalia

Tomohon, in the highlands of North Sulawesi, Indonesia is …the “extreme market”. There is certainly something extreme about the serried carcasses, blackened by blow torches to burn off the fur, the faces charred in a rictus grin.   The pasar extrim speaks to Sulawesi’s striking biogeography. The Indonesian island straddles the boundary between Asiatic and Australian species—and boasts an extraordinary number of species found nowhere else. But the market also symbolises how Asia’s amazing biodiversity is under threat. Most of the species on sale in Tomohon have seen populations crash because of overhunting (habitat destruction has played a part too)…

An hour’s drive from Tomohon is Bitung, terminus for ferry traffic from the Moluccan archipelago and Papua, Indonesia’s easternmost province. These regions are even richer in wildlife, especially birds. Trade in wild birds is supposedly circumscribed. Yet the ferries are crammed with them: Indonesian soldiers returning from a tour in Papua typically pack a few wild cockatoos or lories to sell. One in five urban households in Indonesia keeps birds. Bitung feeds Java’s huge bird markets. The port is also a shipment point on a bird-smuggling route to the Philippines and then to China, Taiwan, even Europe. Crooked officials enable the racket.

The trade in animal parts used for traditional medicine or to denote high status, especially in China and Vietnam, is an even bigger racket. Many believe ground rhino horn to be effective against fever, as well as to make you, well, horny. Javan and Sumatran rhinos were not long ago widespread across South-East Asia, but poaching has confined them to a few tiny pockets of the islands after which they are named. Numbers of the South Asian rhinoceros are healthier, yet poachers in Kaziranga national park in north-east India have killed 74 in the past three years alone.

Name your charismatic species and measure decline. Between 2010 and 2017 over 2,700 of the ivory helmets of the helmeted hornbill, a striking bird from South-East Asia, were seized, with Hong Kong a notorious transshipment hub. It is critically endangered. As for the tiger, in China and Vietnam its bones and penis feature in traditional medicine, while tiger fangs and claws are emblems of status and power. Fewer than 4,000 tigers survive in the wild. The pressure from poachers is severe, especially in India. The parts of over 1,700 tigers have been seized since 2000.

Asia’s wildlife mafias have gone global. Owing to Asian demand for horns, the number of rhinos poached in South Africa leapt from 13 in 2007 to 1,028 last year. The new frontline is South America. A jaguar’s four fangs, ten claws, pelt and genitalia sell for $20,000 in AsiaSchemes to farm animals, which some said would undercut incentives to poach, have proved equally harmful. Lion parts from South African farms are sold in Asia as a cheaper substitute for tiger, or passed off as tiger—either way, stimulating demand. The farming of tigers in China, Laos, Thailand and Vietnam provides cover for the trafficking of wild tiger parts. Meanwhile, wild animals retain their cachet—consumers of rhino horn believe the wild rhino grazes only on medicinal plants.

Excerpts from  Wasting Wildlife, Economist, Apr. 21, 2018, at 36

Furthest from their Minds: greenhouse gases in Afirca

When sub-Saharan Africa comes up in discussions of climate change, it is almost invariably in the context of adapting to the consequences, such as worsening droughts. That makes sense. The region is responsible for just 7.1% of the world’s greenhouse-gas emissions, despite being home to 14% of its people. Most African countries do not emit much carbon dioxide. Yet there are some notable exceptions.

Start with coal-rich South Africa, which belches out more carbon dioxide than Britain, despite having 10m fewer people and an economy one-eighth the size. Like nearly all of its power plants, many of its vehicles depend on coal, which is used to make the country’s petrol (a technique that helped the old apartheid regime cope with sanctions). A petrochemical complex in the town of Secunda owned by Sasol, a big energy and chemicals firm, is one of the world’s largest localised sources of greenhouse gases.  Zambia is another exception. It burns so much vegetation that its land-use-related emissions surpass those of Brazil, a notorious—and much larger—deforester.

