Monthly Archives: October 2019

Scrubbing Sulfur Pollution

From January 2020, the United Nations International Maritime Organization (IMO) will ban ships from using fuels with a sulphur content above 0.5%, compared with 3.5% now.The rules herald the biggest leap in how ships are powered since they switched from burning coal to oil over a century ago, but vessels will still be allowed to use higher-sulphur fuel if fitted with cleaning devices called scrubbers.  Closed-loop scrubbers keep most of the water used for sulphur removal onboard for disposal at port. Open-loop systems, however, remove sulphur coming through a ship’s smokestack with water that can then be pumped overboard.

Years of studies have examined whether open-loop scrubbers introduce into waterways acidic sulphur harmful to marine life, cancer-causing hydrocarbons, nitrates leading to algal blooms and metals that impair organ function and cause birth defects.  The results have largely been inconclusive and the IMO itself has encouraged further study into the environmental impact of scrubbers.

The stated aim of the new IMO measures is to improve human health..  A study in the journal Nature last year found ship emissions with current sulphur levels caused about 400,000 premature deaths from lung cancer and cardiovascular disease as well as around 14 million childhood asthma cases every year.

Singapore and Fujairah in the United Arab Emirates have banned the use of open-loop scrubbers from the start of next year. China is also set to extend a ban on scrubber discharge to more coastal regions. 

Excerpts from Noah Browning, Going overboard? Shipping rules seen shifting pollution from air to sea, Reuters, Oct. 21, 2019

Gambling with the Environment: Shell’s Decommissioning Plans in the North Sea

Giant oil firms have spent more than four decades pumping billions of pounds worth of oil from the seabed. But now decommissioned rigs in the North Sea are at the centre of an environmental storm with an oil giant under intense pressure to rethink plans to leave some of the platforms in the sea.

Several hundred oil drilling platforms in the waters off Scotland are due to be decommissioned over the next three decades as they approach the end of their operational lifetime.  Due to the cost and difficulty of dismantling the structures – each of which can be as tall as the Eiffel Tower – Shell proposed removing only the topside of its four Brent platforms, leaving the huge concrete legs in place.

A natural gas platform in Norway. Almost all of the 600KT structure will be submerged.

That resulted in the controversial suggestion that oil mixed with sediment in 42 out of 64 concrete storage cells – each up to 66 feet in diameter and 200 feet high, around the height of the Scott Monument in Edinburgh – should remain on the seabed. These could remain for up to 500 years after the platforms have been decommissioned.

Chevron oil platform

The plans have raised alarm in some quarters over the impact of leaks from the estimated 11,000 tonnes of raw oil and toxins remaining in the base of the four Brent installations – Alpha, Bravo, Charlie and Delta, all put up in the East Shetland basin in the 1970s.  It has emerged that a report of an expert evaluation group commissioned by the Dutch government has provided a critical analysis of the position and recommends a clean-up be carried out as agreed more than 20 years ago in international treaties.   See Brent Decommissioning Derogation: An evaluation. The special treaty known as Ospar, which was adopted in 1992, states that rigs, including their contents and pipelines, must be removed from the sea after decommissioning.

The experts said that removing all contaminated materials “presents the most certain solution”.  They say staying true to Ospar “not only avoids passing on potential problems to future generations” but also prevents “large amounts of negative public attention as was the case in the decommissioning of Brent Spar in the 1990s”.  When Shell proposed sinking the Spar oil storage buoy in 1995, it prompted protests by Greenpeace, petrol boycotts in Germany and a falling share price. The company was eventually forced to back down and find a more environmentally friendly plan.

In October 2019, Greenpeace activists from the Netherlands, Germany and Denmark boarded two oil platforms in Shell’s Brent field in a protest against the plans. They scaled Brent Bravo and hung banners saying “Shell, clean up your mess!” and “Stop Ocean Pollution”.

The 2019 report revealed that an earlier independent review group(that took place in 2017)said that a “leave in place” solution with appropriate navigational markers and safety zones gave “a risk in relation to shipping impact that Shell regarded as acceptable”.  The report added: “However, although the estimated probabilities of a collision may be low on a per annum basis, the consequences could be catastrophic and result in major injury and loss of life or serious marine pollution.”