South Africa and Zambia may be extreme examples, but they are not the region’s only big emitters . Nigerian households and businesses rely on dirty diesel generators for 14GW of power, more than the country’s installed capacity of 10GW. Subsistence farmers from Angola to Kenya use slash-and-burn techniques to fertilise fields with ash and to make charcoal, which nearly 1bn Africans use to cook. This, plus the breakneck growth of extractive industries, explains why African forests are disappearing at a rate of 0.5% a year, faster than in South America. Because trees sequester carbon, cutting them counts as emissions in climate accounting.

Other African countries are following South Africa’s lead and embracing coal…A new coal-fired power plant ….Lamu in Kenya is one of many Chinese-backed coal projects in Africa…Africa’s sunny skies and long, blustery coastlines offer near-limitless solar- and wind-energy potential. But what African economies need now are “spinning reserves”, which can respond quickly to volatile demand, says Josh Agenbroad of the Rocky Mountain Institute, a think-tank in Colorado. Fossil fuels deliver this; renewables do not…. Several countries are intrigued by hybrid plants where most electricity is generated by solar panels, but diesel provides the spinning reserves…

Excerpts from  Africa and Climate Change: A Burning Issue, Economist,  Apr. 21, 2018, at 41.

The 1 Million Genies out of the Bottle

The head of the U.S. Departement of Homeland Security  (DHS)  on May 15, 2018 told Congress that the agency needs new legal authority to track threatening drones and disable or destroy them if necessary.  “Our enemies are exploring other technologies, too, such as drones, to put our country in danger. ISIS has used armed drones to strike targets in Syria, and we are increasingly concerned that they will try the same tactic on our soil,” she said…

Government and private-sector officials are concerned that dangerous or even hostile drones could get too close to places like military bases, airports and sports stadiums.Nielsen added that DHS has “also seen drones used to smuggle drugs across our borders and to conduct surveillance on sensitive government locations.”

In 2017, the Federal Aviation Administration barred drone flights over major U.S. nuclear sites. The FAA also banned drone flights over 10 U.S. landmarks, including the Statue of Liberty in New York and Mount Rushmore in South Dakota.  Also banned in 2017 were drone flights over 133 U.S. military facilities. The Pentagon said in August 2017 that U.S. military bases could shoot down drones that pose a threat.  The FAA said in January 2017  that more than 1 million drones have been registered. Last week, the U.S. Transportation Department picked 10 pilot projects allowing drone use at night, out of sight operations and over populated areas

Exceprts from U.S. agency seeks new authority to disable threatening drones, May 15, 2018

Congo, China and Battery Minerals

The demand of cobalt is bound to increase because of the batteries needed to power  electric vehicles (EVs).  Each battery uses about 10kg of cobalt. It is widely known that more than half of the world’s cobalt reserves and production are in one dangerously unstable country, the Democratic Republic of Congo. What is less well known is that four-fifths of the cobalt sulphates and oxides used to make the all-important cathodes for lithium-ion batteries are refined in China. (Much of the other 20% is processed in Finland, but its raw material, too, comes from a mine in Congo, majority-owned by a Chinese firm, China Molybdenum.)

On March 14t, 2018 concerns about China’s grip on Congo’s cobalt production deepened when GEM, a Chinese battery maker, said it would acquire a third of the cobalt shipped by Glencore, the world’s biggest producer of the metal, between 2018 and 2020—equivalent to almost half of the world’s 110,000-tonne production in 2017. This is likely to add momentum to a rally that has pushed the price of cobalt up from an average of $26,500 a tonne in 2016 to above $90,000 a tonne

South Korean and Japanese tech firms and it’s a big concern of theirs that so much of the world’s cobalt sulphate comes from China. Memories are still fresh of a maritime squabble in 2010, during which China restricted exports of rare-earth metals vital to Japanese tech firms. China produces about 85% of the world’s rare earths.

Few analysts expect the cobalt market to soften soon. Production in Congo is likely to increase in the next few years, but some investment may be deterred by a recent five-fold leap in royalties on cobalt. Investment elsewhere is limited because cobalt is almost always mined alongside copper or nickel. Even at current prices, the quantities needed are not enough to justify production for cobalt alone.

But demand could explode if EVs surge in popularity… the use of cobalt for EVs could jump from 9,000 tonnes in 2017 to 107,000 tonnes in 2026.  The resulting higher prices would eventually unlock new sources of supply. But already non-Chinese battery manufacturers are looking for ways to protect themselves from potential shortages. Their best answer to date is nickel.

The materials most commonly used for cathodes in EV batteries are a combination of nickel, manganese and cobalt known as NMC, and one of nickel, cobalt and aluminium known as NCA. As cobalt has become pricier and scarcer, some battery makers have produced cobalt-lite cathodes by raising the nickel content—to as much as eight times the amount of cobalt. This allows the battery to run longer on a single charge, but makes it harder to manufacture and more prone to burst into flames. The trick is to get the balance right.

Strangely, nickel has not had anything like cobalt’s price rise. Nor do the Chinese appear to covet it… Nickel prices plummeted from $29,000 a tonne in 2011 to below $10,000 a tonne 2017…. But by 2025 McKinsey expects EV-related nickel demand to rise 16-fold to 550,000 tonnes.

In theory, the best way to ensure sufficient supplies of both nickel and cobalt would be for prices to rise enough to make mining them together more profitable. But that would mean more expensive batteries, and thus electric vehicles.

Excerpts from The Scramble for Battery Minerals, Economist, Mar. 24, 2018

The Super-Corals

By some estimates, half of the world’s coral has been lost since the 1980s. Corals are delicate animals, and are succumbing to pollution and sediment from coastal construction. Also to blame are sewage, farmland run-off and fishing, all of which favour the growth of the big, fleshy algae that are corals’ main competitors for space. (The first two encourage algal growth and the third removes animals that eat those algae.) But the biggest killer is warming seawater. Ocean heatwaves in 2015, 2016 and 2017 finished off an astonishing 20% of the coral on Earth. This is troubling, for countless critters depend on coral reefs for their survival. Indeed, such reefs, which take up just a thousandth of the ocean floor, are home, for at least part of their life cycles, to a quarter of marine species. Losing those reefs would cause huge disruption to the ocean’s ecosystem. So researchers are looking for ways to stop this happening.

A growing number of scientists reckon that an entirely different approach to saving coral is needed. If oceans are changing faster than coral can adapt via the normal processes of evolution, why not, these researchers argue, work out ways to speed up such evolution  One way to do this would be selective breeding. Most species of coral spawn on just one or two nights a year, a process regulated by the lunar cycle, the time of sunset and the temperature of the water. The sperm and eggs released during spawning meet and unite, and the results grow into larvae that search for places where they can settle down and metamorphose into the stone-encased sea-anemone-like polyps that are the adult form. In the wild, the meeting of sperm and egg is random. Some researchers, however, are trying to load the dice. By starting with wild specimens that have survived a period of heat which killed their neighbours, they hope to breed heat resistance into the offspring.

This is the tack taken, for example, by Christian Voolstra of the Red Sea Research Centre in Thuwal, Saudi Arabia. He describes it as “making sure super papa and super mama meet and reproduce”. Corals bred in this way at the Hawaii Institute of Marine Biology, on Oahu, survive in water that is warm enough to kill offspring resulting from normal, random reproduction.

The reason corals die when the surrounding water gets too hot is that the microscopic algae and bacteria which live on and in their tissue, and are their main food sources, are sensitive to small changes in temperature. When stressed by heat these symbionts start producing dangerous oxidants. This causes the polyps to eject them, to ensure short-term survival. The reef thus turns ghostly white—a process called bleaching. Bleached coral is not dead. But unless the temperature then drops, the polyps will not readmit the algae and bacteria, and so, eventually, they do die.