Excerpts from North Sea oil decommissioning: pressure grows on Shell to back down, the Herald, Oct. 20, 2019
 

Rivers of Crude Oil: the poisoned land of Iraq

A biological remediation pilot project seeking to enhance nature’s own ability to clear up oil spills in Iraq’s conflict-affected areas has been launched in Kirkuk, Iraq…This UNEP initiative seeks to harness naturally occurring soil bacteria as a powerful natural ally to decontaminate poisoned land.  Over three years ago in summer 2016, the residents of Qayyarah—a small town of around 25,000 people, some 60 km south of Mosul—were caught in the line of fire as so-called Islamic State fighters torched nineteen nearby oil wells. So thick were the clouds of smoke, that people could not distinguish day from night for weeks in what infamously came to be known as the “Daesh winter”.  Rivers of crude oil flowed through Qayyarah’s streets and into seasonal wadis as oil wells spewed tens of thousands of barrels of oil relentlessly for months. The specter of an even worse environmental catastrophe was heightened as the oil slick migrated to less than three kilometers from the Tigris River, Iraq’s water lifeline.

Following an epic battle to control the oil fires that took nearly a year, North Oil Company, which manages the oil fields of northern Iraq, is currently collecting an estimated 20,000 tonnes of remaining oil waste in Qayyarah into around a dozen large pits.  Progress, however, has been slow and pools of heavy viscous oil remain on the doorsteps of entire neighborhoods and households, who complain about the impacts of noxious fumes on their children’s health.

“In some places, the layer of heavy oil is two to three meters thick, and long stretches of wadi channels are now effectively tarmac roads on which cars can be driven,” observed Mohammed Dawood, head of Qayarrah oil refinery’s environmental unit. Furthermore, Environment Ministry officials expressed concern that exceptionally heavy rains and flash floods of the 2018/19 winter season washed out oil from the holding pits into the Tigris River.

While oil production restarted in Qayyarah immediately after the conflict ended in June 2017, reaching currently an estimated 40,000 barrels per day, little has been done to clean up the conflict’s toxic aftermath… The UN Environment Programme in collaboration with the UN Assistance Mission in Iraq delivered a four-day hands-on training workshop on remediation of oil spills by the use of bacteria  in September 2019. “By adding nutrients from manure, bulking agents like wood chips and water, we are simply creating the ideal conditions for bacteria to thrive and speeding up the natural process of breaking down the oil,”

Excerpts from  Microbes offer hope of cleaning up Iraq conflict’s pollution legacy, UNEP Press Release, Oct. 23, 2019

Greening the Mining Industry

An Australian regulator recently told Peabody Energy Glencore they couldn’t export coal from a new mine to countries that haven’t signed the Paris climate agreement. Two other Australian coal projects were scuttled in 2019, partly out of concern about greenhouse-gas emissions overseas.  Investors, too, are growing inquisitive about miners’ records on their customer emissions—partly out of fear about potential liability. Miners are responding by increasing carbon-impact disclosure, forming alliances with buyers and investing in technology to cut emissions from steel mills and power plants.  BHP  has said its scope 3 emissions—pollution mostly created when customers transport and use the commodities it produces—are almost 40 times greater than those generated at its own operations.

In the oil industry, facing similar pressures, there is friction among large companies over whether to commit to reducing greenhouse-gas emissions from products such as gasoline—in big part because emissions vary hugely depending on the vehicle…

Threats to miners’ business go beyond pushback on new projects. Consumer brands could stop buying commodities they consider too dirty, experts say. Many are already innovating with recycled materials.

In July 2019, BHP pledged to spend $400 million over five years to develop technologies that can reduce emissions both from its operations and its customers’.  “We won’t stop at the mine gate,” BHP Chief Executive Andrew Mackenzie said. …Rio Tinto is also drawing up scenarios for decarbonizing the steel industry. Success could materially affect the value of its core iron-ore business, it said.  Meantime, miners are touting their role in the shift to a low-carbon economy by producing commodities such as copper and nickel for wind turbines and electric vehicles.

Excerpts from Rhiannon Hoyle, Miners’ New Worry: Other People’s Pollution, WSJ, Oct. 9, 2019

Sunlight Can Make Plastics Disappear

Numerous international governmental agencies that steer policy assume that polystyrene, a sort of plastic  persists in the environment for millennia. 

Styrofoam Cup

In their research paper published in the Journal of  Environmental Science and Technology Letters, scientists show the  that polystyrene is completely photochemically oxidized to carbon dioxide and partially photochemically oxidized to dissolved organic carbon. Lifetimes of complete and partial photochemical oxidation are estimated to occur on centennial and decadal time scales, respectively. These lifetimes are orders of magnitude faster than biological respiration of polystyrene and thus challenge the prevailing assumption that polystyrene persists in the environment for millennia. 