Polyps that survive one such ordeal will, however, fare better if temperatures rise again. The second time around they have acclimatised to the change. Some species, indeed, can pass this resilience on to their offspring by a process called intergenerational epigenesis. The Hawaii Institute’s efforts to develop hardier corals thus include administering a near-death experience to them. Ruth Gates, the institute’s director, says the goal is to create reefs “designed to withstand the future”. The institute’s first such reef will probably be grown inside Biosphere 2, an enclosed ecosystem run by the University of Arizona.

Another approach, taken by the Australian Institute of Marine Science (AIMS) in Queensland, is to crossbreed corals from different places, to create hybrid vigour. The results of such crosses are unpredictable, but some survive heat greater than either of their parents could cope with.

The artificial breeding of corals is, though, constrained by their cyclical breeding habits, so researchers at the Florida Aquarium, on Tampa Bay, are trying to speed the process up. The operators of the aquarium’s “coral ark” nursery stagger lighting and temperature patterns to fool the animals into releasing their gametes on a day of the researchers’ choosing. This also permits the co-mingling of sperm and eggs that would not normally meet, thus allowing new varieties to be created. According to Scott Graves, the aquarium’s boss, half a dozen such varieties show most promise of heat resistance, but the team is generating thousands more, “just like a seed bank”, as a backup.

A coral’s fate is tied so closely to the algae and bacteria which live in its tissues that, as Dr Gates puts it, it is best to think of the whole thing as “a consortium of organisms”. This is why scientists at AIMS are keen also to produce algae that withstand higher temperatures without releasing the oxidants that lead coral to kick them out. They are doing so using a process which Madeleine van Oppen, a researcher at the institute, calls “directed laboratory evolution”. In the past few years her team have grown more than 80 generations of algae, repeatedly culling those organisms most susceptible to heat stress and also to acidification, another curse of a world with more carbon dioxide around than previously. The resulting algae release fewer toxins and photosynthesise better in warm water than do their wild brethren..

[A]fter the trauma of bleaching, polyps do extend a preferential welcome to algae that have greater levels of heat tolerance. His team are thus now using special lights to bleach corals. Polyps “stress hardened” in this way will be planted on wild reefs in coming months…

This raises the question of whether the genomes of coral, algae and bacteria might be edited for greater robustness. According to Dr Voolstra, more than ten laboratories around the world are trying to do so. His own team has successfully inserted genetic material into about 30 larvae of a coral called Acropora millepora. Editing corals’ heat thresholds in this way is, he reckons, about five years away.

Whether they are created by selective breeding or genetic engineering, supercorals, the thinking goes, would not need to be placed on reefs in astronomical numbers… That thought, however, does not please everybody. Some object in principle to the idea of releasing human-modified creatures into the wild, or feel that amelioration of this sort is a distraction from the business of reducing carbon-dioxide emissions. Others have pragmatic concerns—that corals bred to survive warming seas might suffer handicapping trade-offs. So regulators have been cautious. The Great Barrier Reef Marine Park Authority, for example, will probably require that the hybrid organisms AIMS hopes to test in the open reef are removed before they begin spawning. …[T]he alternative, of doing nothing, is the equivalent of “ just throwing our hands up in the air and saying, ‘OK, we’re prepared now not to have coral’.” For the world’s oceans, that loss would be catastrophic.

Excerpts from Accelerating Evolution: Refreshing Reefs, Economist, Mar. 17, 2018, at 75

Who Controls Peoples’ Data?

The McKinsey Global Institute estimates that cross-border flows of goods, services and data added 10 per cent to global gross domestic product in the decade to 2015, with data providing a third of that increase. That share of the contribution seems likely to rise: conventional trade has slowed sharply, while digital flows have surged. Yet as the whole economy becomes more information-intensive — even heavy industries such as oil and gas are becoming data-driven — the cost of blocking those flows increases…

Yet that is precisely what is happening. Governments have sharply increased “data localisation” measures requiring information to be held in servers inside individual countries. The European Centre for International Political Economy, a think-tank, calculates that in the decade to 2016, the number of significant data localisation measures in the world’s large economies nearly tripled from 31 to 84.

Even in advanced economies, exporting data on individuals is heavily restricted because of privacy concerns, which have been highlighted by the Facebook/ Cambridge Analytica scandal. Many EU countries have curbs on moving personal data even to other member states. Studies for the Global Commission on Internet Governance, an independent research project, estimates that current constraints — such as restrictions on moving data on banking, gambling and tax records — reduces EU GDP by half a per cent.

In China, the champion data localiser, restrictions are even more severe. As well as long-established controls over technology transfer and state surveillance of the population, such measures form part of its interventionist “ Made in China 2025 ” industrial strategy, designed to make it a world leader in tech-heavy sectors such as artificial intelligence and robotics.

China’s Great Firewall has long blocked most foreign web applications, and a cyber security law passed in 2016 also imposed rules against exporting personal information, forcing companies including Apple and LinkedIn to hold information on Chinese users on local servers. Beijing has also given itself a variety of powers to block the export of “important data” on grounds of reducing vaguely defined economic, scientific or technological risks to national security or the public interest.   “The likelihood that any company operating in China will find itself in a legal blind spot where it can freely transfer commercial or business data outside the country is less than 1 per cent,” says ECIPE director Hosuk Lee-Makiyama….

Other emerging markets, such as Russia, India, Indonesia and Vietnam, are also leading data localisers. Russia has blocked LinkedIn from operating there after it refused to transfer data on Russian users to local servers.

Business organisations including the US Chamber of Commerce want rules to restrain what they call “digital protectionism”. But data trade experts point to a serious hole in global governance, with a coherent approach prevented by different philosophies between the big trading powers. Susan Aaronson, a trade academic at George Washington University in Washington, DC, says: “There are currently three powers — the EU, the US and China — in the process of creating separate data realms.”

The most obvious way to protect international flows of data is in trade deals — whether multilateral, regional or bilateral. Yet only the World Trade Organization laws governing data flows predate the internet and have not been thoroughly tested through litigation. It recently recruited Alibaba co-founder Jack Ma to front an ecommerce initiative, but officials involved admit it is unlikely to produce anything concrete for a long time. In any case, Prof Aaronson says: “While data has traditionally been addressed in trade deals as an ecommerce issue, it goes far wider than that.”

The internet has always been regarded by pioneers and campaigners as a decentralised, self-regulating community. Activists have tended to regard government intervention with suspicion, except for its role in protecting personal data, and many are wary of legislation to enable data flows.  “While we support the approach of preventing data localisation, we need to balance that against other rights such as data protection, cyber security and consumer rights,” says Jeremy Malcolm, senior global policy analyst at the Electronic Frontier Foundation, a campaign for internet freedom…

Europe has traditionally had a very different philosophy towards data and privacy than the US. In Germany, for instance, public opinion tends to support strict privacy laws — usually attributed to lingering memories of surveillance by the Stasi secret police in East Germany. The EU’s new General Data Protection Regulation (GDPR), which comes into force on May 25, 2018 imposes a long list of requirements on companies processing personal data on pain of fines that could total as much as 4 per cent of annual turnover….But trade experts warn that the GDPR is very cautiously written, with a blanket exemption for measures claiming to protect privacy. Mr Lee-Makiyama says: “The EU text will essentially provide no meaningful restriction on countries wanting to practice data localisation.”

Against this political backdrop, the prospects for broad and binding international rules on data flow are dim. …In the battle for dominance over setting rules for commerce, the EU and US often adopt contrasting approaches.  While the US often tries to export its product standards in trade diplomacy, the EU tends to write rules for itself and let the gravity of its huge market pull other economies into its regulatory orbit. Businesses faced with multiple regulatory regimes will tend to work to the highest standard, known widely as the “Brussels effect”.  Companies such as Facebook have promised to follow GDPR throughout their global operations as the price of operating in Europe.