Excerpt from Collin P. Ward et al, Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon, Journal of Environmental Science and Technology Letters, October 10, 2019

The Diversity of Submarine Mountains

There are about 30 000 mountains under the sea, the so-called “seamounts.”  One of them the Tropic Seamount started as a volcano, 120 million years ago. It lies at the southern tail of a chain that includes submerged peaks as well as the Canary Islands off the coast of Western Sahara. The seamount rises 3 kilometers from the ocean floor and is topped by a plateau 50 kilometers wide, 1 kilometer below the sea surface. Above ground, it would rank among the world’s 100 tallest mountains…. Much of its surface is encrusted with minerals that precipitated out of the seawater over eons, coating the lava at the excruciatingly slow rate of 1 centimeter or less every 1 million years.

That coating has caught the eye of prospectors. Called ferromanganese crust, it can contain high concentrations of cobalt, tellurium, and rare-earth elements used in electronics such as wind turbines, batteries, and solar panels. By one estimate, seamounts in just one chunk of the North Pacific Ocean could hold 50 million tons of cobalt—seven times the worldwide total that’s economical to dig up on land. Such estimates arrive at a time when the International Energy Agency in Vienna is warning of a possible cobalt supply crunch by 2030, caused in part by the growing production of battery-powered cars.

Companies hoping to extract those metals from the seabed are focusing first on abyssal plains. Those flat expanses of the deep ocean floor can be littered with potatolike nodules rich in nickel, copper, and cobalt. They are also looking at hydrothermal vents that spew mineral-laden water, creating thick crusts and fantastical rock chimneys. Seventeen companies have permits to explore for minerals in one abyssal region, the Clarion-Clipperton Zone in the Pacific Ocean between Hawaii and Mexico. And in 2017, Japan became the first nation to conduct large-scale experimental mining of a dead hydrothermal vent off the coast of Okinawa, inside Japan’s national waters. But the crusts on seamounts have particularly high concentrations of sought-after metals, making them a tempting target…

[Scientists are worried] that what they have learned from the the Tropic Seamount puts mining and conservation on a collision course. “The conditions that seem to favor the growth of the crusts,” he says, “also seem to favor the colonization by a lot of corals and sponges.”

Seamounts cover roughtly the same area as Russia and Europe combined, by one estimate, making them one of the planet’s largest habitats. The peaks have long been known as oases for sea life….Schools of fish—brick-red orange roughy, silvery pelagic armorheads, and goggle-eyed black oreos—often congregate at seamounts, as do sharks and tuna. Some migratory humpback whales appear to use them as navigational markers, spawning grounds, and resting spots. Seabirds gather above them, and myriad corals and sponges cling to their rocky surfaces, creating ample cover for other creatures.

Interest in seamounts is particularly high in countries that either host companies interested in deep-sea mining or are considering allowing mining in their national waters. In 2018, the Chinese research ship Kexue (meaning “science”) spent about 1 month surveying the Magellan Seamounts near the Mariana Trench, which several nations see as a potential source of industrial minerals. Brazilian researchers teamed up with Murton’s MarineE-tech project to examine an area in international waters where the country has a preliminary mining claim. Japanese scientists sent robots to survey seamounts that might be ripe for mining. In late July, the International Seabed Authority (ISA) in Kingston, a part of the United Nations that governs deep-sea mining in international waters, released 18 years of environmental data gathered by companies pursuing mining claims, including on seamounts….

The design of seamount mining equipment is closely guarded by competing countries and companies. But it could work much like equipment being tested for hydrothermal vents: enormous, remote-controlled machines that resemble bulldozers, equipped with toothed wheels designed to grind the crust into bits that can be carried to the ocean surface for processing.

Although no seamount has been mined yet, scientists point to the damage from deep-sea fishing to underscore why they worry this heavy machinery would do irreparable damage. In the late 1990s, Australian scientists documented devastation from nets dragged across seamounts near Tasmania to catch orange roughy. Hard corals had been wiped out, and the sheer mass of life on the mountains was half that on nearby ones too deep to be fished. Fifteen years after trawling was halted on some New Zealand seamounts, Clark and other researchers found little evidence of recovery.

Excerpts from Warren Cornwall, Sunken Summits, Science, Sept 13, 2019

Saving the Giraffe from Trophy Hunting and Meat Production

In August 2019, countries agreed to monitor trade in giraffes and their body parts to help conserve the species, now deemed vulnerable to extinction. From 1985 to 2015, the wild giraffe population shrank by about 40% to approximately 68,000 adults. The declines were especially sharp in eastern and Central Africa where giraffes’ savanna and forest habitat has been turned into farms and the animals are poached for meat; most trophy hunting of giraffes happens in southern Africa, where populations have been increasing… The only figures on trade in giraffe parts show that about 40,000—including hides, carved bones, and hunting trophies such as mounted heads—were brought into the United States from 2006 to 2015.

Excerpt from Giraffe Trade to Be Tracked, Science, Aug. 30, 2019