Excerpts from   Data protectionism: the growing menace to global business, Financial Times, May 13, 2018

Sailing the Seas Pollution Free

The shipping industry made a historic step toward cleaner air on April 13, 2018 with a deal to cut greenhouse gas emissions by half by 2050 compared to 2008…  Shipping and aviation were excluded from the Paris climate agreement adopted under a United Nations framework in 2015, with governments entrusting the International Maritime Organization (IMO) to come up with a consensus on carbon reduction measures from ocean going vessels.

The aviation sector reached a deal on carbon emissions in 2016, but it took shipping much longer as ocean carriers and regulators considered measures such as the adoption of clean-burning fuels or electric propulsion, slower sailing speeds and hull design improvements at a cost of hundreds of billions of dollars.  The deal puts the agreement into force world-wide, with no other action needed by the regulatory body. The final pact was a compromise between groups and countries including the European Union, China, and other Asia and Pacific nations that pushed for reductions in emissions by as much as 70% and the U.S., Argentina, Brazil and Saudi Arabia, among others, that pushed for lower targets.

Of the 173 IMO-member states, only the U.S. and Saudi Arabia, objected to the draft IMO agreement…Shipping contributes about 3% of total annual carbon dioxide (similar to an economy the size of Germany), or CO2, world-wide emissions, about the same as an economy the size of Germany, according to an IMO study. But vessel emissions are projected to increase by between 50% and 250% by 2050 as global trade grows and carriers add capacity without any action to intervene.  The IMO reductions would aim to cut carbon emissions to half the 2008 carbon dioxide levels.

The emission cuts will also affect thousands of exporters world-wide. Brazil, for example, exports large amounts of iron ore to China and fears strong caps will push up freight rates, helping rival Australia, whose iron exports sail half the distance to China.  Slow steaming, in which ships purposely throttle back to slower speeds, is also an anathema for countries exporting perishable goods like cherries from Chile and meat from Argentina.  Some countries with big shipping registries like the low-lying Marshall Islands, that want to stop the effects of climate change, led the call for strong cuts…

Excerpt from Shipping Regulators Reach Deal to Cut Carbon Emissions, Wall Street Journal,  Apr. 13, 2018

See also who is lobbying who on climate

A Slow-Burning Tragedy

Charcoal is one of the biggest informal businesses in Africa. It is the fuel of choice for the continent’s fast-growing urban poor, who, in the absence of electricity or gas, use it to cook and heat water. According to the UN, Africa accounted for three-fifths of the world’s production in 2012—and this is the only region where the business is growing. It is, however, a slow-burning environmental disaster.

In Nyakweri forest, Kenya, the trees are ancient and rare. Samwel Naikada, a local activist, points at a blackened stump in a clearing cut by burners. It is perhaps 400 years old, he says. The effect of burning trees spreads far. During the dry season, the forest is a refuge for amorous elephants who come in from the plains nearby to breed. The trees store water, which is useful in such a parched region. It not only keeps the Mara river flowing—a draw for the tourists who provide most of the county government’s revenue. It also allows the Masai people to graze their cows and grow crops. “You cannot separate the Masai Mara and this forest,” says Mr Naikada….

Nyakweri is hardly the only forest at risk. The Mau forest, Kenya’s largest, which lies farther north in the Rift Valley, has also been hit by illegal logging. Protests against charcoal traders (!) broke out earlier this year, after rivers that usually flow throughout the dry season started to run dry. In late February a trader’s car was reportedly burned in Mwingi, in central Kenya, by a group of youngsters who demanded to see the trader’s permits. At the end of February 2018 the government announced an emergency 90-day ban on all logging, driving up retail prices of charcoal by 500%, to as much as 5,000 shillings a bag in some cities.

The problems caused by the charcoal trade have spread beyond Kenya. In southern Somalia, al-Shabab, a jihadist group, funds itself partly through the taxes it levies on the sale of charcoal (sometimes with the help of Kenyan soldiers, who take bribes for allowing the shipments out of a Somali port that Kenya controls). The logging also adds to desertification, which, in turn, causes conflict across the Sahel, an arid belt below the Sahara. It forces nomadic herders to range farther south with their animals, where they often clash with farmers over the most fertile land.

In the power vacuum of the eastern Democratic Republic of Congo, rampant charcoal logging has destroyed huge swathes of Virunga National Park. That threatens the rare gorillas which tourists currently pay as much as $400 a day to view, even as it fuels the conflict.

In theory, charcoal burning need not be so destructive. In Kenya the burners are meant to get a licence. To do so, they have to show they are replacing the trees they are cutting down and that they are using modern kilns that convert the trees efficiently into fuel. But, admits Clement Ngoriareng, an official at the Kenya Forest Service (KFS), the rules are laxly enforced. Some suspect that powerful politicians stymie efforts to police burners.

Excerpts from A Very Black Market: Illegal Charcoal, Economist, Mar. 31, 2018

Somalia as Security Flank for the Gulf

A battle for access to seaports is underway in one of the world’s unlikeliest places: Somalia, now caught in a regional struggle between Saudi Arabia and the United Arab Emirates on one side with Qatar backed by Turkey on the other.  At stake: not just the busy waters off the Somali coast but the future stability of the country itself.

In 2017, a company owned by the United Arab Emirates government signed a $336 million contract to expand the port of Bosaso, north of Mogadishu in the semi-autonomous Somali region of Puntland.   In 2016, another UAE-owned firm took control of Berbera port in the breakaway northern region of Somaliland and pledged up to $440 million to develop it. In March 2017, Ethiopia took a stake in the port for an undisclosed sum.  The federal government in Mogadishu has long been at odds with the semi-autonomous regions of Puntland and Somaliland. The money could destabilise the country further by deepening tensions between central government, aligned with Turkey and Qatar, and Puntland and Somaliland, which both receive money from the UAE.

At the same time, Turkey, an ally of Qatar, is ramping up a multi-billion dollar investment push in Somalia. A Turkish company has run the Mogadishu port since 2014, while other Turkish firms built roads, schools and hospitals.   The rivalries have intensified since June 2017, when the most powerful Arab states, led by Saudi Arabia and including the UAE, cut diplomatic ties with Qatar, accusing it of supporting Iran and Islamist militants…

Saudi Arabia and the UAE increasingly view the Somali coastline – and Djibouti and Eritrea to the north – as their “western security flank”, according to a senior western diplomat in the Horn of Africa region…

Excerpts from  Gulf States Scramble for Somalia, Reuters, May 2, 2018

Choked by Hyacinths: Lake Victoria

The report, Freshwater biodiversity in the Lake Victoria Basin (2018), assesses the global extinction risk of 651 freshwater species, including fishes, molluscs, dragonflies, crabs, shrimps and aquatic plants native to East Africa’s Lake Victoria Basin, finding that 20% of these are threatened with extinction. Of the freshwater species assessed, 204 are endemic to the Lake Victoria Basin and three-quarters (76%) of these endemics are at risk of extinction.

The African Lungfish (Protopterus aethiopicus), for example, is declining in the Lake Victoria Basin largely due to overfishing, poor fishing practices and environmental degradation as wetlands are converted to agricultural land. The lungfish is considered a delicacy for some local communities and is an important local medicinal product, used to boost the immune system and treat alcoholism. The lungfish is also traded at market, making it important to the local economy.

Lake Victoria is the world’s second largest freshwater lake by surface area. Its catchment area includes parts of Kenya, Tanzania, Uganda, Burundi and Rwanda. Also referred to as ‘Darwin’s Dreampond’, Lake Victoria is known for its high levels of unique biodiversity. The Lake Victoria Basin harbours immense natural resources including fisheries, forests, wetlands and rangelands….

Pollution from industrial and agricultural sources, over-harvesting of resources and land clearance are among the primary threats to biodiversity in this region. Invasive species also present an important threat to native biodiversity in the basin, affecting 31% of all species and 73% of threatened species. The purple flowered Water Hyacinth (Eichhornia crassipes) was accidentally introduced to Lake Victoria from South America in the 1980s, and at its peak covered close to 10% of the lake surface in dense floating mats. These mats reduce the oxygen and nutrient availability in the water column, which negatively affects native biodiversity. Opportunities for harvesting and exploiting the Water Hyacinth, for example by using the species as fuel in bio-digesters for energy production, are under investigation.

Excerpts from Livelihoods at risk as freshwater species in Africa’s largest lake face extinction – IUCN Report, IUCN Report, Apr. 30, 2018

A Nuclear Titanic? the First Floating Nuclear Plant

A massive floating nuclear power plant is now making its way toward its final destination at an Arctic port (April 30, 2018)… It’s the first nuclear power plant of its kind, Russian officials say.  Called the Akademik Lomonosov, the floating power plant is being towed at a creeping pace out of St. Petersburg, where it was built over the last nine years. It will eventually be brought northward, to Murmansk – where its two nuclear reactors will be loaded with nuclear fuel and started up in the fall of 2018.

From there, the power plant will be pulled to a mooring berth in the Arctic port of Pevek, in far northeast Russia. There, it will be wired into the infrastructure so it can replace an existing nuclear power installment on land.  Critics of the plan include Greenpeace, which recently warned of a “Chernobyl on ice if Russia’s plans to create a fleet of floating nuclear power stations result in a catastrophe.

Russian officials say the mandate of the Akademik Lomonoso is to supply energy to remote industrial plants and port cities, and to offshore gas and oil platforms.  “The nuclear power plant has two KLT-40S reactor units that can generate up to 70 MW of electric energy and 50 Gcal/hr of heat energy during its normal operation,” Rosatom said. “This is enough to keep the activity of the town populated with 100,000 people.”

It will take more than a year for the power plant to reach its new home port. The original plan had called for fueling the floating plant before it began that journey, at the shipyard in central St. Petersburg – but that was scuttled in the summer of 2017, after concerns were raised both in Russia and in countries along the power plant’s route through the Baltic Sea and north to the Arctic. Rosatom says it hopes the floating nuclear power plant will be online in 2019.

Excerpts from Russia Launches Floating Nuclear Power Plant; It’s Headed To The Arctic, NPR, Apr. 30, 2018

The Fate of Disused Highly Radioactive Sources

The International Atomic Energy Agency (IAEA) has helped remove 27 disused highly radioactive sources from five South American countries in a significant step forward for nuclear safety and security in the region. It was the largest such project ever facilitated by the IAEA.  The material, mainly used for medical purposes such as treating cancer and sterilizing instruments, was transported to Germany and the United States for recycling. Canada, where some of the sources were manufactured, funded the project upon requests for IAEA support from Bolivia, Ecuador, Paraguay, Peru and Uruguay.

The sealed Cobalt-60 and Caesium-137 sources pose safety and security risks when no longer in use…

Some of these sources were stored at hospitals for more than 40 years,” said César José Cardozo Román, Minister, Executive Secretary, Radiological Nuclear Regulatory Authority of Paraguay. “With this action, a problematic situation has been solved, improving safety for the public and environment and reducing the risk of malicious use and possible exposure to radioactive material.”

In recent years, the IAEA has assisted Bosnia and Herzegovina, Cameroon, Costa Rica, Honduras, Lebanon, Morocco, Tunisia and Uzbekistan in the removal of disused sources. The South American operation was the largest the IAEA has so far coordinated in terms of both the number of highly radioactive sources and countries involved.

Excerpts from IAEA Helps Remove Highly Radioactive Material from Five South American Countries, IAEA Press Release, Apr. 30, 2018